## ON ODD FUNGTIONS OF BOUNDED BOUNDARY ROTATION

RONALD J. LEACH

1. Introduction. Let $V_{K}$ denote the class of functions

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

that are analytic in the unit disc $U$, satisfy $f^{\prime}(z) \neq 0$ in $U$, and map $U$ onto a domain with boundary rotation at most $K \pi$ (for a definition of this concept, see [97). V. Paatero [9] showed that $f(z) \in V_{K}$ if and only if

$$
\begin{equation*}
f(z)=\int_{0}^{z} \exp \left[-\int_{0}^{2 \pi} \log \left(1-z e^{-i t}\right) d \mu(t)\right] d z \tag{1.1}
\end{equation*}
$$

where $\mu(t)$ is real valued and of bounded variation on $[0,2 \pi]$ with
(i) $\int_{0}^{2 \pi} d \mu(t)=2$,
(ii) $\int_{0}^{2 \pi}|d \mu(t)| \leqslant K$.
$V_{2}$ is precisely the class of normalized univalent convex functions and it is known that for $2 \leqq K \leqq 4, V_{K}$ consists only of univalent functions. J. Noonan [8] has recently shown that if $f(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in V_{K}$, then
(1.2) $\lim _{n \rightarrow \infty} \frac{\left|b_{n}\right|}{n^{K / 2}-1}=\frac{\beta}{\Gamma((K+2) / 2)}$,
where

$$
\beta=\lim _{r \rightarrow 1}(1-r)^{(K+2) / 2} M\left(r, f^{\prime}\right)
$$

Let $W_{K}$ denote the class of odd functions in $V_{K}$. Let

$$
A_{2 n+1}(K)=\max _{f \in W_{K}}\left|a_{2 n+1}\right| .
$$

In this paper we will determine $A_{3}(K)$ and $A_{3}(K)$ for all $K \geqq 2$. We will prove a result for $W_{K}$ analogous to (1.2) and will show that

$$
A_{2 n+1}(K)<\frac{e^{3}}{2}\left(K^{2}+K\right)\left(\frac{2}{3}\right)^{K / 4-1 / 2}(2 n+1)^{K / 4-3 / 2}
$$

2. Distortion theorems. We begin our study of the class $W_{K}$ with a theorem relating this class to the class $V_{K}$.

Received October 31, 1972 and in revised form, June 26, 1973. This research constitutes part of a Ph.D. thesis written at the University of Maryland under the direction of Professor W. E. Kirwan.

Theorem 2.1. $f(z) \in W_{K}$ if and only if there is a $g(z) \in V_{K}$ such that $f^{\prime}(z)=$ $\left\{g^{\prime}\left(z^{2}\right)\right\}^{1 / 2}$.

Proof. Suppose that $g(z) \in V_{K}$. Then $g^{\prime}(z) \neq 0$ in $U$ and hence if

$$
f(z)=\int_{0}^{z} f^{\prime}(z) d z, \quad \text { where } f^{\prime}(z)=\left\{g^{\prime}\left(z^{2}\right)\right\}^{1 / 2}
$$

then $f(z)$ is single valued and analytic in $U$. We have

$$
1+\frac{z^{2} g^{\prime \prime}\left(z^{2}\right)}{g^{\prime}\left(z^{2}\right)}=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}
$$

A short calculation shows that (with $\zeta=z^{2}=r^{2} e^{i_{\alpha}}$ )

$$
\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+\frac{r e^{i \theta} f^{\prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right\}\right| d \theta=\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+\frac{\zeta g^{\prime \prime}(\zeta)}{g^{\prime}(\zeta)}\right\}\right| d \alpha
$$

Therefore

$$
\begin{equation*}
\lim _{|z| \rightarrow 1} \int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}\right| d \theta=\lim _{|\zeta| \rightarrow 1} \int_{0}^{2 \pi}\left|\operatorname{Re}\left\{1+\frac{\zeta g^{\prime \prime}(\zeta)}{g^{\prime}(\zeta)}\right\}\right| d \alpha \tag{2.1}
\end{equation*}
$$

and consequently $f(z) \in W_{K}$ if $g(z) \in V_{K}$, since $f(z)$ is odd.
Suppose now that $f(z) \in W_{K}$. Let

$$
g(z)=\int_{0}^{z} g^{\prime}(z) d z, \quad \text { where } g^{\prime}\left(z^{2}\right)=\left[f^{\prime}(z)\right]^{2}
$$

Then (2.1) holds and thus $g(z) \in V_{K}$.
Corollary 2.2. $f(z) \in W_{K}$ if and only if there are two odd starlike functions $s_{1}(z)$ and $s_{2}(z)$ such that

$$
f^{\prime}(z)=\left[\frac{s_{1}(z)}{z}\right]^{(K+2) / 4} /\left[\frac{s_{2}(z)}{z}\right]^{(K-2) / 4}
$$

Proof. This follows immediately from Theorem 2.1 and a result due to D. Brannan [2].

We observe that Corollary 2.2 and the distortion theorem for odd univalent functions easily yield sharp bounds for $\left|f^{\prime}(z)\right|$ and $|f(z)|$.

