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Mean Curvature Comparison with
L1-norms of Ricci Curvature

Jong-Gug Yun

Abstract. We prove an analogue of mean curvature comparison theorem in the case where the Ricci

curvature below a positive constant is small in L1-norm.

1 Introduction

The comparison geometry is a branch of Riemannian geometry that is related with
investigating the structure of spaces satisfying some curvature conditions. Starting

with the success of the Rauch comparison theorem, much developments have been
made up to now and produced many applications such as sphere theorem, com-
pactness theorem, finiteness theorem and so on. In particular, the mean curvature
comparison theorem has played an important role in such theorems and it is deeply

related to the volume comparison theorem, which is also an important result in the
comparison geometry.

In 1998, P. Petersen and C. Sprouse [PS] generalized the classical Heinze-Karcher
volume comparison result for hypersurfaces to a situation where one has an integral

bound for the part of the Ricci curvature which lies below a given positive number.
To obtain this result, they first generalized the classical mean curvature comparison
theorem. In order to state these specifically, we need some notation as follows.

(M, g) is a complete Riemannian manifold with metric g. At each point x in this

manifold, we denote by Ric−(x) the lowest eigenvalue for the Ricci tensor at x. Let
Sx ⊂ TxM denote the space of unit tangent vectors at x and d(θ) be the distance from
x to the cut point in the direction θ ∈ Sx = Sn−1 ⊂ TxM.

Then we define ω(r, θ) by pulling back the volume form d vol of M to Ux =

{(r, θ) ∈ TxM : 0 < r < d(θ), θ ∈ Sx}, i.e.,

d vol = ω(r, θ) dt dθ,

where dθ is the standard volume form on Sx = Sn−1.

For convenience, we define ω(r, θ) to be zero for r > d(θ).

Let ωk(r, θ) be the ω(r, θ) of the space form S
n
k of dimension n with constant cur-

vature k > 0. We then know that ω ′
= hω (resp. ω ′

k = hkωk), where h (resp. hk) is

the mean curvature of the level sets of distance function on (M, g) (resp. S
n
k ).
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Recall that the classical mean curvature comparison theorem says that if Ric− ≥
(n − 1)k, then h(r, θ) ≤ hk(r).

In order to generalize this, the following are defined.

ψk(r, θ) =
(

h(r, θ) − hk(r)
)

+
,

ρk(r, θ) =
(

(n − 1)k − Ric−(r, θ)
)

+
,

where u+ = max(0, u) is the positive part of the function u.
With these notations, P. Petersen and C. Sprouse proved the desired mean curva-

ture estimates as follows.

Theorem 1.1 (PS) For all n ≥ 2, p > n
2

, k > 0, r + r0 <
π√

k
, we have an estimate of

the form
∫ r

0

ψ
2p
k (t, θ)ω dt ≤ C(n, p, k, r)

∫ r

0

ρ
p
k (t, θ)ω dt,

where C(n, p, k, r) is an explicit constant depending only on the variables indicated and

θ is fixed.

The above theorem shows that the classical mean curvature comparison can be
generalized to a situation where the amount of Ricci curvature which lies below
(n − 1)k is small in Lp-sense for p > n

2
.

For some analytic reason, the condition p > n
2

(≥ 1) in the above theorem is

essential and the proof of the above theorem strongly relies on the condition that
p > n

2
, where the case p = 1 is excluded.

Generally, the geometry of manifolds with bounded Ricci curvature in L1-sense is
known to be not so interesting.

Indeed, S. Gallot [G] showed several examples that the geometry of manifolds
which has small k̄(p, k,R) = supx∈M

1
vol B(x,R)

∫

B(x,R)
ρ

p
k d vol, for any p ≤ n

2
, R > 0

does not give any interesting results.
Recently, C. Sprouse however managed to show that if one assumes that the man-

ifold has Ric− ≥ −(n − 1)k (k > 0), then it suffices to assume that the amount of
Ricci curvature which lies below (n−1) in L1-norm is small in order to get a diameter
bound close to π. The precise statement of this theorem is as follows.

Theorem 1.2 (S) Assume (M, g) is a complete Riemannian n-manifold with Ric− ≥
−(n − 1)k (k > 0). Then for given ε > 0, R > 0 there exists an δ = δ(ε,R, k, n) such

that if

sup
x∈M

1

vol B(x,R)

∫

B(x,R)

(

(n − 1) − Ric−
)

+
d vol < δ(ε,R, k, n),

then (M, g) is compact with diam(M) < π + ε.

