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Abstract

If V is a system of weights on a completely regular Hausdorff space X and £ is a locally
convex space, then CV0(X, E) and CVb(X, E) are locally convex spaces of vector-valued
continuous functions with topologies generated by seminorms which are weighted analogues
of the supremum norm. In this paper we characterise multiplication operators on these spaces
induced by scalar-valued and vector-valued mappings. Many examples are presented to illustrate
the theory.
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1. Introduction

Let X be a non-empty set, let E be a topological algebra and let T(X, E)
be a topological vector space of functions from X to E. Let 6: X —> C and
y/: X —• E be two mappings. Then scalar multiplication and multiplication
in E give rise to two linear transformations Mg and Mv from T(X, E) to
the linear space L{X, E) of all functions from X to E, denned as Mef =
6 • f and M f — y/f, where the product of functions is denned pointwise.
In case Me and M take T(X, E) into itself and they are continuous,
they are called multiplication operators on T(X, E) induced by 6 and y/
respectively. These operators have been the subject matter of study for a long
time on different function spaces, especially on Lp -spaces, and they have
played a very important role in the study of operators on Hilbert spaces.
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In this note we have endeavoured to study multiplication operators on
those weighted spaces of scalar-valued and vector-valued continuous func-
tions which come in contact with topological dynamics.

2. Preliminaries

Let X be a completely regular Hausdorff space and E a Hausdorff locally
convex topologial vector space over C. Let cs(E) be the set of all continuous
seminorms on E. By C(X, E) we mean the collection of all continuous
functions from X into E.

A non-negative upper-semicontinuous function on X will be called a
weight on X. If V is a set of weights on X such that, given any x e X,
there is some v e V for which v(x) > 0, we write V > 0 . A set V of
weights on X is said to be directed upward provided that, for every pair
vx, v2 e V and A > 0, there exists v e V so that kvt < v (pointwise
on X) for / = 1, 2 . We hereafter assume that sets of weights are directed
upward. A set V of weights on X which additionally satisfies V > 0 will
be referred to as a system of weights on X.

Now, taking a system V of weights on X and a locally convex space E,
we consider the following vector spaces of continuous functions associated
with the triple (X, V, E):

CV0(X,E) = {fe C(X,E):vf vanishes at infinity on X for all veV};

CVb{X, E) = { / € C(X, E): vf(X) is bounded in E for all v e V}.

Obviously CVQ{X, E), CVb(X, E) are vector spaces and CV0(X, E) C
CVb(X, E). Now, let v e V, q e cs(E) and / e C(X ,E).lf we put

PvJf) = Sup{v(x)q(f(x)): xeX}

then Pv q can be regarded as a seminorm on either CVb(X, E) or
CV0(X, E), and the family {Pv q: v e V, q e cs{E)} defines the locally
convex topology on each of these two spaces.

In case E = C, we will omit E from our notation and write CV0{X) in
place of CV0(X, C). We also write Pv in place of Pv for each v € V,
where #(r) = \z\, z € C. Moreover, if E = (E, q) is any normed linear
space and v € F , we write /*„ instead of Pv . We shall denote by 5U ? the
closed unit ball corresponding to the seminorm Pv . In case E = (E, q),
we simply write Bv .

If [/ and V are two systems of weights on X, we write C/ < F whenever
given u e U, there exists v e K such that u < v. In this case, we then
clearly have that CV0(X, E) c CUQ(X, E) and CVb(X, £) c CUb(X, E),
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as well as that the inclusion map is continuous in both instances. If U < V
and V < U, then U and V are equivalent systems of weights on X and
we denote this by U « V.

The spaces CV0(X) and CVb{X) were first introduced by Nachbin [6] and
CVQ(X, E), CVb(X, E) were subsequently considered in detail by Bierstedt
[2] and Prolla [7].

Now, we shall give some examples of these spaces. Let X be a completely
regular Hausdorff space. We denote by Xs > ^e characteristic function of a
subset S of X. We distinguish four systems of weights on X, namely

U = {XxK: A > 0 , KdX, K compact},
[/' = C*{X), the set of all positive continuous functions with compact

supports,
V — K+(X), the set of all positive constant functions on X and
VI = CQ(X) , the set of all positive continuous functions vanishing at

infinity. Further, if E is a locally convex space, then we define

C0(X,£) = {/<= C(X,E):f vanishes at infinity on X},

Cb(X ,E) = {fs C(X, E): f(X) is bounded in E}.