Theorem 2.3. Let $f(z) \in W_{6}$. Then $f(z)$ is close-to-convex in $U$.
Proof. By a result due to Kaplan [5], $f(z)$ is close-to-convex in $U$ if and only if for each $r$ with $0<r<1$ and each $\theta_{1}$ and $\theta_{2}$ with $0 \leqq \theta_{1}<\theta_{2} \leqq 2 \pi$,

$$
\begin{equation*}
\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re}\left\{1+\frac{r e^{i \theta} f^{\prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right\} d \theta>-\pi . \tag{2.2}
\end{equation*}
$$

The conclusion is well-known for convex functions and thus we may assume $f(z)$ is a non-convex function in $W_{K}$ with $2<K \leqq 6$. Let $h(r, \theta)$ denote the
integrand in (2.2). Since $\operatorname{Re}\left\{1+z f^{\prime \prime}(z) / f^{\prime}(z)\right\}$ is harmonic in $U$, the subharmonic function $\left|\operatorname{Re}\left\{1+z f^{\prime \prime}(z) / f^{\prime}(z)\right\}\right|$ cannot be harmonic in $\rho<|z|<1$. By a result of F. Riesz [12] on subharmonic functions,

$$
\int_{0}^{2 \pi}|h(r, \theta)| d \theta
$$

is a strictly increasing function of $r$ for near 1 . Consequently, for any fixed $r$ sufficiently near 1 ,

$$
\int_{0}^{2 \pi}|h(r, \theta)| d \theta<6 \pi .
$$

Suppose that for some $\theta_{1}, \theta_{2}$ with $0 \leqq \theta_{1}<\theta_{2}<2 \pi$,

$$
\int_{\theta_{1}}^{\theta_{2}} h(r, \theta) d \theta=-\alpha \pi \quad(\alpha>0)
$$

We may suppose without loss of generality that $\theta_{1}=0$ since if not we consider $e^{i \theta_{1} f}\left(e^{-i \theta_{1}} z\right)$. There are three possibilities to consider.

If $\theta_{2}=\pi$, then since $f(z)$ is odd,

$$
2 \int_{0}^{\pi} h(r, \theta) d \theta=-\alpha \pi
$$

which is impossible since $\alpha>0$.
Suppose $\theta_{2}<\pi$. Then $\left[0, \theta_{2}\right]$ and $\left[\pi, \theta_{2}+\pi\right]$ are disjoint subintervals of $[0,2 \pi]$ with

$$
-\alpha \pi=\int_{0}^{\theta_{2}} h(r, \theta) d \theta=\int_{\pi}^{\theta_{2}+\pi} h(r, \theta) d \theta
$$

Since

$$
\int_{0}^{2 \pi} h(r, \theta) d \theta=2 \pi \quad \text { and } \quad \int_{0}^{2 \pi}|h(r, \theta)| d \theta<6 \pi
$$

it follows that, denoting the union of $\left[0, \theta_{2}\right]$ and $\left[\pi, \theta_{2}+\pi\right]$ by $E$,

$$
-2 \alpha \pi=\int_{E} h(r, \theta) d \theta>-2 \pi
$$

and hence $\alpha<1$.
Finally, if $\theta_{2}>\pi$, we have

$$
\int_{0}^{\pi} h(r, \theta) d \theta+\int_{\pi}^{\theta_{2}} h(r, \theta) d \theta=-\alpha \pi
$$

Thus $\left(0, \theta_{2}-\pi\right]$ and $\left[\pi, \theta_{2}\right]$ are disjoint subintervals of $[0,2 \pi]$ with

$$
-\alpha \pi-\pi=\int_{0}^{\theta_{2}-\pi} h(r, \theta) d \theta=\int_{\pi}^{\theta_{2}} h(r, \theta) d \theta .
$$

Denoting the union of the two intervals by $F$, we have

$$
-2 \alpha \pi-2 \pi=\int_{F} h(r, \theta) d \theta>-2 \pi
$$

which is impossible since $\alpha>0$.
Thus in any case $\alpha<1$ and hence since $r$ was arbitrary, $f(z)$ is close-toconvex in $U$.

In order to obtain an estimate on the radius of close-to-convexity of $W_{K}$, we need to use the following lemma, the proof of which is implicitly contained in a result due to Goluzin [3, p. 533].

Lemma 2.4. Let $s(z)$ be an odd starlike function. Then $|\arg s(z) / z| \leqq \arcsin \left|z^{2}\right|$ and this result is sharp.

Theorem 2.5. Let $f(z) \in W_{K}$. Then $f(z)$ is close-to-convex (and hence univalent for $|z|<r_{0}$, where $r_{0}=1$, if $K \leqq 6$ and $r_{0}=[\sin \pi /(K-2)]^{1 / 2}$ if $K>6$.

Proof. By Corollary 2.2, there are two odd starlike functions $s_{1}(z)$ and $s_{2}(z)$ such that

$$
f^{\prime}(z)=\left[\frac{s_{1}(z)}{z}\right]^{(K+2) / 4} /\left[\frac{s_{2}(z)}{z}\right]^{(K-2) / 4}
$$

Then

$$
\begin{aligned}
\left|\arg \frac{z f^{\prime}(z)}{s_{1}(z)}\right| & =\left|\arg \left[\frac{s_{1}(z)}{z} / \frac{s_{2}(z)}{z}\right]^{(K-2) / 4}\right| \\
& \leqslant \frac{K-2}{4} 2 \arcsin r^{2} \quad\left(z=r e^{i \theta}\right)
\end{aligned}
$$

Now $\operatorname{Re} z f^{\prime}(z) / s_{1}(z)>0$ for $|z|<r$ if and only if $\left|\arg z f^{\prime}(z) / s_{1}(z)\right|<\pi / 2$ for $|z|<r$. Thus $f(z)$ is close-to-convex (relative to the starlike function $s_{1}(z)$ ) if

$$
\frac{K-2}{2} \arcsin r^{2}<\frac{\pi}{2}
$$

which gives the result.
3. Sharp coefficient bounds. In this section we will find the values of $A_{3}(K)$ and $A_{5}(K)$ for all values of $K$ for all $K \geqq 2$. In addition we will show that $A_{2_{n+1}}(6)=1$, for all $n \geqq 0$. We will need the following result due to 0 . Lehto [6].