Motivated by this result, we investigate in this paper that if one assumes the mani-
fold has Ric− ≥ −(n− 1)k (k > 0), then we can generalize the classical mean curva-
ture comparison to a situation where we have Ricci curvature bounded in L1-norm.
Let’s mention our main result.
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Theorem 1.3 Assume (M, g) is a complete Riemannian n-manifold with Ric− ≥
−(n−1)k (k > 0). Then for given ε > 0 and R ∈ (0, π), there exists a δ = δ(ε,R, k, n)

such that if
∫

B(x,R)
ρ1 d vol < δ, then

∫

B(x,R)
ψ1 d vol < ε.

Note that Theorem 1.2 gives a diameter structure for manifolds in the case where
Ricci curvature below a positive constant is small in L1-sense averaged over the metric
balls. Here, averaging the ‘bad’ part of Ric− over metric balls is reasonable, since one

can have small
∫

B(x,R)
((n−1)−Ric−)+ d vol by simply having small volume of B(x,R).

In fact, it is shown in [CK] that for any complete Riemannian manifold with non-
negative Ricci curvature, infx vol B(x, 1) can be zero.

As a corollary of Theorem 1.3, we can however provide a corresponding volume
structure of the space in the Theorem 1.2, where the requirement of averaging the
‘bad’ part of Ric− over metric balls is not necessary.

Corollary 1.4 For given R > π, ε > 0, k > 0, and an integer n, there exists a

δ = δ(ε,R, k, n) such that if M is a complete n-manifold with
∫

B(x,R)
ρ1 d vol < δ,

Ric− ≥ −(n − 1)k (k > 0), then vol
(

B(x,R) − B(x, π)
)

< ε for all x ∈ M.

2 Proof of Theorem 1.3

For the proof of Theorem 1.3, we will use the Paeng’s method in [P]. Consider a
sequence (Mi , gi , xi) of Riemannian n-manifolds with metrics gi and xi ∈ Mi such

that RicMi
≥ −(n − 1)k (k > 0).

Let ψi(r, θ) and ρi(r, θ) be the ψ1(r, θ) and ρ1(r, θ) of (Mi , gi) respectively. Then
it suffices to show that if

∫

B(xi ,R)
ρi d vol converges to zero, then

∫

B(xi ,R)
ψi d vol also

converges to zero.

Note that for any δ > 0, vol (Ei
δ) := vol {x ∈ B(xi ,R) : ρi(x) > δ} converges to

zero, since

∫

B(xi ,R)

ρi d vol >

∫

Ei
δ

ρi d vol >

∫

Ei
δ

δ d vol = δ vol (Ei
δ).

Consider now a sequence {δi(> 0)} such thatω−k(δi) = 8
√
εi , where εi := vol (Ei

δ).
Let µ be the measure on γ i

θ(t) = expxi
tθ and di(θ) be the distance from xi to the cut

point in the direction θ ∈ Sn−1 ⊂ Txi
Mi .

We also write {γ i
θ(t) : a ≤ t ≤ b} as γ i

θ([a, b]). Then we define

S 4
√
εi ,δi

(θ) = inf
{

s : s > δi , (θ ∈ Φ 4
√
εi ,δi

)c, µ
(

γi
θ([δi , s]) ∩ Ei

δ

)

≥ 4
√
εi

}

,

where

Φ 4
√
εi ,δi

=

{

θ ∈ Sn−1 ⊂ Txi
Mi : µ

(

γi
θ([δi ,min(R, di(θ))]) ∩ Ei

δ

)

< 4
√
εi

}

.

We first show the following lemma.
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Lemma 2.1

lim
i→∞

vol
{

expxi
tθ : θ ∈ (Φ 4

√
εi ,δi

)c, S 4
√
εi ,δi

(θ) ≤ t ≤ min
(

R, di(θ)
)}

= 0.

If vol (Φ 4
√
εi ,δi

)c converges to zero, then there is nothing to prove.
So we may assume that limi→∞ vol (Φ 4

√
εi ,δi

)c > 0. Let

Ψ 4
√
εi ,δi

=

{

θ ∈ (Φ 4
√
εi ,δi

)c :

∫

γi
θ([δi ,di (θ)])∩Ei

δ

ω(r, θ) dr ≥ √
εi

}

Then we have εi = vol (Ei
δ) >

√
εi vol (Ψ 4

√
εi ,δi

), which implies that vol (Ψ 4
√
εi ,δi

)
converges to zero.

