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Abstract In a paper from 2002, Hovey introduced the Gorenstein projective and Gorenstein injective
model structures on R-Mod, the category of R-modules, where R is any Gorenstein ring. These two
model structures are Quillen equivalent and in fact there is a third equivalent structure we introduce:
the Gorenstein flat model structure. The homotopy category with respect to each of these is called the
stable module category of R. If such a ring R has finite global dimension, the graded ring R[z]/(z?)
is Gorenstein and the three associated Gorenstein model structures on R[z]/(z?)-Mod, the category of
graded R[x]/(x?)-modules, are nothing more than the usual projective, injective and flat model structures
on Ch(R), the category of chain complexes of R-modules. Although these correspondences only recover
these model structures on Ch(R) when R has finite global dimension, we can set R = Z and use
general techniques from model category theory to lift the projective model structure from Ch(Z) to
Ch(R) for an arbitrary ring R. This shows that homological algebra is a special case of Gorenstein
homological algebra. Moreover, this method of constructing and lifting model structures carries through
when Z[z]/(2?) is replaced by many other graded Gorenstein rings (or Hopf algebras, which lead to
monoidal model structures). This gives us a natural way to generalize both chain complexes over a ring
R and the derived category of R and we give some examples of such generalizations.
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1. Introduction

There are two simple ways that homotopy theory occurs in algebra. One is through chain
complexes, leading to the derived category of a ring. Another is through quasi-Frobenius
rings, or more generally Gorenstein rings, leading to the stable module category of the
ring. The purpose of this paper is to point out that these two uses of homotopy theory are
closely related. In fact, for a nice enough ring, its derived category is nothing more than
the stable module category of some particular graded Gorenstein ring A. The derived
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category of an arbitrary ring can then be recovered using a well-known lifting technique
from model category theory. Taking A to be another suitably chosen graded Gorenstein
ring leads to new generalized derived categories of a ring. We discuss a few of these
in this paper but there is room for much more exploration of these generalized derived
categories.

In more detail, a (possibly non-commutative) ring R is called Gorenstein if R is both
left and right Noetherian and has finite injective dimension when thought of as either a
left or right R-module. This generalization of the usual notion of commutative Goren-
stein rings was introduced by Iwanaga in [15] and [16], so such rings are sometimes
called Iwanaga—Gorenstein. For a quasi-Frobenius ring, where projective and injective
modules coincide, one gets the stable module category by identifying two maps when
their difference factors through a projective. This corresponds to a model structure on
R-modules where every module is both cofibrant and fibrant, and the trivial objects are
the injective modules. For a Gorenstein ring, the trivial objects are instead the modules
of finite injective dimension. But one now has to choose: one can have every module
be fibrant, in which case the cofibrant objects are called Gorenstein projective modules,
or one can have every module be cofibrant, in which case the fibrant objects are called
Gorenstein injective modules. These model structures were introduced in [14], though
Martsinkovsky [19] had also considered related issues. There is also an intermediate mod-
ule structure that we introduce in this paper, where the cofibrant objects are Gorenstein
flat modules and the fibrant objects are cotorsion modules. The homotopy categories of
these model structures are all equivalent and the resulting triangulated category is called
the stable module category of the Gorenstein ring R. Gorenstein projective and injective
modules were first introduced by Enochs and Jenda in [4] and further information about
them and Gorenstein flat modules can be found in [5].

Now suppose that K is a commutative Noetherian ring with finite global dimension,
like Z. Such a ring is automatically Gorenstein but the stable module category is trivial
since every module has finite injective dimension. However, we could fatten K up slightly
into a Gorenstein ring with infinite global dimension and then look at its stable module
category. The simplest way to do this is to look at A = K[x]/(2?), which we think of as a
graded ring by putting  in degree —1. We can then try to study K by looking at the stable
module category of A. But an A-module is just a chain complex over K, and we prove in
this paper that the A-modules of finite injective dimension are the exact complexes, and
the Gorenstein projective (respectively Gorenstein injective, respectively Gorenstein flat)
A-modules are the dg-projective (respectively dg-injective, respectively dg-flat) chain
complexes. Thus this approach recovers the two standard model category structures
(projective and injective) on chain complexes over K as well as the flat model structure
of Gillespie [9]. Again, this is when K is commutative Noetherian and has finite global
dimension. For more general rings R, it is still possible to recover the projective model
structure on chain complexes. To do this one can take K = Z and lift the Gorenstein
projective model structure on Z[z]/(x?)-modules to R[x]/(z?)-modules, as we explain.
We can lift the Gorenstein flat model structure as well, but we do not know whether this
lifted model structure is the usual flat model structure.
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We can fatten up the ring K in other ways too. Generalizing the above, one might fix an
integer k > 1 and take A = K|[x]/(2"), again grading it with 2 in degree —1. In this case
an A-module is what we call a k-chain complex, since it is like a normal chain complex but
with differentials satisfying d* = 0 instead of d?> = 0. Properties of these generalized chain
complexes have been studied by several authors: see, for example, [1], [17], [21] and [7]. In
analogy to the above situation, we can, for any ring R, lift the Gorenstein projective model
structure on Z[z]/(z*)-modules to a projective model structure on R[z]/(2*)-modules.
In fact, we will see that all of the rings A = K[z]/(z*) are graded Gorenstein K-algebras
that are flat over K and we prove in Theorem 4.1 that for such an A the Gorenstein
projective model structure on A-Mod always lifts to a ‘projective’ model structure on
(A ®K R)-Mod, where R is any K-algebra. Therefore, we may define the derived category
of R with respect to A, denoted by D4(R), to be the associated homotopy category. The
question is left unanswered here, but the authors are interested in whether or not these
generalized derived categories of a ring R contain information about R other than what
is already contained in the usual derived category. For example, is it possible to find rings
R and S such that D(R) ~ D(S) and yet Da(R) # Da(S), where A is some (torsion-free)
graded Gorenstein ring A7

Finally, we deal with the issue of tensor products. The category of A-modules will have
a tensor product if A also happens to be a Hopf algebra over K. In this case one would like
the lifted model structure on (A® g R)-Mod to be monoidal, that is, compatible with the
tensor product as described in Chapter 4 of [13]. For example, A = Z[z]/(z?) is a Hopf
algebra over Z and for a ring R the associated tensor product on (A ®z R)-Mod = Ch(R)
corresponds exactly to the usual tensor product of chain complexes of R-modules. As
we already know from [13, Chapter 4], the projective model structure is monoidal with
respect to this tensor product. In general, we show in Theorem 5.4 that, when A is a
K-projective cocommutative Hopf algebra over K and R is a commutative K-algebra,
the projective model structure on (A ® g R)-Mod is monoidal. We give examples using
A = Z[z]/(2?)®zZ[z]/(2?), and this leads to a monoidal model structure on the category
of bicomplexes, and also A = Z,[z]/(zP), which leads to a monoidal model structure on
p-chain complexes of modules over Z,.