Lemma 3.1. Let $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in V_{K}$ and suppose

$$
g^{\prime}(z)=\exp \left[-\int_{0}^{2 \pi} \log \left(1-z e^{-i t}\right) d \mu(t)\right] .
$$

Then for $n \geqq 2$,

$$
b_{n}=\frac{1}{n(n-1)} \sum_{j=1}^{n-1} j b_{j} \int_{0}^{2 \pi} e^{-(n-j) i \theta} d \mu(\theta)
$$

Lehto conjectured that the coefficients of the function

$$
g_{0}(z)=\frac{1}{K}\left[\left(\frac{1+z}{1-z}\right)^{K / 2}-1\right]
$$

solve the problem of determining max $\left|b_{n}\right|$ for the class $V_{K}$. Using a method similar to Lehto's, we will see that the function $f_{0}(z)$ defined ${ }^{\text {T}}$ by

$$
\begin{align*}
f_{0}(z) & =\int_{0}^{z}\left\{g_{0}{ }^{\prime}\left(z^{2}\right)\right\}^{1 / 2} d z=\int_{0}^{z} \frac{\left(1+z^{2}\right)^{(K-2) / 4}}{\left(1-z^{2}\right)^{(K+2) / 4}} d z  \tag{3.1}\\
& =z+\frac{K}{6} z^{3}+\frac{K^{2}+4}{40} z^{5}+\ldots
\end{align*}
$$

gives the value of $A_{3}(K)$ for all $K \geqq 2$, but that $\left(K^{2}+4\right) / 40=A_{5}(K)$ only for $K=2$ or $K \geqq 4$. We conjecture that the coefficients of $f_{0}(z)$ yield $A_{2_{n+1}}(K)$ for all $K \geqq 4$.

Theorem 3.2. Let $f(z)=z+\sum_{n=1}^{\infty} a_{2 n+1} z^{2 n+1} \in W_{K}$. Then
(3.2) $\quad\left|a_{3}\right| \leqq K / 6 \quad 2 \leqq K$,
(3.3) $\left|a_{5}\right| \leqq\left(K^{2}+4\right) / 40 \quad 4 \leqq K$,

$$
\begin{equation*}
\left|a_{5}\right| \leqq(14 K+4) / 20(10-K) \quad 2 \leqq K<4 \tag{3.4}
\end{equation*}
$$

All of these results are sharp for the indicated ranges of $K$.
Proof. By Lemma 3.1, we have that

$$
\left|a_{3}\right|=\left|\frac{1}{6} \int_{0}^{2 \pi} e^{-2 i \theta} d \mu(\theta)\right|
$$

where

$$
f^{\prime}(z)=\exp \left[-\int_{0}^{2 \pi} \log \left(1-z e^{-i t}\right) d \mu(t)\right]
$$

Since

$$
\int_{0}^{2 \pi}|d \mu(t)| \leqslant K
$$

we have $\left|a_{3}\right| \leqq K / 6$.
By Lemma 3.1, we have that

$$
20 a_{5}=\int_{0}^{2 \pi} e^{-4 i \theta} d \mu(\theta)+\frac{1}{2}\left[\int_{0}^{2 \pi} e^{-2 i \theta} d \mu(\theta)\right]^{2}
$$

We may suppose without loss of generality that $a_{5}$ is real and non-negative, since if not we may consider $e^{-i \theta} f\left(e^{i \theta} z\right)$, where $\theta$ is chosen so that $e^{4 i \theta} a_{5} \geqq 0$. Thus we have

$$
\begin{aligned}
20 a_{5} & =\int_{0}^{2 \pi} \cos 4 \theta d \mu(\theta)+\frac{1}{2}\left[\left(\int_{0}^{2 \pi} \cos 2 \theta d \mu(\theta)\right)^{2}\right. \\
& \left.-\left(\int_{0}^{2 \pi} \sin 2 \theta d \mu(\theta)\right)^{2}\right] \\
& =\int_{0}^{2 \pi} 2 \cos ^{2} 2 \theta d \mu(\theta)-2+\frac{1}{2}\left[\left(\int_{0}^{2 \pi} \cos 2 \theta d \mu(\theta)\right)^{2}\right. \\
& \left.-\left(\int_{0}^{2 \pi} \sin 2 \theta d \mu(\theta)\right)^{2}\right] \\
& \leqslant 2 \int_{0}^{2 \pi} \cos ^{2} 2 \theta d \mu(\theta)+\frac{1}{2}\left[\int_{0}^{2 \pi} \cos 2 \theta d \mu(\theta)\right]^{2}-2 .
\end{aligned}
$$

Let us first suppose that $\mu(\theta)$ is a step function with at most $N$ jumps. If $\mu(\theta)$ has jumps $d_{j}$ at $\theta_{j}\left(0 \leqq \theta_{j} \leqq 2 \pi\right)$, then

$$
\begin{equation*}
\sum_{j=1}^{N} d_{j}=2, \quad \sum_{j=1}^{N}\left|d_{j}\right| \leqslant K \tag{3.5}
\end{equation*}
$$

and
(3.6) $20 a_{j} \leqslant 2 \sum_{j=1}^{N} \cos ^{2} 2 \theta_{j} d_{j}+\frac{1}{2}\left[\sum_{j=1}^{N} \cos 2 \theta_{j} d_{j}\right]^{2}-2$.

We wish to find a maximum for the right hand side of (3.6), subject to the constraints (3.5). The existence of a maximum is obvious, since we are considering a continuous function of the $N$ variables $\cos 2 \theta_{j}$ defined on a compact subset of $E_{N}$.

