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ON CLOSED SUBSETS OF ROOT SYSTEMS 

D. Z. DOKOVIC, P. CHECK AND J.-Y. HÉE 

ABSTRACT. Let R be a root system (in the sense of Bourbaki) in a finite dimensional 
real inner product space V. A subset P C R is closed if a, f3 e P and a + (3 G R imply 
that a+/3 G P. In this paper we shall classify, up to conjugacy by the Weyl group W of 
R, all closed sets P C R such that R\Pis also closed. We also show that if6:R—>Rf 

is a bijection between two root systems such that both 6 and Q~l preserve closed sets, 
and if/? has at most one irreducible component of type A\, then 0 is an isomorphism of 
root systems. 

1. Partitions of root systems into two closed sets. Closed subsets of root systems 
play an important role in the study of subalgebras of finite dimensional semisimple Lie 
algebras and in the theory of reductive algebraic groups. The problem of decomposing 
a root system into a union of two closed subsets has been studied by Malyshev [4] in 
connection with the classification problem for complex homogeneous spaces. We would 
like to point out that the parabolic subsets of the (infinite) root systems of the affine Lie 
algebras have been classified by Futorny [3]. It would be interesting to extend our results 
to these infinite root systems. 

The intersection of closed sets is closed, and so given any P C R, there exists the 
smallest closed set containing P. This closed set is called the closure of P, and it will 
be denoted by [P]. A set P is said to be invertible if both P and R \ P are closed. This 
definition and the notation [P] are due to Malyshev [4]. We shall denote by / the set of 
all invertible subsets of R. A parabolic set is a closed set P such that P U (—P) = R. A 
horocyclic set is the complement of a parabolic set. It is easy to see that horocyclic sets 
are also closed, and so parabolic and horocyclic sets are invertible. We shall see soon 
that, in general, the converse is not valid (see Theorem 4 below). 

Let n be a base of/?, and R+ the corresponding set of positive roots. For each subset 
À C II we shall denote by R& the root system consisting of all a € R which are linear 
combinations of À. It is well known that À is a base of R&. We write R^ for the set of 
positive roots of R&, with respect to À. Note that R^ = R+ H R&. For À C II we set 
PA := R+UR&. It is well known that the P&s are representatives of W-orbits of parabolic 
subsets of R (see [1], Chapter 6, §1, Proposition 21). 

Let P C R be closed. Then Ps := P D (—P) is a root system and we say that Ps is 
the Levi component of P. We shall refer to Pu := P \ Ps as the radical of P. If P C R is 
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closed then a subset Q of P is called an ideal of P if 

aeP, fieQ, a + / ? E P = > a + /?E<2. 

The following lemma is well known (and easy to prove). 

LEMMA 1. IfP C R is closed then Pu is an ideal of P. 

The inner product of a, j5 E V will be written as (a | /?). Two linearly independent 
roots a, (3 E R are said to be strongly orthogonal iîa + f3 and a — f} are not roots. In that 
case a and (3 are orthogonal, /.e. (a | /?) = 0. 

If P E /and Q = R\Pthen defineP := PUQS. (This agrees with the corresponding 
definition in [4].) Note that Qu = -Pu. It is clear that if w E W and P E / then w(P) E / 
and 

w(P,) = w(P)s, w(Pu) = w(P)M, w(P) = MP). 

LEMMA 2. IfPeIandQ = R\P then 
(a) Ps and Qs are strongly orthogonal; 
(b) P and Q are parabolic. 

PROOF, (a) Let a E Ps and /? E 2^. Assume that a + /? E R, say a + /? E P. Now 
—a E P and so /? = (a + (}) + (—a) E P, a contradiction. Thus a+ (3 fi R. Similarly one 
shows that a — /3 fi R. 

(b) We claim that P = P U Qs, is closed. In order to prove this claim it suffices to 
show that if a E P, /? E &, and a + 8̂ E P then a + /3 E P. But since -/3 E Ô, if 
a + /? E <2 then a E ô, a contradiction. Soa + ^ G P . 

