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1. Many investigations have been concerned with a squaro
matrix P with non-negative coefficients (elements). I t is remarkable
that many interesting properties of P are determined by the set 2 of
index pairs of positive (i.e. non-zero) coefficients of P, the actual
values of these coefficients being irrelevant. Thus, for example, the
number of characteristic roots equal in absolute value to the largest
non-negative characteristic root p depends on 2 alone, if P is irreduc-
ible. If P is reducible, then 2 determines the standard forms of P
(cf. § 3). The multiplicity of p depends on 2, and on the set S of
indices of those submatrices in the diagonal in a standard form of P~
which have p as a characteristic root. It has apparently not been
considered before whether 2 and S also determine the elementary
divisors associated with p. We shall show that, in general, the
elementary divisors do not depend on these sets alone, but that
necessary and sufficient conditions may be found in terms of 2 and 8
(a) for the elementary divisors associated with p to be simple, and
(6) that there is only one elementary divisor associated with p.

The square matrix A = [«y] is called an M-matrix r if (1) au ^ 0
for all i; (2) a}j, <ji 0 when i^j; and (3) all non-zero characteristic
roots of A have positive real part. If P — [pi5] is a square matrix
with non-negative coefficients and p is its greatest non-negative
characteristic root, then p ^ piU for all i (0. Taussky [7]). Hence
pi— P is a singular M-matrix. Conversely, if A is a singular
M-matrix and p ^ mu for all i, then pi — A is a matrix with non-
negative elements. Thus it is equivalent, and rather more convenient,
to study the elementary divisors associated with the characteristic
root 0 of a singular M-matrix.

2. We shall now explain our notation and terminology, which
differ in some respects from the usual ones. We introduce a partial
ordering on a set of conformable matrices with real coefficients by
setting A ( ^ B if a{i ^ 6tJ- for all i,j, where A = [a,3] and B = [6tf].
A second partial ordering is introduced by setting A ^ B, if either

1 The term M-determinant was used by A. Ostrowski [4], [5]. It has been proved
[6], p. 19, that our definition is equivalent to Ostroweki's.
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ao > hi, for all i, j , or A = B. Expressions such as A (> B, and A < B
then have their natural meanings. If A > 0, we call A " strictly
positive," if A (> 0 we call A " weakly positive " or just " positive."
We shall similarly call A negative if A <) 0.

The notation used by previous authors (cf. Frobenius [2], Wielandt
[8], and others) is less convenient and a little less satisfactory logically.
I t obscures the fact that we are continually dealing with two partial
orderings. While A > B has the same meaning in both notations,
these authors use A 22 B in place of A ( ^ B. Where we may write
" A (> 0," they would have to write " A ^ 0 but A. 4= 0." I t is
surely unfortunate, also, that in their notation " A^SiB" is not
equivalent to " either A > B or A = B."

We note that if A = [a] is l x l , then A > 0 is equivalent to
A (> 0, and if A is identified with a then A > 0 has its usual meaning.

Column and row vectors may be regarded as matrices, and th e

same notation will be employed there.

3. Our principal results will be enumerated in terms of the numbers
Rfj {A, P) denned below. Let A he a square matrix x and let P be the
diagonally symmetric partition [Atj], i,j = 1,. . . , k. For i,j = 1, . . . , k
we set

r y ( A , P ) = 0iti*j and Atj = 0,
and r{j (A, P) = 1 if i = j , or if A{j 4= 0.

Where no confusion can arise we shall write rtj for ry (.4, P). Next
we set

Rij {A, P) = m a x rih rhl... rnj,

the maximum being taken over all sequences (i, h, . . . . n, j). Again we
shall generally write .Ry for B{j (A, P). For future reference we note that

either Ri} = 0 or Rtj — 1;

I{u = 1 for i = 1, , k;

S RihRhj ^ Rtj ^ RuRlu l^l^k; (1)
A = 1

S r r t Rhj ^ Ru ^ max rih Rhj if i 4= j . (2)
h = 1, h ± • A ± i

1 The field of the coefficients of A is here immaterial. But in the remaining
sections we shall assume that all matrices occurring have real coefficients.
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If A is a square matrix, then there exists a permutation matrix, T,
for which A*=T~x AT can be partitioned [A*. ], i,j=l A; such that

(1) A* = 0 if i<j, (2) A* , i = l , . . . , k, is irreducible. We shall

call A* a standard form of A, and we shall say that A* is in standard
form. In general, the standard form of A is not unique. If A0 is a
standard form of A, and A0.. , i = 1,. . . , I, are the irreducible matrices

in its diagonal, then I• = 1c, and A0 ^T~x A* 2',, where a is a

permutation of (!,...,&) and Tlt . . . , Tk are permutation matrices. Thus
there exists a one-one correspondence between the irreducible sub-
matrices in the diagonal of any two standard forms such that corres-
ponding submatrices have the same characteristic roots. In particular,
all standard forms have the same number of singular irreducible sub-
matrices in the diagonal.