EXAMPLE. Let X be a completely regular Hausdorff space and let E be
a locally convex space. Then

(i) CU0{X, E) = CUb(X, E) = (C(X, E), k) where k denotes the com-
pact open topology,

(ii) CU'Q{X, E) = CU'b(X, E) = (C(X,E),k),
(iii) CV0(X,E) = (C0(X,E),u) and CVb(X, E) = (Cb(X,E),u),

where u denotes the topology of uniform convergence on X and
(iv) CV^X, E) = CVb\X, E) = (Cb(X, E), # , ) , where fi0 denotes the

strict topology.

2. Functions inducing multiplication operators

In developing our characterization of those functions 6: X —• C (or
\fi: X —• E) which induce multiplication operators on weighted spaces of
type CVQ(X) and CV0(X, E) we work under the following modest require-
ments.

(2.a) X is a completely regular Hausdorff space.
(2.b) E is a locally convex space such that there exists a vector s eE for

which p(s) ^O,for every p e cs(E).
(2.c) V is a system of weights on X
(2.d) Corresponding to each x e X, there exists fx € CV0(X) such that
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In case X happens to be locally compact, (2.d) is automatically satisfied. For
a continuous function 6: X —>C (or y/: X —> E), the set

V\d\ = {v\6\\veV)

(or for every p G cs(E), Vp o y/ = {vp o y: v G V}) is a directed set of
weights on A" since [9, Theorem 2.2] Summers has shown that the product of
two non-negative upper semicontinuous functions is non-negative and upper
semicontinuous. In case 6: X —• C (or y/: X —> E) is non-zero at each
point of X, V\6\ (or Vp o y/) is a system of weights on X.

In the following theorem we characterize multiplication operators on
CV0(X) induced by scalar-valued functions

2.1 THEOREM. Let 6: X -> C be a continuous function. Then Mg: CV0(X)
-> CF0(X) is a multiplication operator if and only if V\6\ < V.

PROOF. First, suppose V\6\ < V. Then for every v e V, there exists
w G V such that u|©| < u (pointwise on X). We show that Me is a
continuous linear operator on CV0(X). Clearly Me is linear on CV0(X).
In order to prove the continuity of Me on CV0(X), it is enough to show that
M$ is continuous at the origin. For this, suppose {fa} is a net in CV0(X)
such that

^ ( / J - 0 , for every veV.
Now,

Pv(6fa) = Sup{v(x)\d(x)\\fa(x)\: xeX}
<Sup{u(x)\fa(x)\:xeX}

This proves the continuity of Me at the origin and hence Me is continuous
on CV0(X).

Conversely, suppose Me is a continuous linear operator on CV0(X). We
shall show that V\6\ < V. Let v GV . Since M& is continuous at the origin,
there exists u G V such that Me(Bu) c Bv . We claim that v|0| < 2M . Take
x0 e X and set u(x0) = e. In case e > 0, iV = {x G X: M(A:) < 2e} is an
open neighbourhood of x0. Thus, according to [6, Lemma 2], there exists
/ G CV0(X) such that 0 < / < 1, /(JC0) = 1 and f(X - N) = 0. Let
g = (2e)~lf. Then clearly geBu. Since A/e(5u) C ^ . w e have 6g G 5,,
and this yields that

v(x)\6(x)\\g(x)\ < 1, for every x G X.

From this it follows that

v(x)\6(x)\\f(x)\ < 2e, for every x e X.
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This implies that
v(xo)\d(xo)\ < 2u(x0).

Now, suppose u(xQ) = 0 and v(xo)\6(x0)\ > 0. If we put e = v(xo)\6(xQ)\/2
and set N = {x e X: u(x) < e}, then N would be an open neighbourhood
of x0 and we could again find / e CV0(X) such that 0 < / < 1, f(x0) = 1
and f{X -N) = 0. Now let g = e~1f. Then clearly g e Bu and therefore
6g eBv. Hence

w(*)|0(*)lk(*)l < 1. f o r every xeX.

This implies that

«(JE) |0(X) | | / (JC) | < e, for every x e X.