First we suppose that the maximum value of (3.6) is attained at a point where not all of the $\left|\cos 2 \theta_{j}\right|=1$. By relabeling if necessary, we may assume that $\left|\cos 2 \theta_{j}\right| \neq 1$ for $1 \leqq j \leqq r(r \leqq N)$. Then a differentiation of the right hand side of (3.6) with respect to $\cos 2 \theta_{h}$ yields

$$
4 \cos 2 \theta_{h} d_{h}+\left[\sum_{j=1}^{N} \cos 2 \theta_{j} d_{j}\right] d_{h}=0 \quad(1 \leqslant h \leqslant r)
$$

Thus $\cos 2 \theta_{h}$ is identically constant, say $\cos 2 \theta_{h} \equiv \cos 2 \alpha$ for $1 \leqq h \leqq r$ and

$$
\begin{equation*}
-4 \cos 2 \alpha=\sum_{j=1}^{N} \cos 2 \theta_{j} d_{j} \tag{3.7}
\end{equation*}
$$

Substituting in (3.6) we have
(3.8) $20 a_{5} \leqslant 2 \cos ^{2} 2 \alpha\left[\sum_{j=1}^{r} d_{j}\right]-2+2\left[\sum_{j=r+1}^{N} d_{j}\right]+8 \cos ^{2} 2 \alpha$.
(In (3.8) we adopt the convention that if $r=N, \sum_{j=r+1}^{N} d_{j}=0$.) From (3.5)
we see that

$$
\sum_{j=1}^{\tau} d_{j}=2-\sum_{j=r+1}^{N} d_{j}
$$

and

$$
\sum_{j=r+1}^{N} d_{j} \leqslant 1+\frac{K}{2}
$$

It follows that

$$
\begin{aligned}
20 a_{5} & \leqslant 2 \cos ^{2} 2 \alpha\left(2-\sum_{j=r+1}^{N} d_{j}\right)+2\left(\sum_{j=r+1}^{N} d_{j}\right)+8 \cos ^{2} 2 \alpha-2 \\
& \leqslant K+(10-K) \cos ^{2} 2 \alpha
\end{aligned}
$$

If $K \geqq 4$, we use the inequality $\cos ^{2} 2 \alpha \leqq 1$ to obtain

$$
20 a_{5} \leqq 10 \leqq\left(K^{2}+4\right) / 2
$$

Let us now suppose $K<4$. From (3.7) we have

$$
-\cos 2 \alpha\left(4+\sum_{j=1}^{r} d_{j}\right)=\sum_{j=r+1}^{N} \cos 2 \theta_{j} d_{j}
$$

and hence

$$
|\cos 2 \alpha|=\left|\frac{\sum_{r+1}^{N} \cos 2 \theta_{j} d_{j}}{4+\sum_{j=1}^{r} d_{j}}\right| \leqslant \frac{2+K}{10-K}
$$

Thus if $K<4$,

$$
\begin{aligned}
20 a_{5} & \leqslant K+(10-K)\left(\frac{2+K}{10-K}\right)^{2} \\
& =\frac{14 K+4}{10-K}
\end{aligned}
$$

We observe that $(K+4) / 2<(14 K+4) /(10-K)$ if and only if

$$
K^{3}-10 K^{2}+32 K-32>0,
$$

which is true for $2<K<4$.
It remains to consider the case that each $\left|\cos 2 \theta_{j}\right|=1$ at the maximum. In this case we have from (3.6) that

$$
\begin{aligned}
20 a_{5} & \leqslant 2 \sum_{j=1}^{N} d_{j}+\frac{1}{2}\left[\sum_{j=1}^{N} \cos 2 \theta_{j} d_{j}\right]^{2}-2 \\
& \leqslant 4+\frac{1}{2}\left[\sum_{j=1}^{N}\left|d_{j}\right|\right]^{2}-2 \\
& =\frac{K^{2}+4}{2}
\end{aligned}
$$

Since step functions are dense in the family of functions of bounded variation with the constraints (3.5), our results are valid for each function in $W_{K}$.

The function

$$
f_{0}(z)=z+\frac{K}{6} z^{3}+\frac{K^{2}+4}{40} z^{5}+\ldots
$$

of (3.1) shows that (3.2) and (3.3) are sharp. To show that (3.4) is sharp we will construct a function $\mu(t)$ for which equality holds in (3.6) for $2 \leqq K<4$.

Let $\alpha=\frac{1}{2} \arccos (K+2) /(10-K)$. We define $\mu(\theta)$ on $[0,2 \pi]$ as a step function with jumps $d_{j}(1 \leqq j \leqq 4)$ of $\frac{1}{4}(1-K / 2)$ at the values $\theta_{1}=\alpha$, $\theta_{2}=\pi-\alpha, \theta_{3}=\pi+\alpha$, and $\theta_{4}=2 \pi-\alpha$ and jumps $d_{j}(5 \leqq j \leqq 6)$ of $\frac{1}{2}(1+K / 2)$ at $\theta_{5}=\pi / 2$ and $\theta_{6}=3 \pi / 2$. A short calculation using (1.1), Corollary 2.2 and Lemma 3.1 shows that

$$
f^{\prime}(z)=\left[\left(1-z^{2} e^{-2 i \alpha}\right)\left(1-z^{2} e^{2 i \alpha}\right)\right]^{(K / 2-1) / 4} /\left(1+z^{2}\right)^{(1+K / 2) / 2}
$$

and that $a_{5}=(14 K+4) / 20(10-K)$.
As a conclusion to this section, we obtain the sharp bounds for the coefficients of a function in $W_{6}$.

ThEOREM 3.3. Let $f(z)=\sum_{n=0}^{\infty} a_{2 n+1} z^{2 n+1} \in W_{6}$. Then $\left|a_{2 n+1}\right| \leqq 1$, with equality for $f(z)=z /\left(1-z^{2}\right)$.