The paper is arranged as follows. We start in §2 by reviewing necessary details about
the projective, injective and flat model structures on Ch(R) and by providing some of
the relevant definitions and notation we will need. In § 3 we recall the notion of a Goren-
stein ring and give the definition of a graded Gorenstein ring that we will use throughout
the rest of the paper. We look at the motivating example of R[z]/(z?)-modules (chain
complexes over R) in this section. In particular, we show how the projective (respectively
injective, respectively flat) model structure on Ch(R) is identical to the Gorenstein pro-
jective (respectively Gorenstein injective, respectively Gorenstein flat) model structure
on R[z]/(z?)-modules when R is a Noetherian ring with finite global dimension. After
reading § 3 it will be clear that the usual derived category of a ring R can be thought of as
the derived category of R with respect to A = Z[x]/(2?). In §4 we present our method of
introducing generalizations of the usual derived category. Letting A = Z[z]/(z*) (k > 2),
we describe a model structure on the category of k-chain complexes that is exactly the
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projective model structure on Ch(R) when k = 2. Finally, § 5 is where we assume that A
is a Hopf algebra and prove that the associated projective model categories are monoidal.

2. Preliminaries

Let A be a bicomplete abelian category. In [14] Hovey laid out a correspondence between
(nice enough) model structures on A and cotorsion pairs on A. Essentially, a model
structure on A is two complete cotorsion pairs (Q, R N W) and (Q N W, R), where Q
is the class of cofibrant objects, R is the class of fibrant objects and W is the class of
trivial objects. Before giving the definition of a complete cotorsion pair, we point out that
a model structure on A is determined from the above cotorsion pairs in the following
way: the (trivial) cofibrations are the monomorphisms with (trivially) cofibrant cokernel,
the (trivial) fibrations are the epimorphisms with (trivially) fibrant kernel and the weak
equivalences are the maps that can be factored as a trivial cofibration followed by a
trivial fibration.

Definition 2.1. A pair of classes (F,C) in an abelian category A is a cotorsion pair
if the following conditions hold:

(1) Ext4(F,C) =0 for all F € F and C € C;
(2) if Ext}(F, X) =0 for all F € F, then X € C;
(3) if Ext4(X,0) =0 for all C € C, then X € F.

Every abelian category A has the projective cotorsion pair (P,.A) and the injective
cotorsion pair (A,7), where P is the class of projectives, Z is the class of injectives and
A stands for the class of all objects in .A. When A has a tensor product there ought to be
a flat cotorsion pair (F,C) as well, where here F is the class of flat (tensor-exact) objects
and C is the class of cotorsion objects. For a proof that (F,C) is in fact a cotorsion pair
when C is the category of R-modules, see, for example, [5]. In fact, [5] is also a good
reference for both cotorsion pairs and cotorsion modules.

The cotorsion pair is said to have enough projectives if for any X € A there is a short
exact sequence 0 — C' — F — X — 0, where C € C and F' € F. We say it has enough
injectives if it satisfies the dual statement. If both of these hold, we say the cotorsion
pair is complete. All of the examples of cotorsion pairs in the last paragraph are complete
when the category is R-Mod. The phrases ‘enough projectives’ and ‘enough injectives’ are
standard in reference to cotorsion pairs and generalize the notion of ‘enough projectives’
and ‘enough injectives’ in a category. Indeed, A has enough projectives if and only if the
cotorsion pair (0,.4) has enough projectives and .4 has enough injectives if and only if
the cotorsion pair (A4, co) has enough injectives.

Let R be a ring. We will always assume without mention that R has an identity,
which we denote by 1. We denote the category of chain complexes over R by Ch(R). The
differentials d of our chain complexes lower degree. Given an R-module M, we denote its
n-sphere by S™(M). This is the chain complex with M in degree n and 0 elsewhere. We
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denote its n-disc by D™(M). This is the chain complex with M in degree n and n — 1,
d, = 137 and 0 elsewhere.

Next we want to recall the projective, injective and flat model structures on Ch(R).
We say a chain complex X is projective (respectively injective, respectively flat, respec-
tively cotorsion) if it is exact and each cycle Z,, X is projective (respectively injective,
respectively flat, respectively cotorsion). For projective and injective this is equivalent
to the categorical definition. We denote these classes of chain complexes by P, I, F and
C respectively. A chain complex X € Ch(R) is called dg-projective (respectively dg-flat)
if each X,, is projective (respectively flat) and every chain map f : X — F with F
an exact (respectively cotorsion) complex is null homotopic. We say a chain complex
Y € Ch(R) is dg-injective (respectively dg-cotorsion) if each Y;, is injective (respectively
cotorsion) and every chain map f : E — Y with E an exact (respectively flat) com-
plex is null homotopic. We denote the class of all dg-projective complexes (respectively
dg-flat, respectively dg-injective, respectively dg-cotorsion) by dgP (respectively dgF,
respectively dgi' , respectively dgé)‘

If we let A denote the class of all chain complexes and £ the class of exact complexes,
then (dgP,E N A) and (dgP N E, A) are complete cotorsion pairs. Using Hovey’s corre-
spondence theorem, these cotorsion pairs induce the usual projective model structure on
Ch(R). Similarly, there are complete cotorsion pairs (A, dgZNE) and (ANE, dgI). These
cotorsion pairs correspond to the usual injective model structure on Ch(R). The reader
can find more information on these model structures in §2.3 of [13]. We also have the
flat cotorsion pairs (dgFNE, dgC) and (dgF,dgCNE), which correspond to the flat model
structure constructed in [9]. We point out that, for all the above classes, intersecting the
‘dg-class’ with € gives the ‘tilde-class’. For example, dgP N E = P.

3. The Gorenstein model structures and Ch(R)

In this section we first gather material on Gorenstein rings and graded Gorenstein rings
that is fundamental to the rest of the paper. We then show how the Gorenstein model
structures of [14, § 8] correspond to the usual projective and injective model structures
on Ch(R) when gl.dim(R) is finite. Similarly, there is a Gorenstein flat model structure
that corresponds to the flat model structure of [9] when gl.dim(R) is finite. We point out
that the projective model structure lifts to Ch(R) for any ring R, so the derived category
of R is recoverable from Gorenstein homological algebra.

3.1. Gorenstein rings

A commutative Noetherian ring R is called Gorenstein if its injective dimension, id(R),
is finite. Iwanaga generalized this class of rings to the non-commutative setting in [15]
and [16].

Definition 3.1. A ring R is called Gorenstein if R is both left and right Noetherian
and has finite injective dimension when thought of as either a left or right R-module.

Gorenstein rings are often called Iwanaga—Gorenstein to emphasize the possibility that
the ring may be non-commutative. These rings generalize quasi-Frobenius rings, which
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are left and right Noetherian rings that are left and right self-injective. Other examples
of non-commutative Gorenstein rings are group rings R[G] of a finite group G over a
commutative Gorenstein ring R [2].

It can be shown (see, for example, [6, Corollary 1.2.3]) that if R is Gorenstein, then the
injective dimension of R as a left R-module must coincide with the injective dimension
of R as a right R-module. If this number is n, we say that R is n-Gorenstein.

The following theorem is due to Iwanaga. We will simply say R-module when we mean
left R-module, but everything we do also has right R-module versions.

Theorem 3.2 (Iwanaga). Suppose R is an n-Gorenstein ring. Then an R-module
M has finite injective dimension if and only if M has finite projective dimension if and
only if M has finite flat dimension. In this case all these dimensions must be less than or
equal to n.

Due to Iwanaga’s Theorem, when R is a Gorenstein ring we will simply say that an
R-module M has finite R-dimension when id(M) (and hence pd(M) and fd(M)) is finite.
We denote the class of all R-modules of finite R-dimension by Wg.

