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INJECTIVITY AND INJECTIVE HULLS
OF ABELIAN GROUPS IN A LOCALIC TOPOS

KIRAN R. BHUTANI
We prove the analogue of the Baer Criterion for injectivity in the category AbShC of
abelian groups in a topos of sheaves on a locale, that is, we show A is injective in AbShC
if and only if it is injective relative to all S >-> Zc where Zc is the group of integers
in ShC. for a well-ordered locale we describe the injective hulls in AbShC in terms
of injective hulls in Ab. Further we show that the global functor A —t AE preserves
injective hulls if and only if £ is a finite boolean locale. Finally we characterise injectives
in AbShC for some special locales.

INTRODUCTION

This paper is devoted to the study of injectivity and injective hulls in the category
AbShC of abelian groups in a topos of sheaves on a local £ . We first prove the
analogue of the Baer criterion for injectivity in AbShC (Proposition 1.1) and show
that injectivity is a local property (1.4). This is followed by a discussion on injective
hulls, which we show is a local property (Proposition 2.1) but not a global one. For a
well-ordered locale we describe the injective hulls in AbShC in terms of injective hulls
in Ab (Proposition 2.3). Further, in Proposition 2.7 we show that the global functor
preserves injective hulls if and only if £ is a finite boolean locale, that is, the topologies
of finite discrete spaces.

Finally, we characterise in Propositions 3.1 and 3.3, the injectives in AbShC for
the following locales:

1) £ with descending chain condition
2) £ inversly well ordered

As a consequence we show that the direct sum of injectives in AbShC is always injective
for £ inversely well ordered (Corollary 3.4). This does not hold for an arbitary £ and
a counter example is provided (3.5).

In Section 0 we describe briefly the background material required here, where as
in Section 1 we derive general results on injectivity. In Section 2 we discuss injective
hulls and finally we characterise injectives for some special locales in Section 3. The
nth result in the mth Section will be numbered as m.n.
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44 K.R. Bhutani [2]

0. BACKGROUND

DEFINITION 0.1: Recall that a locale denote by £ is a complete lattice
satisfying the following;

UA\/Ui = \/(UAUi)

for all U and any family {Ui}i^i in £ . We shall denote the bottom (=zero) of £ by
0 and the top (=unit) of £ by E. A morphism of locales h: £ —> M. is a map which
preserves arbitary joins and finite meets (hence preserves the zero and the unit). The
obvious example of a locale is the topology OX (that is, the lattice of open sets) of any
topological space X with joins as unions and meets as intersections. Other examples
of locales are a complete chain, complete boolean algebra or a finite distributive lattice.

By the definition of continuity of maps between topological spaces, we get a con-
travariant functor O: TOP —> LOC where TOP is the category of topological spaces
and continuous maps, and LOC is the category of locales and their morphisms. The
functor O has an adjoint on the right, the contravariant functor E: LOC —» TOP
where S £ is the space of completely prime filters F on £ , that is, F is a filter on £
such that \/i€IUi £ F for any family {t^t}ie/ in £ implies Uk 6 F for some k £ I,
and the sets £[/ = {F\U £ F,F £ S £ } , U £ C, form the open sets in this space.
For any locale lattice homomorphism h: £ —*• M the corresponding continuous map
T,h: HM - • £ £ sends F -> h~1(F). The space E£ is called the spectrum of £ .

DEFINITION 0.2: A locale C is called spatial if and only if the function C —• C?(2£)
is an isomorphism. Since Oc is always onto, a locale is spatial if and only if the
completely prime filters separate points in C . For more details refer to [4]. Note that
any finite locale is spatial since in any distributive lattice the prime filters separate the
elements (Balbes and Dwinger [1]), and for finite C the prime filters are completely
prime. Also any totally ordered locale is spatial since the U ^ V, V £ C form a
completely prime filter on C for any U £ C.

Finally any C with descending chain condition is spatial: If U ^ V in C and
W £ C is minimal such that U < W s$ V then F = {S\S £ C, U V 5 ^ W} is a
completely prime filter on C for which U £ F but V £ F.

DEFINITION 0.3: A locale C is boolean if and only if every element in C has a
complement. This is equivalent to saying that C has no dense elements other than E.
That is, there is no W ^ E such that U AW = 0 implies U = 0. Note that a boolean
locale is spatial if and only if C is atomic, [1], the non-trivial implication follows since
any completely prime filter in a boolean locale is a principal filter given by an atom.