Proof. By Theorem 2.3, $f(z)$ is close-to-convex in $U$. The result then follows from a result of C . Pommerenke [10].
4. Asymptotic coefficient estimates. We first consider the problem of estimating $\left|\left|a_{2 n+3}\right|-\left|a_{2_{n+1}}\right|\right|$ for a function $f(z)=\sum_{n=0}^{\infty} a_{2_{n+1}} z^{2 n+1} \in W_{K}$. K. Lucas [7] has shown that if $f(z)=\sum_{n=0}^{\infty} a_{2 n+1} z^{2 n+1}$ is univalent,

$$
\left|\left|a_{2_{n+3}}\right|-\left|a_{2_{n+1}}\right|\right|=O\left(n^{1-\sqrt{ } 2}\right)
$$

M. S. Robertson [13] has shown that if $g(z)=\sum_{n=1}^{\infty} b_{n} z^{n} \in V_{K} \cap S$, then

$$
\left|\left|b_{n+1}\right|-\left|b_{n}\right|\right| \leqslant 2\left(\frac{e}{3}\right)^{3}\left(K^{2}+K\right)
$$

We will obtain estimates for $W_{K} \cap S$ using Robertson's technique.
Lemma 4.1. Let $f(z)$ be an odd function in $S$. Then if $\left|z_{1}\right|=\left|z_{2}\right|=r$,

$$
\begin{gather*}
\min \left(\left|f\left(z_{1}\right)\right|,\left|f\left(z_{2}\right)\right|\right) \leqslant \frac{2^{1 / 2} r}{\left[\left|z_{1}{ }^{2}-z_{2}^{2}\right|\left(1-r^{4}\right)\right]^{1 / 2}}  \tag{4.1}\\
\min \left(\left|f^{\prime}\left(z_{1}\right)\right|,\left|f^{\prime}\left(z_{2}\right)\right|\right) \leqslant \frac{2^{1 / 2}\left(1+r^{2}\right)^{1 / 2}}{\left|z_{1}{ }^{2}-z_{2}{ }^{2}\right|^{1 / 2}\left(1-r^{2}\right)^{3 / 2}}
\end{gather*}
$$

Proof. Goluzin [4], has shown that if $g(z) \in S$,

$$
\begin{equation*}
\min \left(\left|g\left(t_{1}\right)\right|,\left|g\left(t_{2}\right)\right|\right) \leqslant \frac{2\left|t_{2}\right|}{\left|t_{1}-t_{2}\right|\left(1-\left|t_{1}\right|^{2}\right)} \quad\left(\left|t_{1}\right|=\left|t_{2}\right|<1\right) \tag{4.3}
\end{equation*}
$$

If we apply (4.3) to the function $g(z)$ defined by $f(z)=\left\{g\left(z^{2}\right)\right\}^{1 / 2}$, then (4.1) follows. To obtain (4.2) we note that since $f(z)$ is an odd univalent function,

$$
\left|\frac{z f^{\prime}(z)}{f(z)}\right| \leqslant \frac{1+r^{2}}{1-r^{2}} \quad\left(z=r e^{i \theta}\right)
$$

Observing that $\left|f^{\prime}(z)\right|=\left|f^{\prime}(z) / f(z)\right| \cdot|f(z)|$ for $z \neq 0$, we see that

$$
\begin{aligned}
\min \left(\left|f^{\prime}\left(z_{1}\right)\right|,\left|f^{\prime}\left(z_{2}\right)\right|\right) \leqslant & \frac{2^{1 / 2} r}{\left[\left|z_{1}{ }^{2}-z_{2}{ }^{2}\right|\left(1-r^{4}\right)\right]^{1 / 2}} \frac{1}{r} \frac{1+r^{2}}{1-r^{2}} \\
= & \frac{2^{1 / 2}\left(1+r^{2}\right)^{1 / 2}}{\left|z_{1}{ }^{2}-z_{2}{ }^{2}\right|^{1 / 2}\left(1-r^{2}\right)^{3 / 2}} \\
& \quad\left(0<\left|z_{1}\right|=\left|z_{2}\right|=r<1\right)
\end{aligned}
$$

Theorem 4.2. Let $f(z)=\sum_{n=0}^{\infty} a_{2 n+1} z^{2 n+1} \in W_{K}$ and suppose $f(z)$ is univalent. Then we have

$$
\left|\left|a_{2 n+3}\right|-\left|a_{2 n+1}\right|\right| \leqslant \frac{8\left(K^{2}+K\right) e^{3} 5^{5 / 2}}{243 \sqrt{ } 6}(2 n+1)^{-1 / 2} \quad(n \geqslant 1)
$$

Proof. Let $z_{1}$ be a point on $|z|=r$ where $\left|f^{\prime}\left(z_{1}\right)\right|=M\left(r, f^{\prime}\right)$. Then by Lemma 4.1,

$$
\left|z^{2}-z_{1}^{2}\right|\left|f^{\prime}(z)\right| \leqslant \frac{2^{1 / 2}\left(1+r^{2}\right)^{1 / 2}\left|z^{2}-z_{1}^{2}\right|^{1 / 2}}{\left(1-r^{2}\right)^{3 / 2}} \quad(|z|=r)
$$

Now

$$
\begin{aligned}
\left(z^{2}-z_{1}^{2}\right) f^{\prime \prime \prime}(z)=-6 a_{3} z_{1}^{2}-\sum_{n=1}^{\infty}[(2 n & +3)(2 n+2) a_{2 n+3} z_{1}^{2} \\
& \left.-2 n(2 n-1) a_{2 n+1}\right](2 n+1) z^{2 n}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& (2 n+1)\left|(2 n+3)(2 n+2) a_{2 n+3} z_{1}{ }^{2}-2 n(2 n-1) a_{2 n+1}\right| \\
\leqslant & \frac{1}{2 \pi r^{2 n}} \int_{0}^{2 \pi}\left|z^{2}-z_{1}^{2}\right|\left|f^{\prime}(z)\right|\left|\frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}\right| d \theta \\
\leqslant & \frac{\left[2\left|z^{2}-z_{1}^{2}\right|\left(1+r^{2}\right)\right]^{1 / 2}}{\left(1-r^{2}\right)^{3 / 2}} \cdot \frac{1}{2 \pi r^{2 n}} \int_{0}^{2 \pi}\left|\frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}\right| d \theta \\
\leqslant & \frac{2 \sqrt{ } 2}{r^{2 n}\left(1-r^{2}\right)^{3 / 2}} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}\right| d \theta .
\end{aligned}
$$