Note that if R is left and right Noetherian and gl.dim(R) = n, then R is n-Gorenstein.
On the other hand, if R is n-Gorenstein, then either gl.dim(R) = n or gl.dim(R) = co.

3.2. Graded Gorenstein rings and chain complexes

Everything we have said about Gorenstein rings has a graded version. Let A be a
graded ring. Our convention is that graded will always mean Z-graded. We denote the
category of graded left A-modules by A-Mod and the category of graded right A-modules
by Mod-A. Unless otherwise stated, an A-module will refer to a graded left A-module.

We say A is Gorenstein if it is left and right Noetherian in the graded sense (so that
ascending chains of homogeneous left or right ideals must be finite), and A has finite
injective dimension when considered as both a left and right A-module. As mentioned
in §1, because A is Gorenstein, there are two different model structures on A-Mod with
the same class of trivial objects W4. These are the A-modules of finite A-dimension.

We now look at a special case. Let R be a ring and let A = R[x]/(2?). Then A may be
viewed as a graded ring, with a copy of R (generated by 1) in degree 0 and a copy of R
(generated by x) in degree —1. One can check that the category A-Mod is isomorphic
to the category Ch(R) of unbounded R-chain complexes, where the differential d corre-
sponds to multiplication by z. Through this isomorphism, the A-module A corresponds
to D°(R). In particular, we have Ext’ (-, A) = Extéh(R)( ,D°(R)). One can use this to
give a direct proof of the following proposition. However, it follows from a more general
result from [16].

Proposition 3.3. If R is an n-Gorenstein ring, then the graded ring A = R|[x]/(x?)
is n-Gorenstein with global dimension co.

So for an n-Gorenstein ring R and A = R[z]/(2?), the class W4 of trivial A-modules
must correspond to some collection of chain complexes. We would now like to characterize
these chain complexes. We will use facts from [8] to do this.
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Note that the isomorphism of categories between A-Mod and Ch(R) automatically
preserves injectives and projectives. Since the flat complexes described above (exact com-
plexes with flat cycles) are in fact the direct limits of projective complexes (see [8, Theo-
rem 4.1.3]), and of course the flat A-modules are the direct limits of projective A-modules,
the isomorphism also takes flat A-modules to flat complexes. Thus the A-modules of finite
A-dimension correspond to complexes of finite projective (respectively injective, respec-
tively flat) dimension.

Proposition 3.4. For any ring R, the class of chain complexes with finite projective
(respectively injective, respectively flat) dimension is the class of exact complexes with
cycles of bounded projective (respectively injective, respectively flat) dimension. If R
is n-Gorenstein, these classes coincide and every exact complex E with cycles of finite
R-dimension has pd(E) < n, id(E) < n and {d(E) < n.

In particular, if R is left and right Noetherian with gl.dim(R) = n, then W, is the
class of all exact complexes.

Proof. We refer the reader to [8, Theorem 3.1.3] for a proof for the finite injective
dimension case. The statement involving gl.dim(R) = n then follows from Iwanaga’s
Theorem and Proposition 3.3. 0

Note that in the case when R is n-Gorenstein and gl.dim(R) = oo there are always
exact complexes E with id(E) = pd(E) = {d(F) = co. For example, if M is any R-module
with id(M) = pd(M) = fd(M) = oo, then D™(M) is an exact complex with a cycle of
infinite R-dimension. So, by Proposition 3.4, it must be the case that D™ (M) has infinite
A-dimension.

3.3. Gorenstein injective, projective and flat graded R[z]/(x?)-modules

Let A be a graded ring and let X be an A-module. We now give the definitions of
Gorenstein projective, Gorenstein injective and Gorenstein flat A-modules. The defini-
tions are direct generalizations of the usual definitions in R-Mod, which can be found
in [5]. We then show that when gl.dim(R) = n and A = R[z]/(2?) a Gorenstein injective
(respectively Gorenstein projective, respectively Gorenstein flat) A-module is the same
thing as a dg-injective (respectively dg-projective, respectively dg-flat) R-complex.

Definition 3.5. An A-module X is called Gorenstein injective if there is an exact
sequence
Y S [ LNy L

of injective A-modules such that X = ker(I° — I') and such that the sequence remains
exact after applying Homy4 (1, -) for any injective A-module I.

Proposition 3.6. Suppose that R is a ring and let A be the graded ring R[x]/(z?).
Then every dg-injective chain complex over R is a Gorenstein injective A-module. The
converse holds if R is left and right Noetherian and of finite global dimension.
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When R has infinite global dimension, there are Gorenstein injective A-modules that
are not dg-injective as chain complexes. These have been studied by Enochs and co-
authors: see [8, Chapter 3|, where it is shown in particular that X is a Goresntein
injective chain complex if and only if X,, is Gorenstein injective for all n.

Proof. First suppose that X is a dg-injective chain complex. We want to show that
it is a Gorenstein injective A-module. We first take an injective coresolution of X as
follows:

0=X =101 12—,

Note that since X is dg-injective, the kernel at any spot in the sequence is also dg-
injective. Next we use the fact that (€ ,dgf) is complete to find a short exact sequence
0— K — Iy - X — 0, where I is exact and K is dg-injective. But Iy must also be
dg-injective since it is an extension of two dg-injective complexes. Therefore, I is an
injective complex. Continuing with the same procedure on K we can build an injective
resolution of X as follows:

o= 0L =1+ X —=0.

Again the kernel at each spot is dg-injective. Pasting this ‘left’ resolution together with
the ‘right’ coresolution above we get an exact sequence

R T W W A Sy

of injective complexes that satisfies the definition of X being a Gorenstein injective A-
module. Indeed, since X being dg-injective implies that Extl(E, X) = 0 for any exact
chain complex F, we certainly have Extl(I ,X) = 0 for any injective chain complex I.
Therefore, applying Hom 4 (7, -) will leave the sequence exact.

Next we let X be a Gorenstein injective A-module and argue that it is a dg-injective
R-chain complex when R is both left and right Noetherian and gl.dim(R) = n. Note
that by the definition of Gorenstein injective we have Exti(I ,X)=0forall i >0 and
injective complexes I. We will be done if we can show that Ext'(E, X) = 0 for any exact
complex E. By Proposition 3.4, id(F) < n, so there exists a finite injective coresolution

(S N N e ¥ = WPy L ()
By a dimension-shifting argument we see that Ext'(E, X) = Ext"*'(E, I") = 0. O

Dualizing the definition of Gorenstein injective gives us the notion of Gorenstein pro-
jective.

Definition 3.7. An A-module X is called Gorenstein projective if there is an exact
sequence
...Pp > Py—» P’ Pl ...

of projective A-modules such that X = ker(P° — P!) and such that the sequence
remains exact after applying Homy (-, P) for any projective A-module P.

By dualizing the above arguments we get the following proposition.
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Proposition 3.8. Suppose R is a ring and let A be the graded ring R[z]/(x?). Then
every dg-projective chain complex over R is a Gorenstein projective A-module. The
converse holds if R is left and right Noetherian and of finite global dimension.

Again, the converse is not true if R has infinite global dimension (see [8, Chapter 3]).