DEFINITION 0.4: By AbShC and AbPShC we mean the categories of Sheaves
and Presheaves on £ with values in the category Ab of Abelian groups. These are
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[3] Injective hulls of abelian groups 45

Grothendieck categories with generator and hence have enough injective hulls [12].
AbShC forms a full subcategory of AbPShC and the inclusion AbShC —> AbPShC
has an exact left adjoint the sheaf reflection functor AbPShC —> AbShC. If A is the
sheaf reflection of a given presheaf B, then we shall write AU = BU, U £ C. If
C — O(X) for some topological space X , then we shall write AbShX for AbShO(X).
Also for any map h: A —» B in AbShC (and hence also in AbPShC) h\j\ AU —> BU
will be the component of h at U £ C. For any a S .At/ and VK ^ U, the map
Af/ _> AW will be denoted a —> a\W.

REMARK 0.5: AbSh2 = Ab for the two element locale 2 , and if X is a discrete
topological space then AbShX ~ Ab^x\.

DEFINITION 0.6: Any local lattice homomorphism <j>: C —> M. produces a pair

of adjoint functors AbShM. AbShC where (<j>9A)U = A(<f>(U)), and for any

< * • •

V e M{<f>*C)V = -^-> 0 ( M O > v CW(W G C). Then <f>* is left exact left adjoint to <j>t

and from well-known results it follows that </>» preserves injectives.

DEFINITION 0.7: Special cases of local lattice homomorphisms.

1) If 4>: 2 —» C is the unique local lattice homomorphism, then it gives AbShC —>

AbSh2 S A6, where (4>.A) = AE and (4>*B)U = B.

Notation <j>*B - Bc, <j>*=T.

2) Any local lattice homomorphism <f>: C —» 2 produces A6 —» AbShC where

\ 0 if 4>{U) = 0

and 4>*A = <̂ At/ (All U such that ^(£A) = 1) .

3) If C — O{X) for some topological space X, and x £ X is any point, then

for the local lattice homomorphism x: C —> 2 given by x(f/) = card(£f n {a;}), we get

(x)*A = - ^ AU(x €U) = AX , the stalk of A at x .

4) For any U e C, <f>: C -^[ U given by <£(W) = W A U is a local lattice

homomorphism, so we get AbSh j , U AbShC, where (<f>tA)V = A(V A U) and

(<j>*B)W =-^-*^v)>w BV = BW, and so <f>*B is just the restriction of B to J. U.

Notation : <j>*B = B\U = RuB.

Also <t>* has a left adjoint denoted by E\j, where

[ AV if V ^ U
(EVA)V = I

1 0 XV 4 U.

https://doi.org/10.1017/S0004972700004135 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004135


46 K.R. Bhutani [4]

Then Eu is left exact left adjoint to Ru • Since Ru is both a right adjoint as well as
a left adjoint, it preserves all limits and colimits.

5) If / : X —• Y is a continuous map of topological spaces, then it produces a
local lattice homomorphism (also denoted by / ) / : OY -> OX , V -> / " ^ V ) , and so
correspondingly it gives AbShX —> AbShY. In particular for any topological space X ,
let |X| be X with discrete topology. Then the identity map i: \X\ —> X is continuous,
hence it produces AbW S AbSh\X\ -> AbShX.

DEFINITION 0.8: A £ AbShC is said to be a divisible group if for any a £ AU,
and any O ̂  n £ N there exists a cover U = V»gj «̂ m ^> s u ch that for all i £ I,
a | Ui = nbi with 6; £ ylE/i.

DEFINITION 0.9: For any A £ AbShC the subgroup C of A generated by an
element a £ AU , U E £, that is, the smallest subgroup C C A such that a £ C'U, is
given by

( Z(a\W) HWCUcw = { '
[0 if W<£U.

DEFINITION 0.10: B D A is an essential extension in AbShC if and only if for
any 0 ̂  6 £ BU, there exists V ̂  U in £ and me Z such that 0 ̂  mb \ V € 4 ^ .
To see this, one first notices that B D A is essential if and only if C fl ̂ 4 ̂  0 for any
non zero subgroup C C B (since a homomorphism in AbShC is monic if and only if
its kernel is 0), and then observe that it is sufficient to consider subgroups generated
by a single non-zero b £ BJJ for any U 6 C.

PROPOSITION 0.11. For any U E C, the functors Ru: AbShC -» AbSh J. V, and

Eu • AbSh i U —> AbShC preserve essential extensions.

PROOF: Consider any essential extension B I) A in AbShC. Since Ru preserves
all limits (0.7(4)), it follows that B | U D A | U. We claim this is an essential extension
in AbSh i U. Let 0 ^ b £ BW = {B | tf)(W) for some W el U. Since 5 is
an essential extension of A in AbShC, there exists a V ^ W, TO £ Z such that
0 ^ TO6 I V £ AV - (A | ?7)(V). Hence B \ U D 4 | (7 is an essential extension
in AbSh j {/. To prove that Eu preserves essential extensions, consider an essential
extension P DQ in AbSh [ U. Since Eu preserves monomorphisms (0.7(4)) it follows
that EVP D EVQ. Let 0 ̂  a £ (EVP)W, then by the definition of Ev, there exists
a cover W = V i e / W{, such that 0 ̂  a | W{ £ PWi for some Wi C U. But P D Q is
an essential extension in AbSh J. J7 so there exists V ^. Wi and an m £ Z such that
0 ^ m(a | W î) | V = ma \ V £ QV. Hence EVP 2 EVQ is an essential extension in
AbShC. |

COROLLARY 0.12. For any U £ C, Ru preserves injectives and injective hulls.
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PROOF: Since Ru has a left adjoint Eu which preserves monomorphisms (0.8(4)),
it follows that Ry preserves injectives. By the above proposition if follows Ru preserves
injective hulls. I

COROLLARY 0.13. For an injective group A G AbShC, AU is an injective group

in Ab for all U G C.