Thus we may assume that for every direction θ ∈ (Φ 4
√
εi ,δi

)c,

∫

γi
θ([δi ,di (θ)])∩Ei

δ

ω(r, θ) dr <
√
εi .

We then know that there exists a ci > δi such that

ω(ci , θ) <
√
εi/ 4

√
εi = 4

√
εi

and
µ
(

γi
θ([δi , ci]) ∩ Ei

δ

)

≤ 4
√
εi .

From this fact, we also know that ci ≤ S 4
√
εi ,δi

(θ).
Now since RicMi

≥ −(n − 1)k, we have for any r with S 4
√
εi ,δi

(θ) ≤ r ≤ π and
θ ∈ (Φ 4

√
εi ,δi

)c ,

ω(r, θ) ≤ ω−k(π)

ω−k(δi)
ω(ci , θ) ≤ ω−k(π)

ω−k(δi)
4
√
εi = ω−k(π) 8

√
εi ,

which converges to zero.

Thus we obtain the desired result.

Now we consider

(2.1)

∫

B(xi ,R)

ψi d vol =

∫

B(xi ,δi )

ψiωi dr dθ

+

∫

Φ 4√εi ,δi

∫ min(R,di (θ))

δi

ψiωi dr dθ

+

∫

(Φ 4√εi ,δi
)c

∫ min(R,di (θ))

δi

ψiωi dr dθ.

Note that we can without loss of generality assume that δi ≤ di(θ) and limi→∞
di(θ) > 0 for all θ ∈ Sn−1 in (2.1).
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We will estimate each term of the above sum in (2.1) as below.
First, we know that the first term in the above sum tends to zero as i → ∞, since

RicMi
≥ −(n − 1)k and δi → 0.

Now let’s estimate the second term in the above sum as follows.
Note first that in (Ei

δ)
c, we have (n − 1) − RicMi

(∂r, ∂r) ≤ δ, where ∂r = ∂/∂r is
the radial unit vector, since ρi(x) < δ.

Thus RicMi
(∂r, ∂r) ≥ (n − 1)

(

1 − τ (δ)
)

for some τ (δ) which tends to zero as
δ → 0.

So we have the following inequality for any θ ∈ Φ 4
√
εi ,δi

,

∫

γi
θ([δi ,R])∩(Ei

δ)c

( hi

n−1
) ′

(

1 − τ (δ)
)

+ ( hi

n−1
)2

dr ≤
∫

γi
θ([δi ,R])∩(Ei

δ)c

−1 dr.

On the other hand, from the inequality

h ′
i +

h2
i

n − 1
≤ −RicMi

(∂r, ∂r) ≤ (n − 1)k,

we know that

( hi

n−1
) ′

(

1 − τ (δ)
)

+ ( hi

n−1
)2

≤
k − h2

i

(n−1)2

(

1 − τ (δ)
)

+ ( hi

n−1
)2
<

k

1 − τ (δ)
.

Consequently, we have

∫ r

0

( hi

n−1
) ′

(

1 − τ (δ)
)

+ ( hi

n−1
)2

dr ≤ −r + (δi + 4
√
εi) +

(

k

1 − τ (δ)

)

(δi + 4
√
εi)

= −r + C(δi + 4
√
εi),

where C = 1 + k
1−τ (δ)

> 1 for small δ and r < R.
The above inequality shows that

hi(r, θ) ≤ (n − 1)
√

1 − τ (δ) cot
√

1 − τ (δ)
(

r −C(δi + 4
√
εi)

)

= h1−τ (δ)

(

r −C(δi + 4
√
εi)

)

,

for C(δi + 4
√
εi) < r ≤ min

(

di(θ),R
)

.
Now if we put τi := C(δi + 4

√
εi), then we can write as follows.

hi(t, θ) − h1(t) = hi(t, θ) − h1−τ (δ)(t − τi) + h1−τ (δ)(t − τi) − h1(t).

Noting that hλ(t, θ) ∼ n−1
t

as t → 0 for any λ ∈ R, it is easy to check that

h1−τ (δ)(t − τi) − h1(t) < η
(

τ (δ)
)

,
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which converges to 0 as τ (δ) → 0.

Since hi(t, θ)−h1−τ (δ)(t −τi) is negative, we can conclude that
(

hi(t, θ)−h1(t)
)

+

can arbitrarily be small on [ 3
√
τi ,min(di(θ),R)] for sufficiently large i.