In view of what is to follow we shall examine the connection
between the R{i {A, P) and a standard form of A.

LEMMA 1. Let P be the partition [Ay], i, j = 1, . . . , k of the square
matrix A such that the AH in the diagonal are irreducible. Then A is in
standard form if and only if R{j = 0 whenever i <j.

Proof. We must show t h a t ' iJy = 0 whenever i < j ' is equivalent
to ' r,j = 0 whenever i <j'. Clearly ' R{j = 0 whenever i <j' implies
' r{j = 0 whenever i <j '. To prove the converse we note that if i <j,
then any sequence (i, h n, j) contains two consecutive members
I, m such that I < m. The lemma follows from the definition of R^.

T H E O R E M 1. Let P be the partition [A{j], i, j = 1,. ..,k of A, where
the A{i are irreducible, and let A be in standard form. Let 1 < a, /3< k.
There exists a pe.rmula.1ion a of ( I , . . . , k) for which A* = [Aa[i)<r(^],
i, j = 1 , . . . , k, is in standard form and a (ft) < a (a) if and only if
R^ {A, P) = 0.

Proof. Let P* bo the partition [Jff(0o.o;] of A* and put
R * = RiS {A*, P*). We have R ^ = Ri5 = i?,, (A, P), i,j= l,...,k.

Hence by Lemma 1, if A* is in standard form and a (jS) < <r(a), then
Rpa = R*a(p)<r>a) = 0 .

Conversely let i?/5a= 0. Since by (1) i ^ o > Rpi Ria it follows that
R/ii Ria = 0 f ° r * = !>••-. k. Hence we may partition (1, . . . , k) into
three sets Elt E,, E3 so that icE1 if Rfii = 1 a n d i ? i a = 0 ; ie E2 if
Rpt = i?ia = 0; and ieE3 if R^ = 0 and Ria = 1. Let a be the permu-
tation of ( 1 , . . . , k) for which a(i) <a{j) if i <j and UEK, jeE^, with
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A < fi; while a[i) < a(j) if i, jeEx and i <j, where A = 1, 2, 3. Let P*
be the partition [A.ma<Jl,i,j=l, ...,k,oiA*. Let R* = R(j (A*, P*).
Let itEx, jeEp, and suppose that a(i) < a(j). Then A ̂  fx. If A = /i,
then i < j so that by Lemma 1, B* = 2?y = 0. If, on the other
hand, X < /x, then either A = 1 or/* = 3. If A = 1, then ify,- = 1, whence
By — R/u Ri} ^ Rpj = 0, since p 2j 2. If /x = 3, then 2?3-a= 1, whence
iZy = R{iRja^Ria = 0, since X ^ 2. Wo conclude that R*aii)a(j)=Rii=0
whenever o(i)<o(j). Thus, by Lemma 1, A* is in standard form.
We need now only prove that cr(/3) <a(a). But Rpp=\, Rea = Q,
Ran = 1 imply that PeElt aeE3, and the result follows.

4. We now turn to the consideration of M-matrices. If the
matrix A is partitioned [Ay], i,j, = \,..., k, we shall assume any column
vector x to be conformably partitioned into (a*,,..., xk).

LEMMA 2. Let A — [Ay], i,j= 1 , . . . , k be an M-matrix in standard

form. Let x = (a;x xk) and lei

Xj=0 when Ria = 0 1
I (3)

xt> 0 when Ria =1 .1
for i = 1, . . . , h — 1, where h> a. If

i - i I (4)
yt= — 2 Aijx:j,t = 2 k\

i=i )

then Vn = 0 if Rha = 0 |

VH(>0 ifRha=lj- <5>

Proof. Clearly yh ( ^ 0 ; a n d yh = 0 if a n d only if AhjXj = 0 for
j = 1 , . . . , h — 1, since ^ - ^ ;jS) 0 for j = I A — 1. Hence , b y t h e
as sumpt ions a b o u t t h e Xp yh = 0 if a n d only if

r w % = O , j = \ , . . . , h - l . (G)

A - 1 i
Since rAj = 0 when A < j we have 2 rhjRia= S ^i^ia and

j = l i = l, i*A

max rAj- Rja = max rAj- i?ja. Since h * a, it can now easily be shown
j < h j ± A

from (2) that (6) holds if and only if R^ = 0. The lemma follows.