PROOF: Clear from 0.12 and 0.7(1). |

REMARK 0.14: The composition EvRu is denoted by Tv: AbShC -» AbShC,
where

' AW if W C U
(TuA)W

• ( 0 if W 1 U.

Since both Eu and Ru preserve essential extensions, it follows that Tu preserves
essential extensions. Note, though, that Tu does not preserve injectives, as one can see
by considering C = 3.

REMARK 0.15: It is easily checked that AbShC has the TVZC , U € C, as gener-
ating set where Zc is the group of integers in ShC, that is, the sheaf reflection of the
constant presheaf Z.

1. GENERAL RESULTS

T H E BAER CRITERION FOR INJECTIVITY

PROPOSITION 1.1. A £ AbShC is injective if and only if it is injective relative to

all S >-> Zc-

PROOF: (=>) is trivial.
(<=) Let A be injective relative to all 5 i—> Zc • Consider the diagram

where we may assume that B C C, and / : B >—> C is the natural embedding. Consider
the family A = {(B',g')} where B C B' C C and g': B' -> A such that g' \ B = g.

Then this family is non-empty since (B,g) £ A.. As usual, we introduce a partial
ordering on this family by (B',g') ^ {B",g") if and only if B' C B" and g" | B' = g'.

If {(Bi,gi)}i£j is a linearly ordered family in A, then it has an upper bound in A

given by (D,h), where D is the join of 5 ; in the subgroup lattice of C. That is, D

is the sheaf reflection of the presheaf U —> \Ji€IBiU and h is the corresponding sheaf
reflection of the morphism to which the giv extend. By Zorn's lemma, the family A
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has a maximal element (P,p). We claim P = C. If not, then there is a U £ C and
c £ CU such that c £ PU. Let H be the subgroup of C generated by c. Then H is
the sheaf reflection of the presheaf

W
Z(c | W) ifW CU

0 if [/.

Since the presheaf denning is given by W therefore, there
f Z if W C
<
[ 0 if W g

is an epimorphism of presheaves from that defining TJJZC to that defining H. The
sheaf reflection preserves epimorphisms, and so j : TyZc —* H is an epimorphism in
AbShC. The diagram

POH

1
H

can be completed to a pull-back square,

H > TVZC

A ^ ['
PnH ——• H

where i is a mono since i is. Moreover since j is an epimorphism, J is an epimorphism,
and the above diagram is actually a push out diagram [16, p.33]. But TuZc C Zc [5],
and A is injective relative to all H —> Zc, so there exists a: Zc —> A such that the
outer triangle of the diagram

H

A
PnH

4
p

>{
A

H

I'
A

A
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commutes; that is, (a \ TuZc)i = pkj. The inner square is also a push out square, and
so there exists a unique /?: H —> A such that fij = a | TyZc and /3i — pk. Define
another presheaf M by MU — PU + HU C CU, with the obvious restriction maps,
then

PnH ——> H

'I 1'
P > M

n

is a push-out in AbShC, because at each U £ C it is a push-out in Ab. Since P + H =
M, and the sheaf reflection being a left adjoint preserves push out, it follows that

PnH —

4
p —

—> H

b
—> P + H

is a push-out in AbShC. Hence if we consider the diagram

PnH —» H

4
P > P + H

A
A

then there is a unique q: P+H —> A such that qn — p, and qr = [3 . Thus (P + H,q) £
A, a contradiction, since (P, p) 6 .4 is maximal and P + H DP- Thus P = C, and
hence A is injective. |

REMARK: Although the analogue of the Baer Criterion for injectivity holds in
AbShC, still the concepts of injectivity and divisibility do not coincide for an arbitary
C In fact the two concepts coincide if and only if C is Boolean [2].

LEMMA 1.2. For any cover E = \Ji€IUi of the unit in C, the functor R: AbShC
-» Ui€JAbSh [ Ui given by RB = (B | Ui)i€I, Rh = (h \ Ui)ieI for h: A -> B in
AbShC , has the following two properties:

(a) R preserves and reflects monomorphisms.
(b) R is faithful.