Since Qu = —PM, it is now clear that P is a parabolic set. The assertion for Q follows 
by applying the above argument to Q. m 

If P E / and Q = R \ P then it is clear that 

(P)s = PsUQs and (P)U=PU. 

We shall write Ps instead of (P)s, and Pu instead of (P)w. 
The proper parabolic (resp. non-empty horocyclic) subsets of R can be character­

ized as the intersections of R with closed (resp. open) half-spaces of V (see [5], Corol­
lary 1.1.2.11). In the next theorem we give a similar property of arbitrary invertible sets. 
In the case of reduced root systems, part (c) of this result is essentially contained in the 
paper [4] of Malyshev. If a E R then a v denotes the corresponding co-root in the dual 
space V* of V, and sa denotes the corresponding reflection of V. 

THEOREM 3. LetP e I, Q = R\P, and£ = £ a € j Pa. Then 

(a) Ps ± e-
(b) Pu = {aeR\(a\O>0}; 
(c) if Vo is the subspace spanned by Ps then R D Vo = P5. 

PROOF, (a) Let a e Ps. If /3 E Pu then sa(/3) = /? - (/?, <xv)a E R. Since P is closed 
and Pu = PM, Lemma 1 implies that sa(J3) E PM. Thus 5a(PM) = PM. As £ = £/?€/>„ /3 it 
follows that sa(£) = £, i.^. (a | 0 = 0. 
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(b) Let a E Pu. Since P is a parabolic set, we can choose a base n of R such that the 
corresponding set of positive roots, P+, contains Pu and Ur\Ps is a base of Ps (see [1], 
Chapter 6, No. 1.7). Hence P*s := R+ r\Ps is the corresponding set of positive roots of Ps 

and we have R+ = P^ U Pu. Consequently £ = 8 — 7 where 5 = £/3e/?+ /?, 7 = X €̂p+ /?• 
Let Wo be the Weyl group of Ps, considered as a subgroup of the Weyl group W of/?. We 
can choose wo E Wo such that (a | wo(7)) < 0. Then wo(£) = £ by (a) and so 

( a | O = (a |w 0 (O) 

= (a\w0(8))-(a\w0(lj) 

> (wô1 (a) 18). 

Since PM = PM is an ideal of P and a E Pw, we have WQ1(CX) E PU C R+ and so 
( w o 1 ( a ) | « ) > 0 . 

Hence we have shown that a E Pu implies that (a | £) > 0 . If a E Ps then (a | Ç) = 0 
by (a). Finally if a E Qu = -P M then (or | 0 < °-

(c) If H = {JC E V | (JC | 0 = 0}, by (a) and (b), we have Ps C V0 C H and 
HCiR = Ps. Consequently V0 H/? = P,. • 

Let ¥ be the set of all ordered pairs (À, A') where A' C À C II and A' is orthogonal 
to A \ A;. To such a pair we associate the set 

P(A,A'):=RA,U(R+\Rt). 

It is clear that P := P(A, A') belongs to / and that 

PS = RA', PU=R+\R+A, and P = PA. 

If / is the rank of R then the number of W-orbits of parabolic subsets of R is 2l. As 
mentioned earlier, the sets PA, A C IL are representatives of these orbits. In the next 
theorem we exhibit a system of representatives of W-orbits in / which contains the above 
mentioned representatives of parabolic orbits. 

THEOREM 4. The sets P(A, A') introduced above are representatives of W-orbits 
in I. 

PROOF. Let P E I and Q = R\P. Since P is parabolic, we can choose w EW such 
that w(P) = PA for some A C IL Then the sets 

A' = n n w(P)s and A" = 11(1 w(Q)s 

are strongly orthogonal by Lemma 2(a) and form a partition of A. Furthermore we have 

w(P) = P(A,A'). 