THEOREM 2. Let A = [Ay], i,j = \,...,kbea singular M-matrix in
standard form. Let S be the set of indices of singular A,;. If aeS, and
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Rpa = 0 whenever peS, /? =# a, then there exists a positive characteristic
•column vector x of A associated wilh 0 satisfying (3) for i = 1, . . . , k.

Proof. Let a; be any column vector, and let y satisfy (4). Then
Ax = 0 if and only if

Aiixi = yi (7)
for i = 1, . . . , k.

Now let X; = 0 when i < a. The singular irreducible M-matrix
Aaa has a strictly positive characteristic vector xa associated with 0,
•cf. [2], [4]. As A is in standard form, Bia = 0 when i < a, Baa = 1, and
therefore xit ..., xa satisfy (3).

Let us suppose inductively that xu..., ah_1, h > a, satisfy (3).
If ?/,, . . . , yh satisfy (4), then yh also satisfies (5) by Lemma 2. Thus
if Bha = 0 then yh = 0; and so if och = 0 then xh satisfies (7) for i = h.
If Bha,— \, then yh(>0, and by assumption Ahh is non-singular. I t
is known that the inverse of a non-singular irreducible M-matrix is
strictly positive ([2], [4]). Hence if xh = Aj^1 yh, then rA > 0, and
.xh satisfies (7). We have thus constructed a vector xh satisfying (3)
and (7), for i = h. The theorem follows by induction.

For the sake of completeness we shall prove the well-known
•Corollary 1.

COROLLARY 1. A singular M-matrix has a positive characteristic
vector associated with 0.

Proof. Let a be the largest member of S. Then Rfa = 0, when-
ever /?e<S, /? =t= a, and the corollary follows from Theorem 2.

I t is also convenient to state Corollary 2 at this point.

COROLLARY 2. Let y , , . . . , y, be the members of S. If B^ = 0
whenever a, fieS, a 4= /?, then A has s linearly independent characteristic
column vectors x1, ..., xe associate! with 0, where x* satisfies (3) with
a = yy

froof. Theorem 2 shows the existence of the characteristic
vectors x', j = 1, . . . , s, satisfying (3) with a = y$. Suppose that

8 8

£ \xh = 0. Then, for t = 1, . . . , k, we have S XAa;
A = 0. Let a.=yi.

A = 1 ft=1 *

Since B^ = 0 when j3 = yh, h * j , it follows that x\ = 0 if 7t4=j.

Hence A_,r̂ " = 0; and x> =t= 0 now implies Xj = 0. The linear independ-

ence of x1,..., xs follows.
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5. If x = (xlt.., xk) we shall call x{ the tth vector component
of x.

LEMMA 3. Let A = [Ay], i, j = 1,. . . , k, be a singular M-matrix
in standard form. Let yXt..., ys, where jj _ x < yj, be the members of the
set S of indices of singular Au. If there exist m linearly independent
characteristic vectors of A associated with 0, then for each integer n,n ^ m,
there are at least n of these vectors such that the ith vector component is
non-zero for some i :S yn +, _ m.

Proof. If yn +, _ m = k there is nothing to prove. So let
Yn + e-m<k and suppose that a;1,..., xm are linearly independent
characteristic vectors associated with 0, such that x\ — 0, for t = 1, . . . ,

y^ + 8_mandj = n,...,m. If /x =yn + 3 _m + 1 , the vectors (a^ , . . . , a ^ ) ,
j = n,...,m, form n — m + 1 linearly independent characteristic
vectors associated with 0 of the matrix JS = [.4,-j], i, j = JU., . . . , k.
But the multiplicity of 0 in B equals the number of singular Ai{ in B,
and so equals m — n. This yields a contradiction, and the lemma
follows.

LEMMA 4. Let A = [4 y ] , i, j = 1,..., k, be a singular M-matrix
in standard form. Let y,, . . . , y8< where y^, _ x < yjt be the members of S.
If A has s linearly independent characteristic column vectors associated
with 0, then there exists a set x1 x' of such vectors for which

xi = 0 ifi< Yj j
{ (8)

but X\ * 0 ifi = yj)
for j= 1 s.

