A Theorem on Alternants

By D. E. LITTLEWOOD (University College, Swansea). Communicated by H. W. TURNBULL.

(Received 17th January, 1936. Read 7th February, 1936.)

The following is a direct proof of a theorem by Zia-ud-Din¹.

Let $\{\nu\} \equiv \{\nu_1, \nu_2, \ldots, \nu_p\}$ be any S-function² of weight r + s such that

$$\{\nu\} \Delta (x_1, x_2, \ldots, x_p) = \Sigma \pm x_1^{\nu_1 + p - 1} x_2^{\nu_2 + p - 2} \ldots x_p^{\nu_p}$$

in the alternant denoted in the theorem by $A(a\beta\gamma....)$. Let $\{\mu\}$ be an S-function of weight s, equal to $h\begin{pmatrix} 0pq....\\ 012.... \end{pmatrix}$, and let $\{\lambda\}$ be an S-function of weight r, such that $\{\lambda\}\Delta(x_1, \ldots, x_p)$ is obtained with coefficient $g_{\lambda\mu\nu}$ by diminishing the indices in the alternant $\{\nu\}\Delta(x_1, \ldots, x_p)$ according to the theorem.

Obviously, by direct multiplication, $g_{\lambda\mu\nu}$ is the coefficient of $\{\nu\} \Delta(x_1, \ldots, x_p)$ in the product of $\{\lambda\} \Delta(x_1, \ldots, x_p)$ and $\{\mu\}$, *i.e.*, the coefficient of $\{\nu\}$ in the product $\{\lambda\} \{\mu\}$.

If we now proceed to the associated S-functions, denoting these by a bar, clearly $g_{\lambda\mu\nu}$ is also the coefficient of $\{\nu\}$ in $\{\lambda\}\{\mu\}$. This proves the theorem.

¹ Proc. Edinburgh Math. Soc., 4 (1934), 51.

² D. E. Littlewood and A. R. Richardson, Phil. Trans. Roy. Soc. (A), 233 (1934), 99.