Now assume that (A, A') and (T, V) are in JP and that 

w(P(A,A / ) )=P(r , r / ) 
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for some wEW. Since P(A, A7) = PA and P(F F ) = P r , we conclude that w(PA) = P r , 
and consequently A = F and w(PA) = PA- Note that P(A, A') and P(A, F ) have the same 
radical, namely 

(i) P ( A , A ' ) M = P ( A , F ) M = P + \ P A \ 

Their respective Levi components are P(A,A')S = PA' and P(A,F)5 = Pp. Since 
w(P(A, A')5) = P(A,F)5, we have w(PA') = Rr/. As w(RA) = PA, there exists w>o in 
the Weyl group Wo of RA such that wow(R^) = R^. The set (1) is stable under w be­
cause w(P(A, A')) = P(A,F), and stable under w>o by Lemma 1 applied to PA. It fol­
lows that wow(R+) = P+, because R+ = R^ UP(A,A')W. Consequently WQW = 1, i.e. 
w = WQX G WO. Since A' _L (A \ A'), we have w(RAr) = RA> and so Rr = w(PA/) = PA'-
Hence F = A7. • 

The set P(A, A') is parabolic (resp. horocyclic) if and only if A' = A (resp. A' = 0). 
We also have P(A, A) = PA. 

2. Counting Weyl group orbits. Given any A C II we can consider the full sub-
diagram of the Dynkin diagram of II with vertex set A. By a connected component of A 
we shall mean a connected component of the above-mentioned sub-diagram. 

The number of W-orbits, N(R), in / is given by the following formula: 

(2) N(R) = ^2kNk(R) 

where Nk(R) is the number of subsets A C II having exactly k connected components. 
Indeed, given A C II with k connected components, then there are 2k choices for a subset 
A 'CA such that A' ± (A \ A'). 

An easy computation shows that 

It is clear that Nk(Bn), Nk(Cn), and Nk(BCn) are given by the same formula. For Dn we 

have the following easily established recursive formula: 

Nk(Dn) = 2Nk(Dn-X) - AWD„_2) + Nk.x{Dn-2) 

which is valid for n > 4 and k > 0. Here we use the conventions that N-\(Dn) = 0, 
£>2 = 2A\ and D3 = A3. An initial part of the table of integers Nk(Dn) is shown below: 

V 
2 
3 
4 
5 
6 
7 

0 1 2 3 4 5 
1 2 1 0 0 0 
1 6 1 0 0 0 
1 11 3 1 0 0 
1 17 11 3 0 0 
1 24 30 8 1 0 
1 32 66 24 5 0 

TABLE 1 
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By using Table 1 and formula (2) one finds that 

N(Dn) = 9,17,43,103,249,601 

for n = 2 , . . . , 7 respectively. 

The complete table of integers N^En) is given below: 

6 
7 
8 

0 1 
1 25 
1 34 
1 44 

2 
27 
60 
118 

3 
11 
30 
76 

4 5 
0 0 
3 0 
17 0 

TABLE 2 

By using Table 2 and formula (2) one finds that 

N(En) = 247,597,1441 

for n = 6,7,8 respectively. In the remaining exceptional cases we have: N(G2) = 
N(A2) = 7 and N(F4) = N(A4) = 41. 

We can determine the stabilizer in W of an invertible set P. It suffices to consider the 
case where P is one of the representatives P(A, A'). Knowing this stabilizer is important 
in calculating the cardinality of / . 

THEOREM 5. Let (A, A') e T. Then the stabilizer ofP(A, A') in W is the Weyl group 
WA of the root system RA. 

PROOF. Denote by W0 the stabilizer of P = P(A, A') in W. If a G A then A' J_ (A\ A7) 
implies that the reflection sa preserves Ps = RAt. Since sa also preserves Pu = R+ \R^, 
it follows that sa preserves P, i.e. sa G Wo. Consequently W^ C Wo. 

By Theorem 2.5.8 of [2], the elements w E W such that w(A) C R+ are left coset 
representatives of WA in W. Consequently, in order to establish the equality WA = Wo it 
suffices to show that if w G Wo and w(A) C R+ then w = 1. 