Proof. Let z1,..., z" be linearly independent characteristic vectors
associated with 0. If z>. = 0 if i < 8j but zj 4= 0 if i = 8jt then Au z\ = 0

for i = Sj. Hence Ŝ e/S. Thus z\ = 0 if i < ylt for j = 1, . ,.,s. I t

also follows from Lemma 3, with m = s, n = 1, that for some j we have
z> =t= 0, if i = y1. We may therefore assume inductively that we

have linearly independent characteristic vectors z1 xn, z" + 1, . . . , z',
associated with 0, such that (a) (8) holds for j = 1, . . . , n and
(6) z{ = 0 if i <yn, for j = n + 1, . . . , 5. Let a = yn. Then
•<4a<i a£ = A^zl = 0, j = n + 1, . . . , s. Since an irreducible singular
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M-matrix has only one linearly independent characteristic column
vector associated with 0, it follows that zj = X.a£ , j = n + 1, ..., 8.

Letxj = zj — Xj xn,j = n + 1, . . . , « . The vectors x1, ..., x'are linearly
independent characteristic vectors associated with 0, and, for
j = n'+ 1, ..., s, x*=0 if i ^ yn. Hence by the remark at the

beginning of the proof, x\ = 0 if i<yn+i, for j = n + l, . . . , s. I t
follows from Lemma 3 that there is a j § n + 1 such that x\ * 0,
if » = yn + 1. Suppose this j = n+l. Then (a) (8) holds for
j=l, . .., n+\, and (b) x\ = 0 if i < yB + 1, for j = n + 2, . . . , s. The

lemma follows by induction.
G. The following lemma is of some interest in itself. I t is related

to a theorem of Collatz [1], and other results on positive irreducible
matrices.

4

LEMMA 5. Let A be an irreducible singular M-matrix and let
Ax ( ^ 0 or 0) ^ Ax. Then Ax = 0.

Proof. Let Ax ( ^ 0 or Ax ^ ) 0, and let u' be the strictly positive
characteristic row vector of A, associated with 0. If either z(>0-
or z <) 0, then either u'z > 0 or u'z < 0. Hence Ax = 0.

We now come to one of our main theorems.

THEOREM 3. Let A = [A,-j], i, j = 1, . . . , k, be a singular M-matrix
in standard form. Let S be the set of indices of singular AH. The-
elementary divisors associated with the characteristic root 0 are all linear
if and only if B^ = 0 whenever a, |S eS and a 4= /8.

Proof. Let S have the s members yt, . . . , ye where Yj-i<yj-
The elementary divisors associated with 0 are all linear if and only
if that characteristic root has s linearly independent characteristic
vectors associated with it.

If Rfr = 0 whenever a, /? eS and a 4= /? then by Corollary 2 to
Theorem 2, 0 has s linearly independent characteristic vectors
associated with it. Suppose, conversely, that 0 has the s linearly
independent characteristic vectors xl, ..., x' associated with it.
By Lemma 3, we may assume that zl, ...,x" satisfy (S). Let us
assume that for some a, /J eS, 0 4= jS, we have E^= 1. We shall
obtain a contradiction. We may choose a, /? so that -B3a = ] , /3>a
and j9 — a ^ /S' - a' for all a', P'eS, a 4= fi, for which Rev = 1 . If
a < y £S 8 <i jS and y, 8tS then JRiy = 0 unless y — a and 8 = £. Let

https://doi.org/10.1017/S0013091500021507 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500021507


THE ELEMENTARY DIVISORS, ASSOCIATED WITH 0, OF A SINGULAR 115

M-MATR1X

B be the matrix [Ay], i,j = a >3 — 1. Let 8,, S2, . . . , 8r be the
indices of the singular A(i of B in ascending order of magnitude.
Thus 8X = a = yjt say. We deduce from Corollary 2 to Theorem 2
that B has r linearly independent characteristic vectors (2* , . . . , z* ),
h = 1, . . . . r, associated with 0, where 2* satisfies (3) (provided we

replace a by SA there), for i = a, . . . , j8 — 1. Since the multiplicity
«)f 0 in B is r, an}r characteristic vector of B associated with 0
is a linear combination of these. Since a = yp (*•?,..., a* ) is a

r

characteristic vector of B associated with 0. Hence x> = 2 \zh

for i = a, ..., ft — 1. Further, Ai 4= 0 since x}
a 4= 0 but 2* = 0 if A = 2,

r 0 - 1
. . . , r. It follows that Ap?x^ = 2 AAt/* where #* = — £ -d^* ,

A = 1, ..., r. On putting 2* = 0 when i'•— 1, . . . , a — 1, we obtain

from Lemma 2 that «/A (> 0 if Bfiy = 1, but yh = 0 if 2?^ = 0, where

r=SA. Hence^(>0 , but ^ =0,for/t = 2 r. T h u s J ^ ^ = A , ^ ,

and so either A^x^ (> 0 or 0 (> A^x} . But this is not possible, by
Lemma 5. It follows that B^ = 0 whenever a, jS tS and a*)3 . The
theorem is proved.