From this it follows that

which is impossible. This proves our claim and hence the proof is complete.
Now, we shall characterise multiplication operators on CVQ(X, E) in-

duced by scalar-valued functions.

2.2 THEOREM. Let d:X-+C be a continuous function. Then

Md: CV0(X, E) - CV0(X, E)

is a multiplication operator if and only if V\6\ < V.

PROOF. First of all, let us suppose V\6\ < V. Then for every v e V,
there exists u e V such that v\d\ < u (pointwise on X). We shall show
that Me is a continuous linear operator on CVQ(X, E). Obviously Mg is
linear on CVQ(X, E). It suffices to show that Mg is a continuous linear
operator at the origin. To prove this, let {fa} be a net in CV0(X, E) such
that for every v e V, q e cs{E), Pvq(fa) -• 0 . Then

= Snp{v(x)\6(x)\g(fa(x)): x e X}

<Sup{u(x)q(fa(x)):xeX}

This proves the continuity of Me at the origin and hence Mg is a continuous
linear operator on CV0(X, E).

Conversely, suppose Mg: CV0(X, E) —* CV0(X, E) is a continuous linear
operator. Then we shall show that V\6\ < V. L e t u e F . Since Mg

is continuous at the origin, therefore for every v e V, p e cs(E), there
exists u e V, q e cs(E) such that Mg(Bu ) C Bv . By our assumption
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there exists a vector s G E such that p(s) ^ 0 , for every p e cs(E). Let
a = p(s)/q(s). Then a > 0 . We claim that at>|0| < 2M (pointwise on X).
Fix x0 e X and set M(JC0) = e. In case e > 0 , N = {x e X: u(x) < 2e}
is an open neighbourhood of x0 and therefore by [6, Lemma 2] there exists
/ € CV0{X) such that 0 < / < 1, f(x0) = 1 and f(X - N) = 0 . Define
g(x) = f{x)s, for every x eX. Then clearly g e CV0(X, E) and for every
p € C5(£), 0 < (p o g) < p(s), (p o g)(x0) = p(s) and (p o ̂ )(AT - iV) = 0 .

Let A = (2e)~lg/q(s). Then clearly heBu q and this yields that 0 • A e
1?̂  . Hence v(x)|0(x)|p(/2(x)) < 1, for every x G X. From this, it follows
that

v(x)\6(x)\-^rp(g{x)) < 2e, for every x € X.

This implies that

Thus
av(xo)\d(xo)\ < 2u(x0).

On the other hand, suppose u(xQ) = 0 and av(xo)\6{xo)\ > 0 . Put e =
av(xo)\6(xQ)\/2. Then N = {x G X: u{x) < e} is an open neighbourhood
of x0 and therefore again by [6, Lemma 2] there exists an / e CVQ(X) such
that 0 < / < 1, f(x0) = 1 and f(X -N) = 0. Again, define g(x) =
f(x)s, for every x e X. Then g e CVQ{X, E) and for every p e cs(E),
0<(p°g)< p(s), (p o g)(xo) = p(s) and (p o g)(X - N) = 0 . Consider
h = g/eq(s). Then h € Bu and therefore 6h € Bv . Hence

v(x)\9(x)\p(h(x)) < 1, for every x G X.

This implies that

v(x)\d(x)\-r-rp(g(x)) < fi, for every xeX.

From this it follows that
.Ms) <P(s)v(x0)\e(x0)\

)>lq(s)-q(s) 2

Thus av(xo)\9(xo)\ < av(xo)\9(xo)\/2, which is impossible. Hence our claim
is established and the proof is completed.

In order to prove the next theorem, we shall need the following definitions.
Let E be a locally convex algebra with jointly continuous multiplication.

It clearly follows that for each p e cs(E), there exists a q e cs(E) such
that p(xy) < q(x)q(y), for every x, y e E. A seminorm p on E is said
to be submultiplicative if p{xy) < p(x)p(y), for every x,y e E. In [5]
Michael defines E to be a locally multiplicatively convex algebra, or in short
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an lmc algebra, if there exists a base of neighbourhoods of zero consisting of
idempotent absolutely convex sets, or equivalently if its topology is denned
by a collection of submultiplicative seminorms. Clearly, multiplication in an
lmc algebra is always jointly continuous. For more details and examples of
lmc algebras we refer to [3] and [5]. Let £P be a family of submultiplicative
seminorms inducing the topology of E. Then & is a subfamily of cs(E).
In [10, c.2.3] Zelazako has noted that for any lmc algebra E with unit e,
the family 9° can be chosen in such a way that p(e) = 1, for every p e & .
So we can assume that 9° is such a family in this case.