Finally, we present similar results for Gorenstein flat A-modules. As explained in § 3.2,
flat A-modules (defined as direct limits of projective A-modules) correspond to R-chain
complexes that are exact with flat cycles. However, one would like to describe flatness
in terms of a tensor product. We point out that, through the isomorphism A-Mod =
Ch(R), tensoring in A-Mod over R corresponds to the usual tensor product of chain
complexes, while tensoring over A corresponds to the modified tensor product ®cy, that
appears in [3]. The latter tensor product ® 4 = ®cp is the correct tensor product for
the categorical notion of flatness. Indeed, it was shown in [3] that F' € Ch(R) is flat if
and only if the functor - ®cy, F' is exact. Therefore, F is a flat complex if and only if
TorS" (X, F) = 0 for any chain complex X. It is also shown in [3] that a chain complex
F is dg-flat if and only if Tor{™(E, F) = 0 for any exact chain complex E. Using these
results we can imitate our proof above to characterize Gorenstein flat A-modules when
gl.dim(R) = n.

Definition 3.9. An A-module X is called Gorenstein flat if there is an exact sequence
F1 —>F0—>FO—>F1 —

of flat A-modules such that X = ker(F® — F!) and such that the sequence remains
exact after applying I ® 4 - for any injective right A-module I.

Proposition 3.10. Suppose that R is a ring and let A be the graded ring R[x]/(z?).
Then every dg-flat chain complex over R is a Gorenstein flat A-module. The converse
holds if R is left and right Noetherian and of finite global dimension.

Again, the converse is false when R has infinite global dimension (see [8, §5.4]).

Proof. First suppose that X is a dg-flat chain complex. We want to show that it is a
Gorenstein flat A-module. We first take a flat resolution of X as follows:

o=y - Fy - Fp — X = 0.

Note that since X is dg-flat, the kernel at any spot in the sequence is also dg-flat. Next
we use the fact that (dg]:'7 é) is complete to find a short exact sequence 0 — X — FO —
K — 0, where F? is cotorsion (so exact with cotorsion cycles) and K is dg-flat. But F°
must also be dg-flat since it is an extension of two dg-flat complexes. Therefore, F0 is a
flat complex since it is both dg-flat and exact. Continuing with the same procedure on
K we can build a coresolution of X as follows:

0=+X—F' 5 F' 5 F? ...,

Again the kernel at each spot is dg-flat. Pasting this ‘right’ coresolution together with
the ‘left’ resolution above we get an exact sequence

i Py 5 Fy > FO 5 F' ...
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of flat complexes that satisfies the definition of X being a Gorenstein flat A-module.
Indeed, since X being dg-flat means that Tor?h(E7 X) = 0 for any exact chain complex
E, we certainly have Torgh(I ,X) = 0 for any injective chain complex I. Therefore,
applying I ®¢y - will leave the sequence exact.

Next we let X be a Gorenstein flat A-module and argue that it is a dg-flat chain
complex over R. Since Torzch can be computed using flat resolutions, the definition of
Gorenstein flat implies that TorS" (1, X) = 0 for all i > 0 and injective complexes 1.
We will be done if we can show that Tor?h(E,X ) = 0 for any exact complex E. By
Proposition 3.4, id(E) < n, so there exists a finite injective coresolution

0E—=I°>T" 21— ... 51" —=0.
But by a dimension-shifting argument one can see that

Tor{™(E, X) = Tor$t (1", X) = 0.

3.4. The Gorenstein model structures on R[z]/(z?)-Mod

We now present the theorems that construct the usual model structures on Ch(R) via
the corresponding Gorenstein model structures on R[x]/(x?)-Mod.

Theorem 3.11. Let R be an n-Gorenstein ring. There is then a cofibrantly generated
model structure on Ch(R) called the Gorenstein projective model structure in which the
cofibrations are the monomorphisms with Gorenstein projective cokernel, the fibrations
are the epimorphisms and the trivial objects are the exact complexes with cycles of finite
R-dimension. Dually, there is a cofibrantly generated model structure on Ch(R) called the
Gorenstein injective model structure in which the cofibrations are the monomorphisms,
the fibrations are the epimorphisms with Gorenstein injective kernel, and the trivial
objects are the exact complexes with cycles of finite R-dimension. When gl.dim(R) = n
these model structures are the usual projective and injective model structures on Ch(R).

Proof. Except for the last sentence, this follows from [14, §8], where we use Propo-
sition 3.4 to identify the trivial objects. For the last sentence, use Proposition 3.4 to
identify the trivial objects with the exact complexes and the results from § 3.3 to identify
Gorenstein projective A-modules with dg-projective complexes and Gorenstein injective
A-modules with dg-injective complexes. (I

Given a graded ring A, the class F of flat graded A-modules forms the left side of a
complete cotorsion pair (F,C). The modules in C are called (graded) cotorsion modules.
Similarly, the class of Gorenstein flat graded A-modules form the left side of a complete
cotorsion theory denoted (GF, GC) and the modules in GC are called (graded) Gorenstein
cotorsion modules. Rather than prove these results we simply refer the reader to [6], where
much more information on Gorenstein flat modules can be found.
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Theorem 3.12. If A is a Gorenstein ring, there is a model structure on A-Mod in
which the cofibrant objects are the Gorenstein flat modules, the fibrant objects are the
cotorsion modules and the trivial objects are the modules of finite A-dimension.

Proof. Using the results of [14], the only thing left to check is that GF N W4 = F
and CNWy = GC. It is clear that 7 C GF N W4. Recall that M is flat if and only if
M™* = Homgz(M,Q/Z) is injective as a right A-module. Thus, if F' € W4, F has finite
flat dimension, so F'* has finite injective dimension. Also, by Theorem 2.2.2 (vii) of [6],
F* € GT (as a right A-module) whenever F' € GF. Since we know that GZ N W} is the
class of injective right A-modules, we conclude that F € GF N W, implies that F* is
injective. But this means that F' must be flat. So F = GF N Wa.

Since F C GF and GP C GF, taking the right half of the associated cotorsion theories
gives us GC C CNWy. Now suppose that X € CNW,4. Since (GF, GC) is complete we can
find a short exact sequence 0 - X — C — F' — 0, where C' € GC and F € GF. Since
both X and C' are in Wy, F is as well. By the last paragraph, we see that F' € F, which
makes 0 - X — C' — F — 0 split and so X is a summand of C. Therefore, X € GC. 0O

Corollary 3.13. Let R be an n-Gorenstein ring. There is then a cofibrantly gener-
ated model structure on Ch(R) called the Gorenstein flat model structure in which the
cofibrations are the monomorphisms with Gorenstein flat cokernels, the fibrations are
the epimorphisms with cotorsion kernels and the trivial objects are the exact complexes
with cycles of finite R-dimensions. When gl.dim(R) = n this model structure coincides
with the flat structure on Ch(R) constructed in [9].

Unfortunately, a bit of confusion arises at this point with the terminology introduced
by Gillespie in [9]. What we call a cotorsion complex here is called a dg-cotorsion complex
there. Also, when gl.dim(R) = n, what we call a Gorenstein cotorsion complex here is
exactly the same as a cotorsion complex in [9]. From this perspective it seems like a poor
choice of terminology was made in [9].