PROOF: (a) U h: A —* B is a monomorphism in AbShC, then each h \ Ui: A \
Ui —» B | Ui is a monomorphism in AbSh J. Ui (0.7(4)), hence (h | Ui): RA —• RB is a
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monomorphism in J\i&1 AbSh J. Ui. Now suppose Rh is a monomorphism; we want to
show that ft. is a monomorphism. Let W £ C be arbitary, and suppose hw(a) = h\y(b)

for some a, b £ AW. Since / l i s a morphism of sheaves, therefore

AW —

1
BW —

—* A(WAUi)

i
-—• B(WAUi)

commutes for all i £ I, and hence hwf\Ui{0' I W /\ Ui) = hw^u{{b \ W A Wi). But
hwAUi 1S a monomorphism in AbSh { Ui for all i, and therefore a \ WAUi = b \ WAUi
all i, which by the sheaf properties of A implies a = b. Hence h is a monomorphism.
Thus R preserves and reflects monomorphisms.

(b) Suppose Rf = Rg for some f,g: A -> B in AbShC. Then / | Ui = g \ Ui
for all i 6 / • We claim / = g, that is fw = <7w for all W £ C, For any a £ AW, we
have gw(a) | W A ^ = ffWrAt;.(a | W A Ui) = fw^uM \WAU{) = fw(a) | W A ^ , all
i £ / . Thus for the cover W = Vi€Z ^ A P j , we have fw{a) \ W AUi = 9w{a) \WAU{,
all i £ / , hence /jy(a) = jnr(o). Thus /w = gw for all W £ £ implies f = g • I

PROPOSITION 1.3. The functor iZ preserves and reflects injectives.

PROOF: If S is injective in AbShC, then each i? | {/̂  is injective in AbSh J. {/;

(0.12), hence /25 = ( 5 | i / i) i e / is injective in f^ez^S/ i I ^ •
Assume RB is injective; we want to show that B is injective. Consider an essential

extension D of B. Since R^ preserves essential extensions (0.11) it follows that each
D | Ui D B | Ui is an essential extension in AbSh J. Ui. So if 0 ^ S C .RD then for
some i £ / , 0 ̂  5< C I> | U{, hence Si D B \ U{ ̂  0. This means 5 !~l RB ^ 0 which
shows RD is an essential extension of RB. But i25 is given to be injective, and so
RB — RD. Since R is faithful it reflects epimorphisms, hence the natural embedding
B —• D is an epimorphism and therefore B = D. Thus B has no proper essential
extensions in AbShC, which means B is injective (0.4), hence the result. |

PROPOSITION 1.4. B is injective in AbShC if and only if there is a cover E =
\Ji^i Ui such that B \ Ui is injective in AbSh J. Ui, for nil i £ / .

PROOF: (=>) Clear by taking the trivial cover of E.
(<=) For the converse assume E = V Ui and each B \ Ui is injective. Then let A D B
be any essential extension. By 0.11 one then has an essential extension A \ Ui D B \ Ui,
hence by hypothesis A | Ui = B \ Ui and then, finally A = B, showing that B is
injective. |

REMARK: The above proposition shows injectivity is a local property. This was
also shown by Harting [11], but by an entirely different method. She considers the
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preservation of maximal partial morphisms by the restriction functors Ru for U 6 £ ,
whereas our approach uses the preservation of essentialness by the functors Ru.

LEMMA 1.5. If A is injective in AbShC, then for any V < U in C the restriction

AU —> AV is a split epimorphism in Ab.

u
I

PROOF: Consider the local lattice homomorphism <f>: 3 —>j U with image V.

o
AU

Then since A is injective in AbShC, it follows that 4>,A = | is an injective group
AV

P-xT
in AbSh3 (0.6). But the injectives in AbSh3 are exactly the projections j with

p
AU

divisible P and T [2], hence J. is a split epimorphism in Ab.
AV

2. INJECTIVE HULLS

Given A, B in AbShC, recall that B is the injective hull of A if and only if it is
an essential injective extension of A.

PROPOSITION 2.1. B is the injective hull of A in AbShC, if and only if there exists
a cover E = Vig/ ^» > suc^ *^a* -̂  I ̂  JS '^ e injective hull of A | £7; in A65/i J. E7;.