Now, we shall give a characterisation of multiplication operators on
CV0(X, E) induced by vector-valued functions.

2.3 THEOREM. Let E be a {locally multiplicatively convex) lmc algebra
with unit e and let y/:X—>E be a continuous function. Then

is a multiplication operator if and only if Vp o y/ < V, for every p e 9°.

PROOF. Suppose Vp o y/ < V, for every p e 9° . Then for every v e V,
there exists u e V such that vp o y/ <u (pointwise on I ) . We shall show
that the mapping M¥: CV0(X, E) - • C(X, E), defined by M¥f = y/f,
where product is pointwise, is a continuous linear operator on CVQ(X, E).
We shall establish the continuity of M at the origin. For this, let {fa} be a
net in CV0{X, E) such that for every v e V, q e 9°, PViq(fa) - • 0. Then

= Sup{v(xMv(x)fa(x)): xeX}

< Suv{v(x)q(y,(x))q(fa(x)): xeX}

<Sup{u(x)q(fa(x)):x€X}

This proves that M¥ is continuous at the origin and hence a continuous
linear operator on CV0(X, E).

Conversely, suppose M : CV0(X, E) —> CV0(X, E) is a continuous lin-
ear operator. We shall show that Vp o y/ < V, for every p e &. Let
v € V and p € & . Since M¥ is continuous at the origin, there exist u € V
and q e 9° such that MV{BU q) c Bv p. We claim that vp o y/ < 2u
(pointwise on X). Fix x0 e X and set u(x0) = e. In case e > 0,
N = {x € X: u(x) < 2e} is an open neighbourhood of JC0 and therefore
according to [6, Lemma 2] there exists / e CV0(X) such that 0 < / < 1,
f(xo) = l and f(X-N) = 0.

Define g(x) = f(x)e, for every x € X, where e is the unit in E. Then
g e CVQ(X, E) and for every p&9>, 0<{p°g)<\, {po g)(xo) = 1 and
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[p o g)(X -N) = 0. If h = (2e)~lg, then h e Bu q and hence y/h &Bv>p.
From this it follows that v{x)p(y/(x)h{x)) < 1, for every x e X. This
implies that

v{x)p{y/(x)f(x)e) < 2e, for every x € X.

Thus v(xo)p(y/(xo)) < 2u(xQ). On the other hand, suppose M(JC0) = 0 and
v(xo)p(y/{xo)) > 0 . Set e = v(xo)p(y/(xo))/2. Then N={xeX: u{x) < e}
is an open neighbourhood of x0 and therefore again by [6, Lemma 2] there
exists / € CV0(X) such that 0 < / < 1, f(xQ) = 1 and f(X -N) = 0.

We define g{x) = f{x)e, for evey x e X, where e is the unit in E.
Then g e CK0(A", £) and for every pz&>, $<{pog)<\, (pog){xQ) = 1
and (p o g)(X - N) = 0 . Choose h = e~lg. Then clearly h e Bu g and
therefore y/h € Bv p. This implies that u(.x)p(^(;t)A(;c)) < 1, for every
x € X. From this, it follows that v(x)p(ij/(x)g(x)) < e, for every x e X.
Further, we get

Thus u(xo)p(^(xo)) < v{xQ)p(y/(x0))/2 which is impossible and this estab-
lishes our claim. This completes the proof of the theorem.

2.4 REMARK. Note that if 6: X -»• C (or ^ : X -f £ ) is a bounded
continuous complex-valued (or vector-valued) function on X, then clearly
Mg (or M¥ ) is a multiplication operator on CVQ(X) (or C l ^ ^ , E)) for
any system of weights V .

If V is the system of weights generated by the characteristic functions of
compact sets,then it turns out that every continuous map induces a multipli-
cation operator. This we shall establish in the following theorem.

2.5 THEOREM. Let X be a completely regular Hausdorff space and let

V = {XxK: A > 0 and KcX,K compact).