Robertson [13] has shown that if $f(z) \in V_{K}$, and hence certainly if $f(z) \in W_{K}$,

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}\right| d \theta \leqslant \frac{K^{2}+K}{1-r^{2}} \tag{4.4}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
(2 n+1) \mid(2 n+3)(2 n+2) a_{2 n+3} z_{1} & -2 n(2 n-1) a_{2 n+1} \mid \\
& \leqslant \frac{2 \sqrt{ } 2\left(K^{2}+K\right)}{r^{2 n}\left(1-r^{2}\right)^{5 / 2}} .
\end{aligned}
$$

Choose $\left|z_{1}\right|^{2}=r^{2}=2 n(2 n-1) /(2 n+2)(2 n+3)$. Then (4.5) yields

$$
\begin{aligned}
& (2 n+1)(2 n)(2 n-1)\left|\left|a_{2 n+3}\right|-\left|a_{2 n+1}\right|\right| \\
\leqslant & \frac{2 \sqrt{ } 2\left(K^{2}+K\right)}{\left[1-\frac{2 n(2 n-1)}{(2 n+3)(2 n+2)}\right]^{5 / 2}}\left[\frac{(2 n+3)(2 n+2)}{(2 n)(2 n-1)}\right]^{n} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& \quad\left|\left|a_{2 n+3}\right|-\left|a_{2 n+1}\right|\right| \\
& \leqslant \frac{2 \sqrt{ } 2\left(K^{2}+K\right)}{(2 n+1)(2 n)(2 n-1)}\left[\frac{(2 n+3)(2 n+2)}{12 n+6}\right]^{5 / 2} \\
& \quad \times\left(1+\frac{1}{n}\right)^{n}\left(1+\frac{4}{2 n-1}\right)^{n} \\
& \leqslant \frac{2 \sqrt{ } 2\left(K^{2}+K\right)}{2^{5 / 2}}\left(\frac{2 n+3}{6 n+3}\right)^{5 / 2} e^{3} \frac{(2 n+2)^{2}}{(2 n)(2 n-1)}\left(\frac{2 n+2}{2 n+1}\right)^{1 / 2}(2 n+1)^{-1 / 2} \\
& <\frac{8\left(K^{2}+K\right) e^{3} 5^{5 / 2}}{243 \sqrt{3}}(2 n+1)^{-1 / 2} \quad(n \geqslant 1) .
\end{aligned}
$$

We now study the asymptotic behavior of $\left|a_{2 n+1}\right|$ by relating the growth of the coefficients of $f(z)$ to the growth of $M\left(r, f^{\prime}\right)$. We will show that

$$
\alpha=\lim _{r \rightarrow 1}\left(1-r^{2}\right)^{(K+2) / 4} M\left(r, f^{\prime}\right)
$$

exists and that $\alpha$ (and hence $\left|a_{2_{n+1}}\right|$ for large $n$ ) is maximal for the class $W_{\boldsymbol{K}}$ only for the function

$$
f_{0}(z)=\int_{0}^{z} \frac{\left(1+z^{2}\right)^{(K-2) / 4}}{\left(1-z^{2}\right)^{(K+2) / 4}} d z
$$

or its rotations.
Theorem 4.3. Let $f(z) W_{K}$. Then

$$
\alpha=\lim _{r \rightarrow 1}\left(1-r^{2}\right)^{(K+2) / 4} M\left(r, f^{\prime}\right)
$$

exists and $\alpha \leqq 2^{(K-2) / 4}$ with equality if and only if

$$
f(z)=\int_{0}^{z} \frac{\left(1+e^{2 i \theta} z^{2}\right)^{(K-2) / 4}}{\left(1-e^{2 i \theta} z^{2}\right)^{(K+2) / 4}} d z
$$

Further, if $\alpha>0$, there are precisely two values of $\theta_{0}$ such that

$$
\lim _{r \rightarrow 1}\left(1-r^{2}\right)^{(K+2) / 4}\left|f^{\prime}\left(r e^{i \theta_{0}}\right)\right|=\alpha .
$$

Proof. By Corollary 2.2, there are two odd starlike functions $s_{1}(z)$ and $s_{2}(z)$ such that

$$
f^{\prime}(z)=\left[\frac{s_{1}(z)}{z}\right]^{(K+2) / 4} /\left[\frac{s_{2}(z)}{z}\right]^{(K-2) / 4}
$$

Let $S_{1}(z)=\left[s_{1}(\sqrt{ } z)\right]^{2}$. Pommerenke $[\mathbf{1 1}]$ has shown that, unless $S_{1}(z)=$ $z /\left(1-e^{-2 i \theta} z\right)^{2}$,

$$
\lim _{r \rightarrow 1}(1-r)^{2} M\left(r, S_{1}\right)=0
$$

Hence if $s_{1}(z)$ is not of the form $s_{1}(z)=z /\left(1-e^{-2 i \theta} z^{2}\right)$,

$$
\lim _{r \rightarrow 1}\left(1-r^{2}\right) M\left(r, s_{1}\right)=0
$$

and thus since $z / s_{2}(z)$ is bounded in $U$

$$
\lim _{r \rightarrow 1}\left(1-r^{2}\right)^{(K+2) / 4} M\left(r, f^{\prime}\right)=0
$$

Suppose now that

$$
\lim _{r \rightarrow 1} \sup \left(1-r^{2}\right)^{(K+2) / 4} M\left(r, f^{\prime}\right)>0 .
$$