In view of Theorem 1 we obtain immediately

COROLLARY 1. The elementary divisors associated with 0 are all
linear if and only if for each aeS there exists a permutation 0 of (1, . . . , it)
such that [Aaftaffi], i, j = 1 k, is in standard form, and o(jS) <j a(a)
for any fieS.

The square matrix A = [atj] is called Minkowskian if (1) o,', ̂  0
for all i, (2) ay <S 0, when i 4= j , and (3) 2 a^ I> 0 for all i, A

Minkowskian matrix is an M-matrix: cf. [4], [6].

COBOLLARY 2. Let A be a singular Minkowskian matrix. The
•elementary divisors associated with 0 are all linear.

Proof. We may assume that A = [Ay], i, j = 1, . . . , k, is in
standard form. Let S be as above. If C = [c,;] is an irreducible
Minkowskian matrix, then C is singular if and only if Zc,j- = 0 for

all i, [4]- Hence if aeS, then Anj = 0, provided that j #= a. It follows
that Raj = 0, if j 4= a. The corollary now follows from Theorem 2.
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In the case when T,ati = 0 for all i, this result has already been

proved by Ledermann [3].

7. Results similar to those we have found for characteristic
column vectors may be stated for characteristic row vectors. Let
A = [Aij], i,j= 1, . . . , k, be in standard form. The transposed matrix
A'=[A'ij'], i, j,= 1, . . . , k (where A'ii= {A^)') is not necessarily in
standard form. However, if a is the permutation for which
<j{i) =k + 1 — i, * = 1, . . . . k, then B = [A'a{i)aU)], i, j = 1, . . . . k, is
in standard form. Let P, P', and Q be the partition described
above of A, A' and B respectively. Then R^:)ai) (B, Q) =
Kji (A', P') = Ry (A, P). To any characteristic row vector (u\, . ..,u'k)
of A, associated with 0, there corresponds the characteristic column
vector (ua^ u^^) of B associated with 0. We may deduce Theorem la
and Corollary 2a, from Theorem 2 and Corollary 2.

THEOREM 2%. Let A = [ALj], i, j = 1, . . . , k, be a singular M-matrix
in standard form. Let S be the set of indices of singular Au. If aeS and
Rap = 0 whenever fieS and fi =t= a, then there exists a positive character-
istic row vector u' -— (w/, . . . , u'k) associated with 0, satisfying

Ui = 0 when i?ai = 0}

U; > 0 when i?ai = 1)
for i = 1 k.

COROLLARY 2a. Let y1 y, be the members of S. If Bap — 0
whenever a, fieS and a 4= j8 then A has s linearly independent characler-
istic row vectors u'1, . . . , u'* associated with 0, where u> satisfies (9)
with a = yj.

THEOREM 4. Let A be a singular M-matrix. If the elementary
divisors associated with the characteristic root 0 are all linear, then the
principal idempotent element associated with 0 is positive.

Proof. Let G be a matrix whose characteristic root co, of multi-
plicity s, has only linear elementary divisors associated with it. There
exist linearly independent characteristic column vectors x1, . . . , a;*and
linearly independent characteristic row vectors it'1, . . . , u* associated
with co, such that u'hx> = SAj-, h,j = 1, . . . , s, the Kronecker delta. The-

<
principal idempotent element associated with co is the matrix S xhu'h.

A - 1
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Let P* be the partition A* = [A* ], i, j = 1, . . . , k, of a standard

form of the singular M-matrix A with only linear elemental divisors
associated with 0, and let S= (y, y,) be the set of indices of
6ingular A*. . By Theorem 3, R* = Rpa {A*, P*) = 0, when
a, fieS, a =*= /3. Hence by Corollary 2 to Theorem 2 there exist linearly
independent characteristic column vectors xx, ..., x* associated with 0
such that x> satisfies (3) with a = y;-. Similarly, by Corollary 2a to
Theorem 2a there exist linearly independent characteristic row vectors
u'1, . . . , u'', associated with 0, such that u'i satisfies (9) with o = y,.