PROOF: (=>) Clear, by taking the trivial cover.
(<^) Given that B \ Ui is the injective hull of A | E/<, all i G / , it follows by 1.4 that
B is injective in AbShC. So, it only remains to show that B is an essential extension
of A. Let DOB be a non zero subgroup of B, then DU ^ 0 for some U G C Since
U = \Jj(U A f/i), it follows that 0 J « O T H II ^ ( ^ A ui) a n d SO f o r s o m e * € J,
0 ^ £>(*/ A C/i) = (I> | Ui){U A ^ ) . But B \ Ui is an essential extension of A \ Ui
in 4&S/i i Ui, so 0 ^ D \ Ut C B \ Ui implies Z? | ^ n A | [/i ^ 0, and therefore
D C\ A ^ 0. Hence B is an essential extension of A, and also being injective it is the
injective hull of A. |

REMARK 2.2: In our next result, we describe the injective hull of any A in AbShC
where C is well-ordered, and so it might be appropriate to describe the topology of the
spectrum of a well-ordered locale. If C is well-ordered, then without loss of generality
we may assume C = A + 1, for some ordinal A. We now show that the sets Wa = {7 :
7 not a limit ordinal, 0 < 7 ^ a} for each a € A + 1, form a topology O on the set
X consisting of all the non-zero non-limit ordinals 7 ^ A. Now Wo = 0, W\ = |A"|,
War\W0 = WaAp since for a ^ /?, Wa C Wp. To check Wy a . = U7 Wa. for any
family {ou}/ in A + 1, we consider 7 € W\i a, . Then 7 < V/ a t > so if 7 £ \JS Wa.
then we must have a j < 7, for all t € / . But 7 € X and so 7 = (3 + 1 for some
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/? < A. Therefore a* < 7 implies <n < /? for all i £ / , hence V ; " i ^ 18 < ) a
contradiction, since 7 ^ \/j a;. Thus there is some i € / such that 7 ^ a; and so
7 £ IJj Wa{ . Therefore Wy ai C (J7 Wai . Moreover for all i £ J , c*i ^ V7 OJJ implies

U W«*t — ̂ V a- an<^ l i e n c e Ww a . = U/ ^ a ; • Therefore O is indeed a topology on
X. Now let Wa = Wp for some a,/? G A + 1, and suppose a < (3. Then a + 1 < /?
and so a + 1 £ Wp = Wa which means a + 1 ^ a , a contradiction. Hence Wa = Wp

implies a = /?. Therefore C = A + 1 is isomorphic to O by a - t W^. Note that the
completely prime filters on C = A + 1 are exactly f 7 for 7 £ X , hence J ] C may be
represented by the set X of these 7 with the topology Wa = {7 £ X | 7 ^ a } .

PROPOSITION 2.3. For a well-ordered locale C, the injective hull of any A =

A\ • • • • —y A2 y A\ y Ao(= 0) in AbShC is given by the group C — C\ —»

• C2 -» Cx -» Co(= 0) wiere C0 = CW> = Ilaew, B ( K e r fca) for all (3 E A + 1.

PROOF: Define a family (Ba)ae\x\ *n Ab\x\ by Ba = E(Kerha) for alia £

X. Since the functor F : A&l*1 —» AbShX = AbShC preserves injectives (0.6, 0.7) it

produces an injective C in AbShC, where C — F( (Ba)a€,x,) , and so Cp = CWp =

Tiaew E(Ker ha), (3 £ A + 1 with restrictions CUp —> C?77 as projections for all

7 < /3. The morphism from A to C is obtained by induction as follows: For n = 1,

A\ —tCj = F(Kerftj) = E(Ai) is the natural embedding. Assume Aa —> Ca already

defined for all a < (3. Then there are two possibilities:

Case (i) /3 = 7 + 1 for some 7 £ A + 1;

Case (ii) /? is a limit ordinal.

For case (i) we are given A7 -+ C7 and since C7 + 1 = C7 x .F/(Kerft7+i)
with C7_(-i -+ C7 the projection, we can define T7+I : A7+i —> C7 f| F/(Ker/i7+i)
as T 7 / I 7 + I f[ ft—j-j- where ft-r+y: -̂ 7-1-1 —* E^Keih^+i) is an extension of the nat-
ural embedding Ker(ft7+j) —> F/(Kerft7_(.i) to A7+i: then as required P 7 T 7 + I =

; that is,

= C7 x F/(Ker/i7+i)

commutes.

Case (ii) f3 = \/a<pa, and so Cp = It Ca. Since Ap = ft A a , and by
a</3 a<p
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assumption all Aa——*Ca(a < /?) are defined, therefore we get a family of maps

Ap —> Aa >Ca{a < /?) and so by the definition of limit there is a unique rp: Ap —y Cp

such that

Ap • Cp

i I

commutes for all a < (3. Hence we can define a morphism r : A —» C with components
Ta: j4a -» Co as defined above.

Now to check that r is a monomorphism. Clearly Tj, is a monomorphism, so
assume rQ is a mono for all a < /?.
Case (i) ft = 7 + 1, so if r7+i(a) — 0, then r7/i^+i(a) = 0 = A.-^py(a). This means
/i7 + ](a) = 0, that is a £ Ker/iT+i. Hence a = 0, since /i^pj(a) = a for a 6 Ker/ i 7+] .
Thus Tp is a monomorphism.
Case (ii) /? is a limit ordinal. If Tp(a) = 0, then ra(a | a) = 0 for all a < /?. But r a

is a monomorphism for each a < / 3 , s o a | a = 0 which by the sheaf properties implies
that a = 0. Thus the morphism T: A —> C is indeed a monomorphism.