Then $s_{1}(z)$ is of the form $z /\left(1-e^{-2 i \theta 0} z^{2}\right)$ and we may assume $\theta_{0}=0$. Since $f(z)$ is odd, we may choose a sequence $r_{n} \rightarrow 1$ and a point $z_{n}$ on $|z|=r_{n}$ with $\operatorname{Re} z_{n} \geqq 0$ such that $\lim _{n \rightarrow \infty}\left(1-r_{n}{ }^{2}\right)^{(K+2) / 4}\left|f^{\prime}\left(z_{n}\right)\right|>0$. We will show that for each such sequence, there is a Stoltz angle $A$ with vertex at $z=1$ such that $z_{n}$ eventually lie in $A$. Suppose not. Let $C>0$ be given. Then there is a subsequence $\left\{z_{j}\right\}$ with $\left|1-z_{j}\right|>C\left(1-r_{j}\right)$ and hence, since $\left|z / s_{2}(z)\right| \leqq 2$, we have for $j$ sufficiently large

$$
\begin{align*}
2^{(K-2) / 4} & \geqslant \frac{1}{2}\left(1-r_{j}^{2}\right)^{(K+2) / 4} \frac{C^{(K+2) / 4}}{\left|1-z_{j}^{2}\right|^{(K+2) / 4}}\left|\frac{z_{j}}{s_{2}\left(z_{j}\right)}\right|^{(K-2) / 4} \\
& =\frac{1}{2} C^{(K+2) / 4}\left(1-r_{j}^{2}\right)^{(K+2) / 4}\left|f^{\prime}\left(z_{j}\right)\right| . \tag{4.6}
\end{align*}
$$

Letting $j \rightarrow \infty$ in (4.6) we obtain the inequality

$$
2^{(K+2) / 4} \geqslant C^{(K+2) / 4} \lim _{j \rightarrow \infty}\left(1-r_{j}^{2}\right)^{(K+2) / 4}\left|f^{\prime}\left(z_{j}\right)\right|,
$$

which is impossible since $C>0$ is arbitrary and $\lim _{j \rightarrow \infty}\left(1-r_{j}{ }^{2}\right)^{(K+2) / 4}\left|f^{\prime}\left(z_{j}\right)\right|>$ 0 . It follows that the points $z_{n}$ eventually lie interior to some fixed Stoltz angle with vertex at $z=1$. We recall that since $s_{2}(z)$ is starlike, $[\mathbf{1 ; 1 1}], \lim _{r \rightarrow 1} r / s_{2}(r)$
exists and is finite. (Since

$$
r \frac{\partial}{\partial r} \log |f(z)|=\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)} \geqslant 0
$$

$\lim _{r \rightarrow 1}|f(r)|$ exists (possibly $\left.=\infty\right)$.) Since the $z_{n}$ lie interior to some fixed Stoltz angle, we have

$$
\lim _{n \rightarrow \infty} \frac{r_{n}}{s_{2}\left(r_{n}\right)}=\lim _{n \rightarrow \infty} \frac{z_{n}}{s_{2}\left(z_{n}\right)} .
$$

It follows that

$$
\begin{aligned}
\left|\frac{z_{n}}{s_{2}\left(z_{n}\right)}\right|^{(K-2) / 4} & >\left|\frac{1-r_{n}{ }^{2}}{1-z_{n}^{2}}\right|^{(K+2) / 4}\left|\frac{z_{n}}{s_{2}\left(z_{n}\right)}\right|^{(K-2) / 4} \\
& =\left(1-r_{n}{ }^{2}\right)^{(K+2) / 4}\left|f^{\prime}\left(z_{n}\right)\right|
\end{aligned}
$$

and hence

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{r_{n}}{s_{2}\left(r_{n}\right)}\right|^{(K-2) / 4} & \geqslant \lim _{n \rightarrow \infty}\left(1-r_{n}^{2}\right)^{(K+2) / 4}\left|f^{\prime}\left(z_{n}\right)\right| \\
& \geqslant \lim _{n \rightarrow \infty}\left(1-r_{n}^{2}\right)^{(K+2) / 4}\left|f^{\prime}\left(r_{n}\right)\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{r_{n}}{s_{2}\left(r_{n}\right)}\right|^{(K-2) / 4}
\end{aligned}
$$

for any sequence $r_{n}$ so that $\lim _{n \rightarrow \infty}\left(1-r_{n}{ }^{2}\right)^{(K+2) / 4}\left|f^{\prime}\left(z_{n}\right)\right|>0$. Therefore $\alpha$ exists and equals $\lim _{r \rightarrow 1}\left(1-r^{2}\right)^{(K+2) / 4}\left|f^{\prime}(r)\right|$.

A similar argument shows that

$$
\lim _{r \rightarrow 1}\left(1-r^{2}\right)^{(K+2) / 4}\left|f^{\prime}(-r)\right|=\alpha
$$

We have $\alpha \leqq 2^{(K-2) / 4}$ with equality when $\theta_{0}=0$ if and only if $s_{2}(z)=z /\left(1-z^{2}\right)$ and $s_{2}(z)=z /\left(1+z^{2}\right)$ and consequently equality holds in general only for rotations of the function

$$
f_{0}(z)=\int_{0}^{z} \frac{\left(1+z^{2}\right)^{(K-2) / 4}}{\left(1-z^{2}\right)^{(K+2) / 4}} d z
$$

Remark. Noonan [8] has obtained a result similar to Theorem 4.3 for the class $V_{K}$ using the Hardy-Stein-Spencer equality.

A straightforward modification of Noonan's technique yields the following theorem, whose proof will be omitted.