(i) Every continuous 6: X —• C induces a multiplication operator on
CV^X) (orCV0(X,E)).

(ii) Every continuous y/: X —> E, a locally convex algebra with jointly con-
tinuous multiplication, induces a multiplication operator M^ on CV0(X, E)

PROOF, (i) In order to prove that Me is a continuous linear operator on
CV0(X) (or CV0(X, E)), it is enough to show that for every v e V, there
exists M e V such that u|0| < u (pointwise on X). Let v e V. Then
v — kxK , where K is a compact subset of X. Let m = Sup{|0(.x)|: x e K}
and choose u = A.mxK • Then u e V. Since |0(.x:)| < m, for every x e K,
we have

XxK{x)\d{x)\<XmxK{x), x&K.
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Hence v(x)\6(x)\ < u(x), for every x GK . If x e X - K, then the above
inequality is obviously true. Thus we have shown that v(x)\6(x)\ < u(x),
for every x € X, and hence by Theorems 2.1 and 2.2, it follows that Mg is
a multiplication operator on CVQ(X) (or CVQ(X, E)).

(ii) In view of Theorem 2.3, it is sufficient to establish the inequality Vp o
y/ < V, for every p e cs(E), that is, for every v e V, there exists u € V
such that vp o i// < u (pointwise on X). Let v e V and p e cs(E). Then
v — kxK , K a compact subset of X. Let m — Sup{p(y/(x)): x e K) and
choose u = kmxK • Then ueV. Since p(y/(x)) < m, x e K, we have

(x), x € K.

This implies that v(x)p(y/(x)) < u(x), for every x e K. If x € X — K,
then obviously v(x)p(y/(x)) < u(x). Thus v(x)p(i//(x)) < u(x), for every
x G X. This completes the proof of the theorem.

2.6 COROLLARY. Let X have the discrete topology and V — {kxK: /I > 0,
K c X, K a finite set}. Then every function 9: X -* C (or y/\ X -> E)
induces a multiplication operator MQ (or Mv ) on CVQ(X) (or CV0(X, E)).

2.7 REMARK, (i) In Theorem 2.5, if we replace the system of weights V =
{XxK: X > 0, K cX, K compact} by U = C+(X), the set of all positive
continuous functions on X with compact supports, then the new result is
also true.

(ii) If X is a locally compact space, then V = {kxK: A > 0, K c X,
K compact subset of X} and U = CC

+(X) are equivalent, and otherwise
V < U.

(iii) In Theorems 2.1-2.3 and 2.5 if we replace CV0(X) and CV0(X, E)
by CVb(X) and CVb(X, E), then all the new results are also true.

(iv) From Theorem 2.5, we noted that if 6: X -• C (or y/: X -• E)
is an unbounded continuous function, even then 6 (or y/) gives rise to a
multiplication operator Me (or M¥ ) on CVQ(X) (or CV0(X, E)). For
instance, the polynomial functions on R induce continuous linear operators
on CV0(R), where V = {kxK: A > 0, K c R, K compact}

Now, we give certain examples of functions which do not induce multipli-
cation operators.

2.8 EXAMPLE. Let v: N —»• R+ be denned as v(n) — n, for every n e N
and let V — {kv: k > 0} . Then V is a system of weights on N with discrete
topology. Let 6: N -> C be denned as 6(n) = n, for every « e N . Then v\6\
is a system of weights on N and V\6\ ^ V. Thus Me is not a multiplication
operator on CP^(N). In fact, Mg is not even an into map. To see this, let
f(n) = l/n2. Then f e CV0(N) but df $ CF0(N).
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2.9 EXAMPLE. Let N be the set of natural numbers with discrete topology
and V be the system of positive constant weights on N. Then CJ^(N) = Co,
the Banach space of all null sequences of complex numbers. Let 6: N —• C be
the identity map. Then V\6\ ^ V and Mg is not a multiplication operator
on Co. Moreover, Mg is not even an into map. If f{ri) = \/n , then / e C 0

but Of $ Co.
2.10 EXAMPLE. Let R+ be the set of positive reals with usual topology

and let v: R+ -» R+ be denned as v(x) = l/x, for every x e R + . Let
V = {Xv: X > 0} and let 0 : R + - » C be denned as 6(x) = x2 . Then 6 does
not induce a multiplication operator Me on CV0(R

+).
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