k

Let a = yi and ]8 = yh. Since u'hx> = 2 u'h. x\ and u'h. xf = 0 if and

only if R*. i?* = 0 it follows that u^z^O, and that u^z* = 0 if
and onlj' if 2 11* R* =0. But wo may deduce from (1) that
k

2 R* R*a = 0 if and only if R* = 0. Hence w'V = 0 if h =t= j , but

u'>x> > 0, for h,j=l, ..., s. We may clearly assume that u'1, ..., u'>
have been multipled by positive factors so that u^x' = 8Aj-. Then

the idempotent element of A* associated with 0 is E* = 2 x'u'K

Thus i?*(^0 . If E is partitioned conformably with A, then

En = S xh u'h. , i = 1, . . . . k. Since u'> > 0, and a-' > 0, but wh = 0,
. * i t a a a

and xh = 0, when h =t= j , it follows that E*aa=xn uh >0. Hence E* (> 0.
a a a

The principal idempotent element E oi A associated with 0 is
obtained from that of A* by means of a transformation by a per-
mutation matrix. Hence E, too, is positive.

8. Wo have already remarked that tho elementary divisors of a
matrix A, associated with the characteristic root 0 of multiplicity s,
are all linear if and only if there arc 5 linearly independent character-
istic vectors associated with 0. In the next two sections we shall
discuss the other extreme case when there is only one elementary
divisor associated with the characteristic root 0 of a singular M-matrix.
Equivalent conditions are (a) that 0 has only one linearly independent
characteristic vector associated with it; or (b) that there exists a set
x1, ..., x' of column vectors such that

Ax1 = xj + 1, j = 1 , ..., s — 1; Ax' = 0, and x* =t= 0, (10)

where s is again the multiplicity of 0.
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LEMMA C. Let A = \Afj\, i, j = 1, . . . , k, be a singular M-matrix in
standard form. Let S = (y, yt), where yj _ l < Yj, be the set of indices
of singular Au. If xl, ..., x' is a set of column vectors satisfying (10),
then x\ j = 1, . . . , s, satisfies (8).

Proof. FOTJ = 1, . . . , s, let x\ = 0 if i < Sjt but z*. * 0 if t = 8j.

Since Ax' — 0, it follows, as in the proof of Lemma 4, that S,e/S.
Let us assume inductively that (a) ?j££ for j = h s; and that (6)
$j-i<^j for j = h+l, .,.., s. These assumptions hold for h = s.
If y\ satisfies (4), when xt = x*. , then Axj = x* +1 if and only if

Aiix{=y\+xi. + \ (11)

for i = 1 k. Let /3 = SA. Then yh = 0; and we may deduco

from (6) that:r* + i = o. Hence (11) holds for i = J3 and j = A

if and only if A^xh = 0. Hence either xh > 0 or a;* < 0. But

Afssp.h~x = ?/ft - a + xh . It follows by Lemma 5 that (a) and (b) imply

that yh-x*0. Thus SA _ t < ^ = hh. We deduce that if a = 8A_X then

a;A = 2/ft-i = 0_ Hence by (11) ̂ o aa*-1 = 0, and so hh_^S. By

induction we obtain that 8^-5, j = 1 s, and that Sj_ i<8j, j = 2, . . . ,« .
Hence 8̂  = yj, ji = 1, . . . , s and the lemma is proved.

9. LEMMA 7. ie< 4̂ be an irreducible M-matrix. Let z and y, where
y (> 0, be. column vectors conformable with A. Then there exist a rial A
and a column vector x such that Ax = Ay + z.

Proof. If A is non-singular, then there exists such an x for any A.
Suppose A singular. Since 0 is a simple characteristic root of A,
the nullity of A is 1. By Lemma 5, y is linearly independent of the
columns of A. Hence any column vector is a linear combination of
the columns of A and y. The lemma follows.

THEOREM 5. Let A = [Ai^\,i,j = ^,..., k, be a singular M-matrix in
standard form. Let S be the set of indices of singular Ai{. There is only
one elementary divisor associated with (he characteristic root 0 of A if and
only if Rpa = 1, whenever a, fieS and jS > a.