Theorem 4.4. Let $f(z)=\sum_{n=0}^{\infty} a_{2 n+1} z^{2 n+1} \in W_{K}$ and let

$$
\alpha=\lim _{\tau \rightarrow 1}\left(1-r^{2}\right)^{(K+2) / 4} M\left(r, f^{\prime}\right)
$$

Then

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{2 n+1}\right|}{(2 n+1)^{K / 4-3 / 2}}=\frac{\alpha}{\Gamma((K+2) / 4)} .
$$

Remark. Theorem 4.4 shows that for any fixed function $f(z) \in W_{K}$, the moduli of the coefficients of $f(z)$ are eventually less than those of the function

$$
f(z)=\int_{0}^{z} \frac{\left(1+z^{2}\right)^{(K-2) / 4}}{\left(1-z^{2}\right)^{(K+2) / 4}} d z
$$

unless $f(z)=e^{-i \theta} f\left(e^{i \theta} z\right)$. This is somewhat surprising since by Theorem 3.2, $f_{0}(z)$ does not maximize $\left|a_{5}\right|$ for $2<K<4$.

To conclude this paper we will study the behavior of $A_{2_{n+1}}(K)$ as $K \rightarrow \infty$. The proof is based on a technique due to Robertson [13].

Theorem 4.5. Let $A_{2_{n+1}}(K)=\max _{f \in W_{K}}\left|a_{2 n+1}\right|$. Then for $K \geqq 2$,

$$
\begin{align*}
& A_{2 n+1}(K)<\frac{e^{3}}{2}\left(K^{2}+K\right)^{2^{K / 4-1 / 2}}(2 n+1)^{K / 4-3 / 2} \quad(n>1)  \tag{4.7}\\
& \lim _{K \rightarrow \infty} \frac{A_{2 n+1}(K)}{(2 n+1)^{K / 4-3 / 2}}=0 \quad(n=3,4, \ldots)
\end{align*}
$$

Proof. Using the Cauchy integral formula, we see that

$$
(2 n+1)(2 n)(2 n-1) a_{2 n+1}=\frac{1}{2 \pi i} \int_{|z|=r} \frac{f^{\prime \prime \prime}(z)}{z^{2 n-1}} d z
$$

and consequently

$$
\begin{equation*}
(2 n+1)(2 n)(2 n-1)\left|a_{2 n+1}\right| \leqslant \frac{1}{2 \pi r^{2 n-2}} \int_{0}^{2 \pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right|\left|\frac{f^{\prime \prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right| d \theta \tag{4.9}
\end{equation*}
$$

Corollary 2.2 easily yields

$$
\left|f^{\prime}\left(r e^{i \theta}\right)\right| \leqslant \frac{\left(1+r^{2}\right)^{(K-2) / 4}}{\left(1-r^{2}\right)^{(K+2) / 4}}
$$

Also, by (4.4) we have that for each $f \in W_{K}$,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{f^{\prime \prime \prime}\left(r e^{i \theta}\right)}{f^{\prime}\left(r e^{i \theta}\right)}\right| d \theta \leqslant \frac{K^{2}+K}{1-r^{2}}
$$

Substituting into (4.9) we obtain

$$
(2 n+1)(2 n)(2 n-1) A_{2 n+1}(K) \leqslant \frac{\left(1+r^{2}\right)^{(K-2) / 4}}{\left(1-r^{2}\right)^{(K+2) / 4}} \frac{1}{r^{2 n-2}} \frac{K^{2}+K}{1-r^{2}}
$$

The choice $r^{2}=1-3 /(2 n+1)$ yields

$$
\begin{aligned}
(2 n+1)(2 n) & (2 n-1) A_{2 n+1}(K) \\
& \leqslant \frac{K^{2}+K}{\left(1-\frac{3}{2 n+1}\right)^{2 n-2}}\left(2-\frac{3}{2 n+1}\right)^{(K-2) / 4}\left(\frac{2 n+1}{3}\right)^{K / 4+3 / 2}
\end{aligned}
$$

and

$$
A_{2 n+1}(K) \leqslant \frac{e^{3}}{2}\left(K^{2}+K\right)\left(\frac{2}{3}\right)^{K / 4-1 / 2}(2 n+1)^{K / 4-3 / 2} \quad(n>1)
$$

This is (4.7). To obtain (4.8) we note that

$$
\frac{A_{2 n+1}(K)}{(2 n+1)^{K / 4-3 / 2}}<\frac{e^{3}}{3}\left(K^{2}+K\right)\left(\frac{2}{3}\right)^{K / 4-1 / 2}
$$

and consequently (4.8) follows by letting $K \rightarrow \infty$.
I would like to thank the referee for his helpful comments.

## References

1. J. M. Anderson, A note on starlike schlicht functions, J. London Math. Soc. 40 (1965), 713-718.
2. D. A. Brannan, On functions of bounded boundary rotation, I, Proc. Edinburgh Math. Soc. 16 (1969), 339-347.
3. G. M. Goluzin, Geometric theory of functions of a complex variable; Trans. Scripta Technica (American Mathematical Society, Providence, 1969).
4.     - On distortion theorems and coefficients of univalent functions, Mat. Sb. 19 (1946), 183-202.
5. W. K. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185.
6. O. Lehto, On the distortion of conformal mappings with bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. A I 124 (1952), 14 pp.
7. K. Lucas, On successive coefficients of areally mean p-valent functions, J. London Math. Soc. 44 (1969), 631-642.
8. J. Noonan, A sympotic expressions for functions of bounded boundary rotation, Ph.D. Thesis, University of Maryland, 1970.
9. V. Paatero, Über die konforme Abbildungen von Gebieten deren Rander von beschrankter Drehung sind, Ann. Acad. Sci. Fenn. Ser. A I 33, 9 (1931), 77 pp.
10. C. Pommerenke, On the coefficients of close to convex functions, Michigan J. Math. 10 (1962), 259-269.
11. -_On convex and starlike functions, J. London Math. Soc. 37 (1962), 209-224.
12. F. Riesz, Sur les fonctions subharmoniques et leur rapport a la theorie du potential, I, Acta. Math. 48 (1926), 329-343.
13. M. Robertson, Coefficients of functions with bounded boundary rotation, Can. J. Math. 21 (1969), 1477-1482.

Howard University, Washington, D.C.