Finally we want to show that C is an essential extension of A, and so consider
0 ^ D C C. Since £ is well-ordered we can find a smallest a e £ such that £>a 9̂  0.
Then a is not a limit ordinal, since otherwise we get a contradiction 0 ^ Da —>

-r = 0 • For 8 such that a = 6 + 1, we have a commutative diagram

Da y Ca z=. Tl.y£\yaE(K.evh-f) Cg x 2?(Ker/ia)

I I
0 = Ds • C6 =

where the horizontal arrows are inclusions, and so we conclude that Da = 0 x
D~whereD~ C E(Kerha). Hence there exists 0 ^ x £ Ker/iQ such that (0,.x) £ D Q .
Now Imr o = Im ( r a _ i / i a J^ ^Q) and (0>^) G £>a where x £ Ker/iQ implies (0,x) be-
longs to Im(Ta_i/ia f] /ia) = ImrQ . Hence Ta(Aa)C\Da ^ 0 which means T(A)CID ^ 0.
Thus r : A —• C is an essential monomorphism. Also C is an injective group and there-
fore C is the injective hull of A.

Applied to the special case £ = 3 , Proposition 2.3 leads to the following. |
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A

COROLLARY 2.4. The injective hull of I h is

B

where u embeds B into its injective hull and v — (uh)J\k and k: A —* E(Kevh)
extends the natural embedding Ker(/i) —> A.

LEMMA 2.5. For a boolean locale C, if E is not compact, then there exists A,B£

AbShC such that AC. B is essential but AE C BE is not essential in Ab.

PROOF: Let E = \/ieI Ui where / is an infinite set. Then there exists a countable
subset, say J of / , so that we can write E — (VigJ ^«) V ^ where 5 = (Vigj^O •
Since C is boolean, we can find a sequence {t/n}n€w such that Un A Um = 0 and
E = V n e ^ n - Define An, Bn £ AbSh | Un by AnU = Z/PnZ, BnU = Z/p2

nZ for
some prime pn where pn ^ pm if n ^ m. Then Bn D Zn is essential in AbSh J, Un, for
if 0 ^ </> G Sni7 but ^ >ln*7 then <̂ (o) ^ 0 for some o € -^/(p^) where order a - pi

and so 0 ^ pn<f> | (̂ >(a) G v4(0(a)) which shows An C jBn is essential. If A, B £ AbShC

are defined by A - Ilnew ( « - ) . ^ » . 5 = IL.&, ( « « ) . £ „ , where ( o n ) . : AbSh I Un -»
AbShC corresponds to the morphism an: C -^i Un, U ~-> U A f/n(0.7), then .4.(7 =
Ilneu, ^ n ( ^ A Un) and JB{7 = n n € u , Bn{U AUn),U e C.We claim A C B is essential
in AbShC . If 0 ^ <£ = (<£„) G 5 £ / , then for some m G w, 0 ^ <f>m £ Bm(U A ?7m), and
so by the above argument for some a € Zl{p2

m) , pm<£m | </>m(a) £ ^m(</>m(a))- Since
Um A £/n = 0 for all n ^ m , we get pm<£ | 0m(o) = (pm(An | ^m(a))n6u, G >!£/, since
all components are zero except when n — m. Hence A C B is essential. To show that
AE C S.E is not essential, consider <j> = (<j>n) G BE = Y\n€u BnUn where <j>n is of
order p2

n. If AE C BE was essential then there exists k £ .Z such that fc<^n £ .Anf/n
for all n £ w . This means p n | fc for all n £ a;, hence fc = 0. Hence result. |

LEMMA 2.6. The global functor T: AbShC —* Ab preserves injective hulls if and
only if it preserves essential extensions.

PROOF: ( <=) Clear, by the hypothesis and the fact that the functor F preserves
injectives (since the functor—/; is an exact left adjoint of F (0.7)).

( => ) Let J 4 H » B be an essential monomorphism in AbShC , and A i—> A' be the
natural embedding of A into its injective hull A'. Then there exists / : B —» A' such
that fi = j , which is actually a monomorphism (since i is essential). By hypothesis
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AE i—> A'E — AE —y BE —> A'E is an essential monomorphism in Ab, hence
iE: AE i—> BE is an essential monomorphism. I

PROPOSITION 2.7. The functor F : AbShC —> Ab preserves injective hulls if and

only it £ is a finite boolean locale.

PROOF: (<=) By Lemma 2.6, it is enough to show that F preserves essential
extensions. If £ is finite boolean then £ = O(X) for a finite discrete space X,
therefore AbShC S Ab^. So A C B essential in AbShC implies A{x} C B{x} is
essential in Ab for all x £ \X\. Therefore Ilxe|;t| ^ W = TACTB = Ux€\x\Bix}
is essential in Ab, since finite product in Ab preserve essential extension.