Thus assume that w G Wo and w(A) C R+. As RA = Ps, w(P) — P implies that 
w(RA) = RA. It follows that w(A) C RA D R+ = R^. Since also w(Pu) = Pu and Pu = 
R+ \ Rl we conclude that w(R+) = R+. Hence w = 1. • 

Malyshev [4] has shown that if P C R is closed, then the set P° := R \ [R \ P] is 
invertible. Thus (if P is closed) P° is the largest invertible subset of P. An interesting 
consequence is that if P and Q are closed subsets and PU Q = R then there exists an 
invertible set S C P such that R \ S C Q. Namely, one can choose S = P°. 

It appears that the proof of the lemma on p. 420 of [4] is incomplete. Namely, it is not 
clear how the inclusion Pr + [R \ P] C [R \ P] follows from Pr + (R \ P) C R \ P. One 
of us (J.-Y. H.) has filled this gap, but the proof is not short and will not be given here. 
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3. Bijections preserving closed sets. In this section we show that if 0: R —• R' is a 
bijection between root systems such that both 0 and 0 - 1 preserve closed sets, and R has 
at most one irreducible component of type A\, then 6 is an isomorphism of root systems. 
More precisely, if V and V' are the real vector spaces spanned by R and R\ respectively, 
then 0 extends to an isomorphism of vector spaces V —• V. 

It will be convenient to refer to the pairs (R, V) and (R\ V') as root systems. 
Our proof will use the following lemma. 

LEMMA 6. Let (R, V) and (R\ V) be root systems and 0:R —» R' a bijection such 
that 

(a) 0(-a) = -0(a) for all a € R; 
(b) a,/3,a + / ? e # = * 0 ( a + /?) = 0(a) + 0(/?); 
(c) a', p', a'' + /?' eR' => 0-\ccf + /?') = 0~l (a') + 0~l (/?'). 

Then 0 extends to an isomorphism V —• V of vector spaces. 

PROOF. This is a simple consequence of [1, Chapter 6, §1, Proposition 19, Corol­
lary 2]. Indeed, this corollary and the hypotheses (a) and (b) imply that 0 extends to a 
linear map (p: V —• V. Since (a) implies that 0 _ 1 ( -a ' ) = -Or1 (a!) for all a' e R\ the 
same argument is applicable to 0~l. Hence 0~l extends to a linear map <//: V' —+ V. It is 
clear that cp and (ff are inverses of each other. • 

The example R = A\ + A\ + A\, R' = A2 shows that the hypothesis (c) of Lemma 6 
cannot be omitted. 

We can now prove the main result of this section. 

THEOREM 7. Let (R, V) and (R\ V') be root systems and 0:R —> R' a bijection such 
that both 0 and 0~~l preserve closed subsets. Then 

(a)forXGR,0([X]) = [0(X)]; 
(b) a,2aeR=> 0(ka) = kO(a), k = ±1 , ±2; 
(c) ifWC V is a 2-dimensional subspace and S = ROW is an irreducible root 

system of rank 2, then there is a linear map W—+Vf which agrees with 0 on S; 
(d) ifR has at most one irreducible component of type A\, 0 extends to an isomor­

phism V —• V. 

PROOF, (a) Since 0([X\) is closed and contains 0(X), we have 

0(iX\) D [0(X)]. 

By replacing 0 with 0~l and X with 0(X), we obtain 

0-l([0(X)])D[X]y 

i.e. 
[0(X)] D 0([X\). 

(b) As [{a}] = {a, 2a}, (a) implies that [{0(a)}] = {0(a), 0(2a)}, and so 0(2a) = 
20(a). Similarly, 0(-2a) = 20(-a). Since [{a, -2a}] = {±a, ±2a} , (a) implies that 

[{0(a),20(-a)}] = {0(±a),20(±a)}. 
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Consequently 6(a) and 0(—a) are linearly dependent, and 6{—a) = —6(a) follows. 

(c) Let {a, j3} be a base of S. The root 7 := sa(j3) belongs to the set [{a, /3}] = S* of 
positive roots of S. 