We now write

∫

Φ 4√εi ,δi

∫ min(R,di (θ))

δi

ψiωi dr dθ =

∫

Φ 4√εi ,δi

∫ 3
√
τi

δi

ψiωi dr dθ

+

∫

Φ 4√εi ,δi

∫ min(R,di (θ))

3
√
τi

ψiωi dr dθ.

Then we can see that the first and second terms of the above sum converge to zero
as i → ∞.

Now let’s estimate the third term of (2.1) similarly as above.

∫

(Φ 4√εi ,δi
)c

∫ min(R,di (θ))

δi

ψiωi dr dθ =

∫

(Φ 4√εi ,δi
)c

∫ S 4√εi ,δi
(θ)

δi

ψiωi dr dθ

+

∫

(Φ 4√εi ,δi
)c

∫ min(R,di (θ))

S 4√εi ,δi
(θ)

ψiωi dr dθ.

We know that the second term of the above sum converges to zero by Lemma 2.1
which was shown previously.

For the first term of the above sum, we assume that S 4
√
εi ,δi

(θ) > 0 for all i and

θ ∈ Sn−1. We can then split the first term of the above sum as

∫

(Φ 4√εi ,δi
)c

∫ 3
√
τi

δi

ψiωi dr dθ +

∫

(Φ 4√εi ,δi
)c

∫ S 4√εi ,δi
(θ)

3
√
τi

ψiωi dr dθ.

Clearly the first term of the above sum converges to zero.

Since µ(γ i
θ

(

[δi , S 4
√
εi ,δi

(θ)]
)

∩ Ei
δ) = 4

√
εi , we can apply the same mean curvature

estimates as for θ ∈ Φ 4
√
εi ,δi

to the second term of the above sum. So we see that the
second term of the above sum also converges to zero. Now we have arrived at the

desired result.

3 Proof of Corollary 1.4

Consider a sequence (Mi , gi , xi) of Riemannian n-manifolds with metrics gi such that
∫

B(xi ,R)
ρi d vol converges to zero and RicMi

≥ −(n − 1)k (k > 0).

We use the same notation as in the proof of Theorem 1.3.

Let π ≤ r ≤ R and limi→∞ di(θ) > π.

We first estimate ωi(r, θ) for θ ∈ Φ 4
√
εi ,δi

.

Note that ωi(r, θ) ≤ ω−k(R,θ)

ω−k(π−α,θ)
ωi(π − α, θ) for any small α > 0, since RicMi

≥
−(n − 1)k (k > 0).
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From the proof of Theorem 1.3, we know that
(

hi(t, θ)−h1(t)
)

+
can be arbitrarily

small on [ 3
√
τi , π − α] for sufficiently large i.

So we may let hi(t, θ) ≤ h1(t) + ηi on [ 3
√
τi , π − α] for sufficiently small ηi > 0,

which implies that (log ωi

ω1
) ′ ≤ ηi .

Integrating both sides from 3
√
τi to π − α, we obtain

log
ωi(π − α, θ)

ω1(π − α)
− log

ωi( 3
√
τi , θ)

ω1( 3
√
τi)

≤ ηi(π − α− 3
√
τi).

So we have

ωi(π − α, θ) ≤ exp{ηi(π − α− 3
√
τi)}

ωi( 3
√
τi , θ)

ω1( 3
√
τi)

ω1(π − α),

which can be arbitrarily small if we choose α > 0 suitably. This again means that
ωi(r, θ) can be arbitrarily small for θ ∈ Φ 4

√
εi ,δi

by the above inequality for ωi(r, θ).
Next, estimate ωi(r, θ) for θ ∈ (Φ 4

√
εi ,δi

)c.

If limi→∞ S 4
√
εi ,δi

(θ) < π, the proof of Lemma 2.1 says that ωi(π − α, θ) can be
arbitrarily small for α > 0 with S 4

√
εi ,δi

(θ) ≤ π−α. So the above argument also holds
for this case.

On the other hand, if limi→∞ S 4
√
εi ,δi

(θ) ≥ π, then the same mean curvature esti-
mates as for the case θ ∈ Φ 4

√
εi ,δi

in the above holds for 3
√
τi ≤ r ≤ π−α, which leads

the same estimates for ωi(r, θ) as above.
Consequently, we arrive at the conclusion that ωi(r, θ) can be arbitrarily small for

all r with π ≤ r ≤ R and θ ∈ Sn−1.
Corollary 1.4 now follows immediately.
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