At this point in the paper, we have shown how the usual homological algebra of chain
complexes over R is a special case of Gorenstein homological algebra of modules when
R is left and right Noetherian and has finite global dimension. But of course most rings
R do not have finite global dimension. But one can still recover the projective model
structure on Ch(R) in this case. Indeed, with the projective or flat model structure,
Ch(Z) is a monoidal model category. This means that the model structure is compatible
with the tensor product in a specific way (see [13, Chapter 4] for the precise definition).
In such a situation, one expects modules over a monoid in Ch(Z), such as a ring R,
to inherit a model structure, where the fibrations and weak equivalences of modules
over the monoid are just the maps of modules that are fibrations and weak equivalences
in the underlying model structure. This is actually only guaranteed to work when the
monoid is cofibrant; for it to work for arbitrary monoids, one needs the monoid aziom
of Schwede and Shipley [20]. The monoid axiom was translated into the language of
cotorsion pairs in [14, Theorem 7.4]. If the class W of trivial objects is closed under
transfinite extensions, and if X ® Y is trivial whenever X is trivially cofibrant, then the
monoid axiom holds. Exact complexes are of course closed under transfinite extensions,
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and if X is a flat complex, then one can see (because the cycles of X are flat) that
X ®Y is still exact. Hence the monoid axiom holds in either the projective or flat model
structures on Ch(Z).

Thus, if R is a ring (or differential graded algebra), we have a model structure on Ch(R)
induced from the projective model structure on Ch(Z), and this coincides with the usual
projective model structure. We therefore recover the derived category of R from Goren-
stein homological algebra. We also get a model structure on Ch(R) induced from the flat
model structure on Ch(Z), but we do not know whether this model structure coincides
with the flat model structure on Ch(R); we suspect that it is the ‘degreewise cotorsion’
model structure mentioned in [11]. And of course we cannot recover the injective model
structure on Ch(R) in this way, because the injective model structure on Ch(Z) is not
monoidal.

4. Generalizing chain complexes and derived categories

Again we let A be a graded Gorenstein ring and A-Mod be the category of (graded) A-
modules. In § 3 we saw that if we take A = Z[z]/(2?), then the derived category D(R) of a
ring R is easily recovered by lifting the Gorenstein projective model structure on A-Mod
to Ag-Mod, where Agp = A ®z R = R[x]/(2?). Indeed the lifted model structure on
Apr-Mod is the usual projective model structure on Ch(R) and its homotopy category is
D(R). Thus we may regard D(R) as the derived category of R with respect to Z[z]/(z?).
It is natural to then wonder what happens if we replace Z[x]|/(z?) with other graded
Gorenstein rings A. What is the resulting derived category D4 (R)?

We first give the construction of D4(R). Rather than insist that A be a ring, we allow
the possibility that A is a K-algebra, where K is any commutative ring of finite global
dimension. This will allow for examples such as the p-chain complexes of Example 5.2.

Theorem 4.1. Let K be a commutative ring of finite global dimension and suppose
that A is a graded n-Gorenstein K-algebra that is flat over K. Then for each K-algebra
R there is a natural abelian model structure on A ® ¢ R-modules, which corresponds
when R = K to the Gorenstein model structure on A-modules. Naturality means that
given a map R — S of K-algebras, the usual induction functor from A ® g R-modules to
A ®p S-modules is a left Quillen functor. In this model structure, the fibrations are the
surjections whose kernels each have finite A-dimension.

The homotopy category of this model structure is D4(R). We note that if A @k R is
itself Gorenstein, then we also have the Gorenstein projective model structure on A® i R-
modules. For chain complexes, these two model structures agree when R has finite global
dimension by Theorem 3.11. We have not been able to prove this for a more general A.
The proof of Theorem 4.1 shows that A @ R itself, and thus every A ® ¢ R-module of
finite A ® ¢ R-dimension, also has finite A-dimension, and thus that the identity functor
is a left Quillen functor from the A-induced model structure of Theorem 4.1 to the
Gorenstein model structure. But we do not know whether every A ® k¢ R-module of finite
A-dimension also has finite A ® g R-dimension.
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In order to prove this theorem, we need a version of Kan’s lifting theorem phrased in
the language of cotorsion pairs. First we introduce some notation. Let F' : A — B be
a functor. If I is a set of morphisms in A, we let FI denote the set {F(i) : i € I} of
morphisms of B. Similarly, if S is a set of objects in A, then F'S denotes the obvious
set of objects in B. If A is an abelian category with small limits and colimits and if A
has a cofibrantly generated abelian model structure as in [14], then we use the following
notation: (Q,RNW) and (Q NW,R) denote the (small) cotorsion pairs associated to
the model structure, where Q is the class of cofibrant objects, R is the class of fibrant
objects and W is the class of trivial objects. These small cotorsion pairs have generating
monomorphisms I and J, respectively, and are cogenerated by sets S and T, respectively.
(We assume that S and 7 contain a generator G as in the definition of small cotorsion
pair, rather than writing S U {G} and T U {G} in what follows.)

Theorem 4.2 (Kan). Let A and B be Grothendieck categories and let F' : A — B
be a functor with a right adjoint U : B — A. Suppose that A is a cofibrantly gener-
ated model category with generating cofibrations I and generating trivial cofibrations J.
Furthermore, suppose that each of the following is true:

(i) each morphism of F'J is a monomorphism;
(i) UF(T) € W;
(iii) U preserves transfinite compositions;
(iv) W is closed under transfinite extensions.

There is then a cofibrantly generated model structure on B with generating cofibrations
FI, generating trivial cofibrations F'J and weak equivalences the maps f for which U f
is a weak equivalence in A.

Proof. Use Theorem 11.3.2 of [12]. a
We can now prove Theorem 4.1.

Proof of Theorem 4.1. We have the Gorenstein projective model structure on
A-modules [14, § 8], and the unit K — R gives us the induction functor F' from A-modules
to A ® ¢ R-modules, whose right adjoint U is the restriction functor. Then U preserves
filtered colimits, including transfinite extensions. The class W consists of modules of
finite A-dimension, which are closed under all filtered colimits since there is a uniform
bound on the dimension. In this case, J consists of the maps 0 — s*A, so F'J obviously
consists of monomorphisms. The set 7 can be taken to be A itself (and all its shifts s*A),
so we need UF(A) = A®k R to have finite A-dimension. But R has finite K-dimension,
since K has finite global dimension, and a projective resolution of R as a K-module can
be tensored with A to give a projective resolution of A ® ¢ R as an A-module, since A is
flat over K. |

https://doi.org/10.1017/50013091508000709 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091508000709

688 J. Gillespie and M. Hovey

4.1. Applications to the category of k-chain complexes

The model structures of Theorem 4.1 are uninteresting when A has finite global dimen-
sion. In this case every module is trivial and therefore every map is a weak equivalence.
Thus polynomial rings such as Z[x] are not of particular interest to us. However, a natural
generalization of A = Z[x]/(2?) is A = Z[z]/(x"), where k > 1 is fixed. Then A-modules
are similar to chain complexes, although the differential d need only satisfy the condi-
tion d¥ = 0, not necessarily d> = 0. In this way the authors were led to studying the
notion of a k-chain complex and their interesting homology. However, this notion has
already been considered by several authors: we recommend [1], [17], [21] and [7] to the
interested reader. As an example of Theorem 4.1, we now describe a model structure on
the category of k-chain complexes. We will use [7] to quote the necessary properties of
k-chain complexes.