Proof. Suppose that there is only one elementarj- divisor associated
with 0. Let xl a;' be a set of column vectors satisfying (10). By
Lemma 6, xj satisfies (8), j = 1, . . . , s. Let a = yh-\, P = yi>- The
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conditions («) and (b) of the proof of Lemma 6 are clearly satisfied, and

s o y j - 1 - - £ ^«**- i = _ S ii«x»4-i + o. But (x*-1, . . . , x J : J )

is the one linearly independent characteristic column vector associated
with 0 of B=[Aij],i,j=a, . . . , j3— 1, since xh. = 0, f o r i = a , . . . . /S—1.
It therefore follows iromTheorem 2 that zA , i = a, . . . , jS— 1, satisfies (3),
provided that x1, ...,x' have been multiplied by — 1 if necessary.
Therefore xh. , i = 1 j8 — 1, satisfy (3). Hence, by Lemma 2, it

follows from y11'1* 0 that ifya = 1, when a = yh- i, ]8 = yA. This is
a particular case of the required result. To deduce the general case,
let a = Yj, fi= Yh, where h >j. Then RBa 3* i?V f t _ i ... Ry. + ^ = 1.

Hence Bfia = 1, whenever a, /Se<S' and j8 > a.
Conversely, let us suppose that Rpa = 1 whenever a, jSeS and

/? > a. By Theorem 2, Corollary ], there exists a characteristic column
vector x', associated with 0, which satisfies (8). Let us suppose that
there exist column vectors x' satisfying (8), j = h, . . . , s, such that

Ax'= xi+\j = h,...,s-l, Ax* = 0, xs =1= 0. (12)
We shall construct a vector xh~1 satisfying (8) and Ax11'1 = xh.

Let a = y A _ i , j8 = yh. Let xh ' x = 0, i = 1, . . . , a — 1, and let

(xh -1, ..., xh~ J) bo the one linearly independent characteristic vector,

associated with 0, of JB = [^4y], i, j = a, . . . , /3 — 1. Then x* ~ x, i = 1,

...,fi— 1, satisfies (3) provided that the xh. ~x have all been multiplied

by — 1, if necessary. If, for i = l , . . . , j3, w*"1 is chosen to satisfy (4)

with x replaced there by a:*"1, then it follows by Lemma 2 that

« f t - 1 ( > 0 . Hence by Lemma 7, there exist a A and an xh~1 such

that ABBxh -1 = Xyk-1+ xh . We now write xh ' x for AaA ~ x, i = 1, . . . ,

f}—\, Xyh~l for y*"1, i = l, . . . , j3, and leave xh~x unchanged. Since

xh = 0, when i < jS, ar* - 1 , i = 1 jS satisfies (11) with j = h — 1.
Let us assume inductively that xh. ~ 1, i = 1. . . . , I — 1. satisfies (11),

whereZ>j3. We must consider two cases: l/;S and US. If ijS, then (11)
is satisfied whence*"1 = ^ J J (ij*~1+ ** ). If ieiS, say Z=yA+m (where
clearly m > 0) then there exist, by Lemma 7, a A and a n ^ " 1 for which
Aux

h
i~

l= yh
l~

x+ a* + \xh
[+

m, since either x^ + m > 0 or a:* + m < 0 .
We now replace z''by a;3 + %xi + m,j = h, ..., s, where, by convention,
x' + m= 0 if j + m>s. Then a;A, . . . , x' again satisfy (12) and since
the original xh.+m = 0 when * < Z, it follows that a** " 1
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satisfy (11) with j=h—l. By induction we obtain a vector
a:*-1 = (se*-1, . . . . a;*"1) satisfying (11) with j = h — 1. Thus in

addition to (12) we have Ax*1'1 =xh, where a;*"1 satisfies (8). Using
induction again we obtain a set of vectors satisf3'ing (10) and tho
theorem is proved.

In virtue of Theorem 1 we obtain the following corollary.
COROLLARY. Let y be the largest member of S. There is only one

elementary divisor associated with the characteristic root 0 of A if and
only if for avy permutation a of (1, . . . , k) forwhich[A^i)<r^,i,j=\, . ..,k,
is in standard form, we have a(y) ^a(a) whenever aeS.

An argument along the lines of the second half of the proof of
Theorem 5 would lead to the following result, which we shall enunciate
as a theorem, though we shall omit the proof. First we should have
to generalise Lemma 2.

THEOREM G. Let A = \_Afj\, i, j = 1, . . . , k, be a singular M-matrix
in standard form. Let S = (yt, ..., ys), y$ _ i < y$, be the set of indices
•of singular A^. If there is only one elemenlary divisor associated with 0
then there exist positive column vectors z1, . . . , z' such lhatx1, . . . , x* satisfy
(10) if x> = ( — l)i z', j = 1, . . . , s. In fact

zh = 0 when £ Riy = 0,

s

and zh > 0 when S Siy > 0.
1 i=h j

Tho standard forms of A depend only on the set 2 of index
pairs of non-zero coefficients of A. I t is clearly decided by 2 and 8
whether (a) Bpa = 0, whenever a, fltS, and a =t= /J; or (b) It^= 1,
whenever a, fieS and /J > a. Let P be a positive matrix, with
largest characteristic root p. The degrees of the elementary divisors
of P associated with p are tho same as those of the elementary
divisors, associated with 0, of the M-matrix pi — P. Hence Theorems
3 and 5 fulfil the claims of § 1.