We claim that 6(a) and 0(/3) are linearly independent. Assume the contrary. By apply­
ing (b) to 0_1, we infer that 26(a) and 6(a)/2 are not in R'. Consequently 6(f3) = -6(a) 
and the set {6(a), 6((3)} = {±6(a)} is closed. Now (a) implies that 6(F) = {±6(a)}, a 
contradiction. Thus our claim is proved. 

As 7 £ [{a}l (a) implies that 6(1) £ [{6(a)}]. Similarly, 0(7) £ [{0(/3)}]. As 
0(7) E [{0(a), 0(/3)}L it follows that 0(a), 0(/3) and 0(7) are pairwise linearly inde­
pendent. Let W' be the 2-dimensional sub space of V' spanned by 6(a) and 6(f3). As 
6(S+) = [{0(a), 0(/3)}] C W, the set S' := /?' H W is an irreducible root system of 
rank 2. By replacing {a,/3} with the base sa({a,/3}) = {—a, 7}, and by observing that 
/? E [{—a, 7}], we conclude that 0(—a) lies in the plane spanned by 0(/3) and 0(7), and 
so 6(-a) E S'. 

Assume that 6(a) and 0(—a) are linearly independent. By applying (b) to 0_1, we infer 
that 0(a)/2 £ S'. Hence there exists a base {a',/3'} of 5" with a' = 0(a) and 6(-a) E 
[{a7, /?'}]. By the above claim applied to 0_1, we see that a = 6~x(a') and S := 6~l((3') 
are linearly independent. By applying (a) to 0_1, we obtain —a E 0 - 1 ([{a', /?'}]) = 
[{a,(5}], a contradiction. Hence 0(a) and 0(—a) must be linearly dependent. Now (b) 
implies that 0(—a) = —6(a). Since {a,/?} is an arbitrary base of S, we have 6(—S) = 
-6(6) for all S G S. As 0(5*) C S', it follows now that 6(S) C S'. By applying this result 
to 6~\ we conclude that 8~l(S') C 5. Hence 6(S) = £'. 

Since the irreducible root systems of rank 2: A2, £2, #^2 and G2 have cardinalities 6, 
8, 12 and 12, respectively, it follows from \S\ = \S'\ and (b) that S and S' are isomorphic. 

The assertion (c) can now be easily verified by considering each of the four types of 
irreducible root systems A2, #2> BC2, G2 of rank 2. For instance, let S (and Sf) be of type 
G2. If a 6 S is a short root, there are exactly five roots f3 ^ a such that {a, /?} is closed. If 
a is a long root then there are seven such roots j3. It follows that 0 maps short roots to short 
roots. Now let {a, /3} be a base of S with a short. Then a7 = 0(a) is short and /?' = 6(j3) 
a long root and {a', /?'} is a base of S'. The short roots in S+ are a, a + /?, and 2a + j3. 
Since 2a+ /3 E [{a, a + /?}], we must have 0(a + /3) = a7 +/?'and 0(2a +/3) = 2a / + /3/. 
The long roots in S+ are /3, 3a + /3, and 3a + 2/3. Since 3a + 2/3 E [{/3,3a + /?}], we must 
have 0(3a + /3) = 3a7 + /?' and 0(3a + 2/3) = 3a / + 2/3;. As 0(-7) = -0(7) for all 7 E 5, 
6\s extends to an isomorphism W—>W'. 

(d) We need only show that the hypotheses of Lemma 6 are satisfied. We show first 
that 6(-a) = -6(a) for all a E R. This is true by (b) if 2a E R or a/2 E tf. It is also 
true if a is contained in an irreducible subsystem S C R of rank 2, by (c). This accounts 
for all roots ofR except those which lie in irreducible components of type Ai. Since there 
is at most one such component, the claim is true for all a E R. 

Next we claim that if a, /J, a + (3 E R then 0(a + (3) = 6(a) + 6(/3). This follows from 
(b) if a and j3 are linearly dependent, and from (c) if they are independent. 
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Since (b) and (c) also hold for 6~\ we also have 6~l(af + /?') = O'^a') + 0~l(f3') 
when a',/?',<*' + /?' €R'. m 
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