Let R be a ring with identity. For the rest of this section we assume that k£ > 1 is fixed.
We define a k-chain complex to be a sequence of R-modules

dnt1 dn
= X — X S X —

such that the composition of any k consecutive differentials d is 0. We let k£ Ch(R) be
the category of k-chain complexes, where a morphism f : X — Y is defined to be a
collection f,, : X,, — Y, of R-module homomorphisms such that d,f, = fn_1d,. So
the category of 2-chain complexes is the usual category of chain complexes. One can see
that the category of k-chain complexes is isomorphic to the category of graded modules
over the graded ring R[z]/(z*). One could also consider 1-chain complexes. These just
correspond to graded R-modules of course. Note that, for k£ > 2, the category of k-chain
complexes (graded R[z]/(x*)-modules) does not have a natural tensor product (unless k
is prime and we work over a particular ring such as R = Zj).

Given an R-module M, we define k-chain complexes D! (M) for all i = 1,2,...,k
as follows. D! (M) consists of M in degrees n,n —1,n —2,...,n — (i — 1), all joined by
identity maps, and 0 in every other degree. Thus D} (M) is like the usual n-sphere S™(M)
and D2 (M) is like the usual n-disc D™(M) (except of course that each is technically a
k-chain complex when k > 2).

Next, for a k-chain complex X there are k — 1 choices for homology. For i = 1,2... k
we define Z;, (X) = ker(d,,—(;—1) - - - dn—1dy). In particular, we have Z}(X) = kerd,, and
ZF(X) = X,,. Next, fori = 1,2,..., k, we define B! (X) = Im(dy1d,12 - dpys). In par-
ticular, B} (X) = Imd, ;1 and B¥(X) = 0. Finally, we define H! (X) = Z! (X)/Bf~%(X)
fori=1,2,...,k—1.

It is easy to check the following adjointness relationships, which hold for all ¢
1,2,...,k:

(1) kCh(R)(D;,(M),Y) = Hompg(M, Z,,(Y));

(2) kCh(R)(X, D:L(M)) =~ HomR(an(ifl)/Bfl_(i_l)vM)~

It follows from (1) that DF(P) is a projective k-chain complex if and only if P is
a projective R-module. Similarly, (2) implies that D¥(I) is injective if and only if I is
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injective. Under the correspondence with R[x]/(z*)-modules, D¥(R) corresponds to the
shifted free module s™ R[z]/(x*), so every projective module is a summand in a direct sum
of copies of D¥(R) (where n can vary). The category of k-chain complexes has enough
projectives and injectives since it is equivalent to a module category.

Definition 4.3. Let X be a k-chain complex. We say X is k-ezact (or just ezact) if
H!(X) =0 for eachn and all i = 1,2,...,k — 1.

Lemma 4.4. Suppose 0 - X — Y — Z — 0 is a short exact sequence of k-chain
complexes. If any two out of the three are k-exact, then so is the third.

Proof. Any k-chain complex X has k — 1 standard chain complexes associated to it.
For example, if k& = 5, then we can form four chain complexes from X by letting the
differentials alternate as suggested by the following pairs:

(d,d%), (d*,d*), (d* d*), (d*d).

So, obtaining the long exact sequences associated to each of the possible short exact
sequences of chain complexes will give us the result. O

Besides the k-chain complexes D! (M) we defined for i = 1,2,...,k, it will also be
convenient to set DY (M) = 0 for the statement of Theorem 4.5.

Theorem 4.5. Let k > 1 be fixed and let R be a ring. Then the category of k-chain
complexes over R has a cofibrantly generated model structure we call the projective model
structure. The set

I ={D(R) < DfH-(k—i) (R)}ick

is a set of generating cofibrations and the set
J={0< DE(R)}

is a set of generating trivial cofibrations. The class J-inj of fibrations is exactly the class of
all epimorphisms while the class I-inj of trivial fibrations is the class of all epimorphisms
with k-exact kernels. A k-chain map is a weak equivalence if it is an isomorphism on each
homology group HY. When R is left and right Noetherian and of finite global dimension,
the cofibrations (respectively trivial cofibrations) are the monomorphisms whose cokernel
is Gorenstein projective (respectively projective) when viewed as an R[x]/(x*)-module.

It can be shown that the projective (respectively injective) k-chain complexes are pre-
cisely the k-exact chain complexes X for which each Z! X is projective (respectively
injective). We refer the reader to Corollary 3.3 and Proposition 4.5 of [7] for proof. Fur-
thermore, Corollary 4.7 of [7] shows that X has finite projective dimension (respectively
finite injective dimension) if and only if X is k-exact and there is an upper bound to the
set of all pd Z% X (respectively id Z% X). It then follows that if R is left and right noethe-
rian with gl.dim(R) finite, then the class of k-exact complexes coincides with the class
of complexes of finite projective dimension (and with the class of complexes with finite
injective dimension). Note that, for any R, the graded ring R[z]/(2") always has infinite
global dimension because any non-k-exact complex has infinite projective dimension.
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Proof. Proposition 4.3 of [7] tells us that Z[x]/(x*) is a graded 1-Gorenstein ring. So
taking A = Z[z]/(z*) in Theorem 4.1 gives us the desired model structure on k Ch(R).
The trivial objects are the complexes of finite A-dimension, which, since gl.dim(Z) =1 is
finite, are precisely the k-exact complexes. We therefore get the desired characterization of
fibrations and trivial fibrations. The long exact sequences in homology used in Lemma 4.4
give us the characterization of weak equivalences as homology isomorphisms.

One can easily check that J serves as a set of generating trivial cofibrations. To check
that I will work as a set of generating cofibrations is a little more complicated. For
0 < i < k the adjunction k Ch(R)(D: (M),Y) = Homg(M, Z: (Y)) tells us that a lift in
the diagram

Di(R)—— X

)

Dy iy (R) —=0
occurs if and only if H!(X) = 0. From this we conclude that p : X — 0 is in I-inj if and
only if X is a k-exact complex.

Now let p: X — Y with K = ker p. From the last paragraph we will be done character-
izing I-inj if we can show that p is in I-inj if and only if p is an epimorphism with K — 0
in I-inj. So suppose that p is in I-inj. Since J C I, we know that p is an epimorphism.
Furthermore, I-inj is always closed under pullbacks and so K — 0 is in [-inj. On the
other hand, suppose p is an epimorphism with K — 0 in I-inj. We seek a lift in the

diagram

D;,(R) 1(
D}y (B —=Y

for each i < k. But if Ext*(DJ(R), K) = 0 for all j, then such a lift exists by Lemma 2.4
of [10]. Since K is k-exact one can argue that if

0K —=I°=T"' =17 ...
is an injective coresolution of K, then
0= ZIK — ZI(I°) — ZI(I') — Z (1) — - -

is an injective coresolution of ZJ K. Thus, for any R-module M, the adjunction
k Ch(R)(DJ(M),Y) = Hompg (M, ZJ(Y)) allows us to prove the isomorphism

Ext(DJ(M),Y) = Extg(M, Z3(Y))
by computing with an injective coresolution of Y. In particular,
Ext'(DJ(R),Y) = Exth(R, ZI(Y)) = 0.