10. Let A = [Aij], i, j= 1, . . . , k, be a singular M-matrix in
standard form. Let S = (y, y,), yj_l< y,-, be as usual, the set
of indices of singular Au. If * = ], then there is clearly only one
elementary divisor, associated with 0, and it is linear. If ,s = 2,
then there are two elementary divisors of degree 1, or one of degree 2,
associated with 0, according as Rpa = 0 or i?^ = 1, where a = y,, and
y3 = y4. Suppose that 5 = 3 and let yx = a, y2 = /2 and y3 = y. Since
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Rafl = Ray = Rfiy = 0, and since Ryfl = R^ = 1 implies that R,a = 1, we
ma3r consider seven cases according as Ryfi, Rya, Rfia are 1 or 0. The
cases RyP = R^ = R^ = 0, and Ry0 = Ry^ = 7?^ = 1, are covered by
Theorems 3 and 5. We deduce that in the five other cases 0 must
have associated with it one elementary divisor of degree 1 and one of
degree 2. This means that A has two linearly independent column
vectors z1, z- associated with 0, and that there exists a vector x
satisfying either Ax = z1 or Ax = z2. By considering each of the
five cases separately it is possible to demonstrate the existence of
these vectors without any appeal to Theorems 3 and 5.

As an example we shall consider the case RyP = Rya = 1, Rpa = 0.
Though we shall use the theorems proved previously it would be
possible to use special cases of these results which could be proved
more simply. I t follows from Theorem 5, applied to [Ati], i,j=P, . ..,k,
that A has a characteristic vector x3, associated with 0, for which
x* = 0 when i<y, and that there exists an x2 satisfying Ax2 = x3.

Let (:} , . .., zj ),j= 1» 2, be the two linearly independent charac-
teristic column vectors, associated with 0, of [Ay], i, j = 1, . . . , y — 1.
The existence of these vectors is shown by Theorem 3. By Theorem 1,
Corollary 2, we may assume that z\ = 0 if Riy.= 0 and zj > 0 if R( = 1,

fo r j= l ,2 . Hence, by Lemma 2, w (>0,j= 1,2, where w' =— S Ayhzj .
y y A = l h

By Lemma 7, there exist a A and an xx satisfying

Ayyx
x = wx +\w"-. (13)

L e t x) = z1 + Xz2 , i = 1, ..., y — 1 . T h e n (x1 ,..., x l ) is n o n -
i l l ' I y

zero and, for i= 1, . . . , y, x1 satisfies (7) p rov ided^ is chosen to
satisfy (4). Since Ai( is non-singular if i > y, it is easy to establish the
existence of a vector xl = (xl ,. ..,x\) where xl. satisfies (7) for i=l, . ..,1c.
Thu3 xl and x3 are characteristic column vectors associated with 0,
which are linearly independent as a;1 = z1 + Xz2 = z1 > 0, while x3 = 0 :

a a ta a a

and Ax- = x3.
It follows from Lemma 5 that A<0 in (13). Hcncea;1 =zx +Az2 =

Az-j < 0, but a;* > 0, as already noted. Hence xl is neither positive
nor negative. I t is easily established that this property is shared by
one of any two linearly independent characteristic vectors, associated
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with 0, of the matrix A we have been considering. I t is duo to this
that S and S do not necessarily completely determine the elementary
divisors associated with 0 of a singular M-matrix when s > 3. Thus,
in both B and C below, k = 4, S = (1, 2, 3, 4), s = 4 and j?43 = R21 = 0,

1 - 1

1 - 1

c =

- 1 —1

. — 1

But B is of rank 1, G of rank 2. Hence the elementary divisors
associated with 0 differ for the two matrices. We also note that the
principal idempotent element, associated with 0, of both B and G
is the unit matrix, which is, of course, positive. I t follows that the
converse of Theorem 4 does not hold.

Most of the results of this paper are contained in my 1952 Ph.D.
thesis, which was written under the supervision of Professor
A. C. Aitken. My thanks are due to Professor Aitken for his great
encouragement.
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