(=>•) By Lemma 2.6 it follows that the functor F : AbShC —» Ab preserves essential
extensions. We first show that £ is boolean. If not, then there exists a W £ £ such
that W is dense. Let AU C QcU be the subgroup consisting of all <f> £ QcU such
that Vo^aeQ <f>(a) ^U AW. Then A is a subgroup of Qc [2]. Define B in AbShC
by .BJ7 = J4((7 A W), with the restrictions as given by A. Then h: A —» £? given
by the restriction map of A is a monomorphism, since W is dense in £ . Moreover
this monomorphism is essential for if 0 ^ <f> £ BU = A(f7 A W) then clearly <f> \
(U A W) = hUAW{4>) = <t> ^ 0. By hypothesis AE -^ BE = AW = Q£VF is an
essential monomorphism. Consider <j> G Q/;W^ with <̂ >(1) = W . By essentialness, there
exists a ^ in AE such that 0 ^ h,E(i>) = Tp \ W = m4> for some m £ Z. Then
(TO< )̂(ra) = V7, so ^(m.) A W — W, that is, W < ip(m), which means tl>{m) is dense
in £ . So if k ^ m then ^>(m) A^(fc) = 0 implies ^(fc) = 0, therefore tj>{m) = E. But
ij> £ AE, so Vfc^oV'(fc) < W, and m ^ 0 implies V ( H < W, that is E =W, hence
£ is boolean. By Lemma 2.5 it follows that E is compact. But £ boolean implies each
U £ £ is compact, hence £ is spatial. Therefore £ = O(X) for some discrete space
X, which by compactness of E means X is a finite discrete space. Hence we have the
result. |

REMARK 2.8: If £ is finite boolean then so are all J. U, and hence all functors IV
preserve injective hulls whenever F = TE does.

3. CHARACTERISING INJECTIVES FOR SOME SPECIAL LOCALES

We have seen in our previous discussion that an injective A £ AbShC has the
following two properties:

(a) For all U £ £ , each AU is an injective abelian group in Ab.

(b) Whenever V ^ U in £ , then the restriction AU —» AV is a split epimorphism

in Ab.

Hence it is reasonable to ask if the properties (a) and (b) characterise injectives in
AbShC. The answer is yes for some special locales which we shall discuss although the
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question still remains open for an arbitary £ . Recall that for £ = 3, Banaschewski has
shown that injectives in AbSh.3 are exactly those groups which satisfy the conditions
(a) and (b) [2]. This fact is crucial in the following proofs.

PROPOSITION 3.1. IfC satisfies the descending chain condition then A £ AbShC
is injective if and only if it satisfies conditions (a) and (b).

PROOF: TO prove the remaining implication, consider any essential extension B D
A. If A C B, then £ has DCC, we can find a minimal S £ C such that AS C BS.
Clearly, for all U < S, AU = BU. If W = V U(U < S) then AW = BW, since for
any b £ BW, b | U £ BU = AU for U < S implies 6 £ AW, hence W < S.

Consider the commutative diagram,

AS ——» BS

I I
AW = BW

in AbSh3. If 0 ^ b € BS, then by essentialness there exist V < 5 , and m 6 Z such
that 0 ^ mb \ V e AV. Now either V — S which means 0 ^ mb £ AS, oi V < S
and then V < W so 0 ^ mb \ V = (m& | W) \ V implies 0 ^ mb \ W £ BW = AW.
Thus BS —> 5W is an essential extension of AS —» AM̂  in A6S/i3. But by the given
hypothesis AS -» AŴ  is injective in AbSh3 [2] and hence AS = 5 5 . Thus A = B,
which means A is injective in AbShC . |

COROLLARY 3.2. If £ is finite or well-ordered then the conditions (a) and (b)
characterise injectives in AbShC.

PROOF: Clear, since these locales have descending chain conditions. |

PROPOSITION 3.3. For any inversely well-ordered C, A £ AbShC is injective if
and only if it satisfies conditions (a) and (b).

PROOF: If £ is inversely well-ordered then the elements of £ may be arranged in
the form E - Uo > U\ > U2 • • • > Ux = 0, so that Lopp = A + 1 for some ordinal A.
Since each non-empty subset of £ has a largest element it follows that every element in
£ has only trivial covers, hence every presheaf on £ is also a sheaf on £ . In particular,
Z'cUc = Z for all a . If A £ AbShC satisfies conditions (a) and (b), then we claim
that A is injective. The proof will use the Baer criterion (1.1), so consider a diagram,

C > Zr

A
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where the horizontal arrow is the inclusion. Our aim is to extend h to all of Zc • If
C = 0, then we are done. If C ̂  0, then we can pick the first cto such that CUao ^ 0.
If Ua > Up, then the commutativity of the diagram

CUa > ZcUa = Z

= Z

where the horizontal arrows are inclusions, implies CUa C CUp . Let Uai be the first
element in C such that CUao C CUai . Proceeding in the same fashion we obtain a
strictly ascending chain of subgroups of Z given by 0 ̂  CUao C CUai C CUa2 C . . . .
Since Z is noetherian, this chain must terminate after a finite number of steps and so
for some n,CUan — CUa for all a ^ an.