This completes the proof characterizing I-inj.
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Finally, when R is left and right Noetherian and gl.dim(R) = n, the graded ring
R[x]/(2*) is n-Gorenstein by Proposition 4.3 of [7]. So the objects of finite R[z]/(z")-
dimension are precisely the k-exact complexes. Therefore, in this case, the Gorenstein
projective model structure on R[z]/(z*)-modules coincides with the model structure of
Theorem 4.1. In particular, the cofibrations (respectively trivial cofibrations) are the
monomorphisms whose cokernel is Gorenstein projective (respectively projective) when
viewed as an R[z]/(x*)-module. O

5. Generalizing derived categories with tensor products

In practice, most algebraic categories come with a tensor product. In this case one wants
a model structure on that category to be monoidal, as defined in Chapter 4 of [13].
Having a monoidal model structure is fundamental since it gives us a way to easily define
and work with a tensor product on the associated homotopy category. In this section we
will assume that our K-algebra A is a Hopf algebra over K, since such a structure is
essentially the information needed to put a tensor product on A-Mod and hence on the
model category of A® g R-modules of Theorem 4.1 when R is a commutative K-algebra.

As a guiding example, let R be a commutative ring and let us again view the category
Ch(R) of chain complexes of R-modules as the category of graded modules over R[z]/(z?).
The ring R[z]/(2?) is a graded Hopf algebra over R with comultiplication determined by
1 — 1®1and 2 — 1®@x+x®1. The tensor product on R[z]/(2?)-Mod determined by this
comultiplication corresponds exactly to the usual tensor product of chain complexes of
R-modules. This tensor product is commutative since the comultiplication on R[x]/(z?)
is cocommutative.

We will show that if K is a commutative ring of finite global dimension and A is a
K-projective cocommutative graded Gorenstein Hopf algebra over K, then the projective
model structure on A ® ¢ R-Mod is monoidal for any commutative K-algebra R. So, for
the above example, think of K = Z and A = Z[z]/(2?) and R a commutative ring.
We end by looking at some examples of model structures on categories of modules over
other Hopf algebras. These include p-chain complexes over the ring of integers mod p
and bicomplexes of R-modules.

5.1. The category of modules over a Hopf algebra

We briefly recall the definition of a graded Hopf algebra. We refer the reader to Chap-
ter VI of [18] for more details.

Let K be a commutative ring with identity and let A be a graded K-algebra. We say
that A is a graded Hopf algebra (over K) if it comes equipped with graded K-algebra
homomorphisms A : A - A®k A and € : A — K (called comultiplication and counit)
making A into a graded coalgebra. We call A cocommutative if the comultiplication A
is cocommutative. Note that graded A-modules M and N may be viewed as graded K-
modules, through the map K — A, where K receives the trivial grading. Then the graded
tensor product M ®x N naturally inherits an A-module structure. Indeed, M ®x N is
an (A ®x A)-module and becomes an A-module through the comultiplication A : A —
ARk A.
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One can check that the tensor product is commutative (in the graded sense) if we
assume that the comultiplication on A is cocommutative. In this case A-Mod is a closed
symmetric monoidal category where Hompg (M, N) is the graded A-module defined as
follows. In degree n, [Homg (M, N)], is the graded K-module ], ., Homg (Mg, Npyr).
Hompg (M, N) becomes a graded (A ®x A)-module as follows. Given homogeneous ele-
ments s,t € A, (fr) € [Homg (M, N)],, and m € M, define

(s @) (fi)(m) = (=) S(fim) 11 (M) € Nigisnet ) 411

So, through the comultiplication map A — A ® k¢ A, we see that Homg (M, N) becomes
a graded A-module.

Recall that an augmentation of a graded ring A is a homomorphism ¢ : A — K of
graded rings (where K is trivially graded). The counit € : A — K is such an augmentation.
Through € we may regard all K-modules as trivial A-modules and in fact we have a fully
faithful inclusion functor K-Mod — A-Mod. In particular, K itself is an A-module that
serves as the unit for the monoidal structure. This can be seen by using the compatibility
of A and € in the coalgebra axioms. As an example, when A = K|[z]/(x?), the functor
K-Mod — A-Mod is the sphere functor M — S°(M) from K-modules to chain complexes
of K-modules.

Lemma 5.1. Let K be a commutative ring of finite global dimension and let A be a
K-projective cocommutative graded Gorenstein Hopf algebra over K. If P is a Gorenstein
projective A-module, then each P, is K-projective.

Proof. By the definition of Gorenstein projective, there is an exact sequence
0P —=Q'"—-Q*—---,

where each Q7 is a projective A-module. Since A is K-projective, so is each Q. Thus, as
a K-module, each P, is an r-fold syzygy for all r. Since K has finite global dimension,
P,, must be projective. (Il

Lemma 5.2. Let K be a commutative ring of finite global dimension and let A be a
K-projective cocommutative graded Gorenstein Hopf algebra over K. Let P be a Goren-
stein projective A-module. Then for A-modules M and N we have an isomorphism

Exty (M ®k P, N) = Ext’y (M,Homg (P, N)).

Proof. By Lemma 5.1, -®x P and Hom (P, -) are each exact endofunctors on A-Mod.
(Indeed they are exact as endofunctors of graded K-modules, but the Hopf algebra
structure on A just ‘extends’ the functors to A-Mod.) Being right adjoint to an exact
functor, Homg (P, -) preserves injective objects. Since Homg (P, -) itself is also exact it
preserves injective coresolutions. The result now follows by computing the Ext groups
using an injective coresolution of N and applying the adjoint relationship between - ® x P
and Homg (P, -). O
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Lemma 5.3. Let K be a commutative ring of finite global dimension and let A be a
K-projective cocommutative graded Gorenstein Hopf algebra over K. If W € W, and
P € GP, then Homg (P,W) and W @k P are in Wy.

Proof. We have
Exty (M ®x P,W) = Ext}3 (M, Homg (P, W))

for an arbitrary A-module M by Lemma 5.2. If W has finite injective dimension, we
conclude that Ext’} (M, Homg (P, W)) = 0 for all large enough n. But then Homg (P, W)
also has finite injective dimension and so is in W4. The proof that W @ P € W4 is
similar, using that W has finite projective dimension. O

Theorem 5.4. Let K be a commutative ring of finite global dimension and let A be
a K-projective cocommutative graded Gorenstein Hopf algebra over K. Then, for any
commutative K-algebra R, the model structure of Theorem 4.1 on the category of graded
A ® i R-modules is monoidal and satisfies the monoid axiom.

In particular, the derived category D4(R) is a symmetric monoidal triangulated cate-
gory in this case.

Note that we do not know, in general, whether the unit K of the monoidal structure is
Gorenstein projective, though it is in our examples. We therefore have to use the complete
definition of a monoidal model structure, which allows for a non-cofibrant unit [13,
Definition 4.2.6].

Proof. Note first that if R is a K-algebra, then R is a monoid in the category of
A-modules, where A acts on R through the counit € as usual. Furthermore, an R-module
in the symmetric monoidal category of A-modules is the same as an A ® R-module
in the usual sense. If R is commutative, the category of A ® ¢ R-modules is symmetric
monoidal, with the tensor product being the usual tensor product M ®r N over R. The
A-action comes from the fact that A ® g R is a Hopf algebra over R. It will therefore
mostly suffice to prove this theorem when R = K, using [20, Theorem 4.1 (2)]. However,
the results in [20] assume that the unit of the monoidal structure is cofibrant, and this
need not be true for us. We will postpone this point to the end of the proof.

