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1. The Gontcharoff interpolation series1

I F™(an)Gn(z), (1.0)

where

G0(z) = 1, Gn(z)= [' dz' [* dz" ... T " " «&»> (» > 0),
Jo0 Jo, Jon- i

has been studied in various special cases. Tor example, if an = a0 (all n),
(1.0) reduces to the Taylor expansion of F{z). If « „ = ( — l)n, J. M.
Whittaker2 showed that the series (1.0) converges to F(z) provided F(z)
is an integral function whose maximum modulus satisfies

,—logif(r) .lim —s—i-' < £77,

the constant J77 being the "best possible". In the case \an\ < 1, I have
shown3 that the series converges to F(z) provided F(z) is an integral
function whose maximum modulus satisfies

and4 that while '7259 is not the "best possible" constant here, it cannot
be replaced by a number as great as "7378.

In this paper, I consider a generalisation of Whittaker's result, namely
the case in which an = cun where \co\ = 1 (argo> ^ 0 ) , and prove

00

THEOREM I. The series 2 FM(a>n) Pn(z), where |to| = l, argtu^O,
n = 0

P0(z) = 1, Pn(z) = \* dz' [' dz" r dz'" ... [''"'"d^ (n > 0),

1 The notation used here differs from that adopted in 6 (Chapter III) in the omission
of a factor n ! from Gn(z).

2 J. M. Whittaker, 5, 458.
3 S. S. Macintyre, 4.
4 S. S. Macintyre, 3 .
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converges uniformly to F(z) in any bounded region, provided F(z) is an integral
function whose maximum modulus satisfies

,-r— log i f (r) ^ . . . .
hm 6 w < Pl, (1.1)

p1 being the modulus of the smallest zero of the integral function f(z, to) defined
by the power series

f(z, oi) =» I «W"-»2»/n!. (1.2)
n=0

The constant px is shown to be the "best possible" in this case, and
it is evident that Whittaker's result follows as a special case, since

f(z, — 1) = sinz+cosz.

I t is possible to sharpen condition (1.1) of Theorem I, and we prove

THEOREM II. / / we define CJ, Pn(z), px as in Theorem I, the series

£ ]PM((x)n) Pn(z) converges uniformly to F(z) in any bounded region,

provided F(z) is an integral function satisfying

F(z) = O{e^<f>(Pl\z\)}, (1.3)

where <f>{z) is a function of z such that S VT</>(&) is absolutely convergent.

2. Let the moduli of the zeros of/(z, o>) be arranged in a sequence pn

in ascending order of magnitude. Differentiating (1.2) we have

— 2 toWre+1)z'l/» ! (2-1)
o

= /(««,<-)• (2-2)

Consider g(x, z) =f(xz, —^ jf (z, —) (2 . 3)

= Y,znQn{x) (|«|<pi). (2.4)
o

Since g(x, 0 ) s l , g(l, z ) = l ,

it follows that
Q0(x) = l and Qn(l) = 0 ( n > 0). (2.5)
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Now it follows from (2.4), (2.5) that

J |=Sz» £„'(*) (\z\<Pl), (2.6)

and from (2 . 2), (2. 3) that

»(*M. (2.7)
o

Hence, using (2 .6), (2. 7), we have

«»'(*) = ^ i ( * H •(»>!)• (2-8)

It follows from (2.5), (2.8) that

Qn(x) = \dx'\ dx"\ dx'"...\

or, by the transformations £(fc) = of1-1 x^k\

o.^"-1* Qn(x) = f d£' f d£" ••• f" 'Wre) = ^ ( ^ ) - (2 • 9)
Now, integrating

Bn(z) = [«&' [ & " . . . ( V(«)(z("))^") (2.10)
J I J < J

repeatedly by parts1, we find

r = 0

Hence ^(2) = "^ F^{cjr)Pr(z)+Rn(z). (2.11)
r=0

Let (7, F be the circles \z\ = %plt \z\ = J(/3i+p2) respectively. From (2 .4)

we have Qn(x) = ^ 9 & A d z . ( 2 .12)

If flz, —) has p zeros (denoted by z1} z2, ..., zp) on \z\ = pv then g(x, z)

has f> poles (at most) between C and F, residues ^4x(a;),
respectively, these residues being bounded for x in any bounded region.

Now I f(z, co) I has no zeros on F and thus has a positive minimum on F

which will be denoted by m. Since \f(z, u>) | = fiz, —j , we have, using

1 See J. M. Whittaker, 6, 39, for a detailed argument of this nature.
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(1.2) and (2.3),

27rt
]-dz (2.13)

(2.14)

where B(x) is bounded for x in any bounded region. Moreover the residue
of g(x, z)jzn+1 at z = z8 (s = 1,2, ..., p) is As{x)/z%+1 and this is of absolute
magnitude |.4f(a;)|/>y+1. Now

is equal to the sum of the residues of g(x, z)/zn+1 at the points zv z2, ..., zp

and it follows from (2.12), (2.14) that

(2.15)
2

where A(x) and B(x) are bounded for a; in any bounded region. On inte-
grating both sides of the equation from 1 to x\o> we can show by induction
that, for any integer L,

L
(2.16)

and thus

flf n f c

rx/oi fa;7u rait"-11/™ f*(")/<o r

= AB' d a " . . . «W> rfx<"+1)...
J l J l J l Jo J

a"ir-1)/»

o

x/<o ^ to? fa

(2.17)

from (2 .16), making use of (2. 5) and (2.8). Also, from (2 .15) and (2.17)
it follows that

S~ i,\ — "

x) (2.18)
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Again, if we use the transformations (2.9), the formula

fas r( cf(»-i) (•£»> .-£"=-1)
^iWc-i) sn k(x) =\ dl'\ dt," ... d£»> d£<«+»... d?» (2.19)

Jl J» Jo,»-i J0 Jo

arises from the definition of Snk (#/w) in (2.17).

3. From (2.10), (2.19), on expanding F<n)(z) in its Taylor series, we get

R (z) = \ dz' f dz" ...\ £ JPW(O) „ " dz
Ji J« Jo,--' *=« (K—n)!

00

fc(«), (3-1)

as follows from (2 .17) and (2 .19). If F(z) is an integral function, we have

and using Stirling's approximation for h !, if F{z) satisfies (1.3), we have

Hence, from (2.18) and (3.1), Rn{z) is less in modulus than the sum of
the remainders of two convergent series and thus tends to zero as n tends
to infinity. From (2.11) it then follows that the interpolation series

r = 0
Pr(z) (3 . 3)

converges uniformly to F(z) in any bounded region provided F(z) is an
integral function satisfying (1.3). This completes the proof of Theorem I I
and hence of Theorem I .

Let zx, where | zx | = pl5 be the zero of smallest modulus of /(z, l/o>).
That the constant p± of Theorems I and I I is the " best possible " is seen by
taking F(z) =f(zzv l/w) for which the maximum modulus M(r) clearly
satisfies

^ l o g J f ( r ) . , , ,

Then, by (2.2), F^(ajn) = z^f{z^ l/w) for all n. Thus for this function
all the terms of the series (3.3) are identically zero. It should be noted
that z~! is the zero of smallest modulus of f(z, u>).

The numerical value of pl has been calculated1 for arg <u = ~n, |TT, f TT

1 See B. P. Boas, 1 and 2; S. S. Macintyre, 3,
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and the equivalent in radians of 136°, 137°, the values of px in these cases
being approximately '746, -7398, -7379, -7378 and -7378 respectively.
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