If we consider the finite chain F = Uao > Uai > • • • > Uarl (which has only trivial
covers), then the presheaf AUao —> AUai —>...—> AUan satisfies condition (a) and (b)
and so by our last result it is an injective group in AbShF. Hence there exist morphisms
9uai • Z -> AUaf , such that gUa. \ CUa. = hUai , and gua.+i = 9ua{ | Uai+l for all
i = 0 , 1 , . . . , n. For any Ua £ C, where a ^ ao,a-i,. ..,an define gua as follows:
gua = iagua if 0 < a ^ a0 where ia: AUao —*• AUa is the inclusion into the product
AUao —* AUQ followed by the restriction may AUo -+ AUa

9ua = 9uao \U<* if a0 ^ a < a i

9ua = 9uai \Ua if aj ^ a < a2

9ua = 9uan \Ua if a > an

Since 9uai+l = 9ua{ I Uai+l , it follows for all Ua ̂  Uao , we have gUa = gUaQ \ Va .

It remains to show that g extends h. Let Ua, Up be arbitary elements of C such
that Ua ^Up . Then there are three cases:

(i) Uao >U,3>Ua

(ii) Up > Uao > Ua

(iii) Up>Ua> Uao .

Case (i). In this case gu^ = 9uao I Up, so
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gu0 I Ua = \guao | Upj | Ua = guao | ^ = fifi/a hence the diagram

Z = Z

commutes.

Case (ii). gua = ipgua hence

, | Uao) | Ua = ((i(,gUao) \Uao)\Ua= gUaQ \ Ua = gUa.

Case (iii). gu$ - ipguao , therefore

gup I Ua = (ipgvaQ) I Ua = iagUao = gua •

Hence, we conclude that g is indeed a morphism of sheaves. Now to check that

g extends h, we consider any Ua 6 C. If Ua > Uao, then CUa = 0, so

gua I CUa — 0 = hUa . So let us suppose that Uao ^ Ua . Then pi/a \ CUa = gUa \

CUao(ii CUa = CUao) = (gUao | C£/ao) | Ua = hUaQ \ Ua = hUo . If CUa * CUao ,

then ai ^ a. If CUa = CUai , then again we are done by the same argument with

c*i in place of ao since guai I CUai = hua • Otherwise, CUa D CUai and in that

case a2 ^ a and one can proceed as before. Continuing in the same way one sees that

gua | CUa — hua for all a , that is g extends h. This shows A is injective. |

COROLLARY 3.4. In AbShC where C is inversely well-ordered, the direct sum of

injectives is injective.

PROOF: Let A = ®i^iA{, where Ai is an injective group in AbShC. Then each
AiU is divisible in Ab, for all U £ £. Therefore AU = ®AiU is divisible in Ab. For
any V ^ U in £ , each AiU —> A{V is a split epimorphism, ®iA{U —> ®iAiV, that is
AU —* AV is a split epimorphism in Ab. By Proposition 3.3, A is injective, hence the
result. |

COUNTEREXAMPLE 3.5: Here we show that the direct sum of injectives in AbShC

is not always injective for an arbitary C. Consider an infinite space X, with the
topology given by U 6 OX if and only if U = X, 0, or x £ U where x is a fixed point.
of X.

Then {y} £ OX if and only if y ^ x . For all z e |Ar|, define Az = <f>t(Q) where
<j>: C —* 2 is the locale lattice homomorphism corresponding to the point z € |Ar| (0.7).
Then AZU C B: U —> Qu consists of all a E BU, with support contained in {z} . Let
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A = ®z^.\x\Az • We claim A is not injective, although each Az is an injective group

(0.7). Note that A can be taken as a subgroup of B, and / £ BX belongs to AX

if and only if there exists a cover X — UieJ ^» s u c ^ t n a t f \ Ui is of finite support

for all i £ I. Since X has only trivial covers it follows that X = Ui for some i £ I.

Hence AX consists of all / i n Qx of finite support and so AX C BX. Note that

for X £ U, AU = BU. Now let 0 ^ a £ BX. If a(y) ^ 0 for any y ^ x then

0 ^ o | {t/} £ A{y), and otherwise o(y) = 0 for all y ^ z so that a £ AX. Hence B

is an essential extension of A and therefore A is not injective. Since B is also injective

(0.7), if follows that B is the injective hull of A. |
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