We use a more general version of Theorem 7.2 of [14] to prove that the Gorenstein
projective model structure on A-modules is monoidal. In the current setting this amounts
to showing that

(a) every cofibration is pure,

(b) P ®k Q is Gorenstein projective whenever P and @ are Gorenstein projective,

(¢) P®xk @ is projective whenever P is projective and @ is Gorenstein projective and
)

(d) if
0> F—->QK—-K—=0
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is a short exact sequence, where QK is Gorenstein projective and F has finite A-
dimension, and if C' is Gorenstein projective, then the kernel of QK @ C — C
also has finite A-dimension (this condition comes from the unit condition in the
definition of a monoidal model category [13, Definition 4.2.6 (2)]).

Since Gorenstein projectives are degreewise projective K-modules by Lemma 5.1,
part (a) follows from the fact that a monomorphism with projective (or just flat) cokernel
is pure. For part (b) we wish to show that Ext! (P ®x Q,W) = 0 when W € W,. But
this follows immediately from Lemmas 5.2 and 5.3. To prove (c), we use the fact that
P=GPNW4s.If PeP and Q € GP, then Pk Q € GP by part (b). But we also have
P ®Kg Q € Wa by Lemma 5.3. So P @k @ € P. Part (d) is obvious, since the kernel in
question is just F'®g C, and Lemma 5.3 guarantees this has finite A-dimension.

Next we use Theorem 7.4 of [14] to prove that the model structure satisfies the monoid
axiom. This will amount to showing that

(i) P ®xk N is projective whenever P is projective and N is any A-module and
(ii) Wa is closed under transfinite compositions of pure monomorphisms.

To prove (i), let P be projective and let N be arbitrary. Since (GP,Wa) is a complete
cotorsion pair (see [14, Theorem 8.3]), we can find a short exact sequence 0 — W —
Q — N — 0, where W € W4 and @ € GP. Since P ® g — is exact, the sequence

0+PRkW—+PRrkQ—=+PRkN—=0

is exact. By Lemma 5.3 we have P®x W € Wy and by (d) above we have Pk Q € P.
Since P @ W and P ®k @ belong to Wy, it follows that P ® ¢ N also belongs to Wj.

Now, from Remark 11.2.3 of [5], (Wa,GZ) is a cotorsion pair and the left side of
a cotorsion pair is automatically closed under transfinite extensions by Corollary 7.3.5
of [5]. Since Wy is closed under all transfinite extensions, condition (ii) is true.

Since it does not follow from [20], we still owe the reader a proof of the fact that,
if R is a commutative K-algebra, QR is a cofibrant replacement of R in the model
structure on A ® ¢ R-modules and X is a cofibrant A ® x R-module, then the natural
map QR ®r X — X is a weak equivalence. The map QR — R is a trivial fibration
in the model structure, so its kernel F is an A ® ¢ R-module with finite A-dimension.
The cofibrant A-modules are now cogenerated by some set S of Gorenstein projective
A-modules [14, Theorem 8.3], so the cofibrant A ® g R-modules will be cogenerated by
the set SR R. Thus X is a transfinite extension of A® g R-modules of the form M Q@ R,
where M is a Gorenstein projective A-module. Since M is projective as a K-module, it
follows that X is projective as an R-module. Thus the surjection QR ®r X — X will
have kernel F' ® g X. But, since X is a transfinite extension of A ® ¢ R-modules of the
form M @k R, FF®gr X is a transfinite extension of modules of the form F ® M. These
modules have finite A-dimension by Lemma 5.3. Now, as we have mentioned above, Wy is
closed under all transfinite extensions, so F'®g X has finite A-dimension as required. [

We now look at some examples of Theorem 5.4.
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5.2. p-chain complexes over Z mod p

If A= Z[x]/(2?), then A is a cocommutative graded Gorenstein Hopf algebra over Z.
The comultiplication on A is determined by 1 -+ 1®1 and z — 1 ® z + 2 ® 1. The counit
A — Z acts by 1 — 1 and  — 0. Applying Theorem 5.4 in this situation recovers the
monoidal (projective) model structure on Ch(R) for commutative rings R.

If k > 2, then Z[z]/(2*) is not a Hopf algebra over Z, since the comultiplication above
will not be a ring homomorphism. In other words, the tensor product of chain complexes
does not generalize in any natural way to k-chain complexes when k£ > 2. However,
if p is prime and Z, denotes the integers mod p, then Z,[z]/(z?) is a cocommutative
graded Gorenstein Hopf algebra over Z,. Theorem 5.4 applies to give us a monoidal
model structure on the category of p-chain complexes over Z,, with the usual formula
dzey)=drey+ (-1)*lz e dy.

5.3. Bicomplexes

The proofs in this section hold if we replace ‘graded’ with ‘bigraded’. Then, if we take
A to be the bigraded ring Z[x, y]/ (22, y?, zy+yx), with = of degree (—1,0) and y of degree
(0, —1), the category of bigraded modules over A is the category of bicomplexes of abelian
groups. The notion of ‘total degree’ p 4 ¢ is used in place of ‘degree’ in the sign convention
and so zy + yxr = 0 just means that A is bigraded commutative. Alternatively, we can
describe A as the tensor product Z[z]/(2?) ®z Z[z]/(x?). Indeed, the tensor product of
two graded modules gives a bigraded module (before the summation turns it into a singly
graded module). Since the tensor product of two Hopf algebras is again a Hopf algebra we
see that Z[x,y]/ (2%, y?, xy + yx) is a bigraded Hopf algebra over Z. The comultiplication
is determined by 1 - 1® 1,z > 1®z+2x®1 and y - 1 ®y + y ® 1. The ring is also
cocommutative and the counit sends  and y to 0 and 1 — 1.

All that remains is to see that A is Gorenstein as a bigraded ring. That is, A should be
left and right Noetherian in the bigraded sense (so that ascending chains of homogeneous
left or right ideals must be finite), and A has finite injective dimension as a bigraded
A-module. However, this can be proved in the same manner as Proposition 3.3. The
analogue of D°(Z) in that proposition is a bicomplex J°(Z) with a copy of Z at each of
the four vertices in degrees (0,0), (0,—1), (—=1,0), (—1,—1), where the differentials are
identities or 0 except the differential from degree (—1,0) to (—1, —1), which is —1. A map
B — J%(Z) of bicomplexes is completely determined by any homomorphism B_; _; — Z.

The comultiplication on A determines a tensor product of bicomplexes similar to the
tensor product of complexes. The same formula d(z ® y) = dz ® y 4+ (—1)1*lz ® dy holds
for both the vertical and horizontal differentials, with the appropriate interpretation of
|z| in each case. Theorem 5.4 tells us that the projective model structure on bicomplexes
over a commutative ring R is monoidal with respect to this tensor product.

5.4. K[G]-modules

In §9 of [14] Hovey showed that the Gorenstein projective model structure on K[G]-
modules is monoidal, where K is a principal ideal domain and G is a finite group. Theo-
rem 5.4 generalizes his results to any commutative ring K of finite global dimension. In
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fact, Theorem 5.4 says that the model structure exists on R[G]-modules for any commu-
tative ring R, but then the trivial objects are harder to understand since they are the
R[G]-modules of finite injective dimension as Z[G]-modules.

Acknowledgements. The authors thank the referee for important comments and
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