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Clustering of inertial particles is important for many types of astrophysical and geophysical
turbulence, but it has been studied predominately for incompressible flows. Here, we
study compressible flows and compare clustering in both compressively (irrotationally)
and vortically (solenoidally) forced turbulence. Vortically and compressively forced flows
are driven stochastically either by solenoidal waves or by circular expansion waves,
respectively. For compressively forced flows, the power spectrum of the density of inertial
particles is a useful tool for displaying particle clustering relative to the fluid density
enhancement. Power spectra are shown to be particularly sensitive for studying large-scale
particle clustering, while conventional tools such as radial distribution functions are more
suitable for studying small-scale clustering. Our primary finding is that particle clustering
through shock interaction is particularly prominent in turbulence driven by spherical
expansion waves. It manifests itself through a double-peaked distribution of spectral power
as a function of Stokes number. The two peaks are associated with two distinct clustering
mechanisms; shock interaction for smaller Stokes numbers and the centrifugal sling effect
for larger values. The clustering of inertial particles is associated with the formation of
caustics. Such caustics can only be captured in the Lagrangian description, which allows
us to assess the relative importance of caustics in vortically and compressively forced
turbulence. We show that the statistical noise resulting from the limited number of particles
in the Lagrangian description can be removed from the particle power spectra, allowing
us a more detailed comparison of the residual spectra. We focus on the Epstein drag law
relevant for rarefied gases, but show that our findings apply also to the usual Stokes drag.
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1. Introduction

Turbulent gas flows often harbour particles of different sizes, for example dust grains or
water droplets. Larger particles can have significant inertia and decouple from the flow.
This can lead to local enhancements of their density, which is generally described as
clustering. This can be important for the coalescence of particles to larger ones. This
process eventually leads to the formation of planetesimals in planetary accretion discs
(Weidenschilling 1980) or to raindrops in clouds (Shaw 2003; Grabowski & Wang 2013).
Another situation where particle clustering is important is when reactive particles are
‘competing’ for the same reactant gas. The concentration of reactant gas may then be
significantly lower within a particle cluster than outside, which yields an overall lower
reaction rate (Krüger, Haugen & Lovas 2017; Haugen et al. 2018; Karchniwy, Klimanek
& Haugen 2019). For this situation, which is our main interest, it is large-scale clustering
that is most important. The reason for this is that small particle clusters, of the order of the
Kolmogorov scale, have a diffusive time scale that is shorter than the reactive time scale by
which particles are consuming the reactant. For larger clusters, however, the particles will
consume the reactant within the cluster faster than diffusion can transport fresh reactant
to the cluster.

In clouds, and in most industrial applications, the compressibility of air is rather
weak, because the turbulent flow speeds are strongly subsonic. This tends to be quite
different in astrophysical flows such as those in accretion discs around young stars and
the interstellar medium, which is continuously being fed with dust from the outflows of
stars near the end of their lives. The driving of turbulence is fundamentally different in
the meteorological and astrophysical contexts. Cloud turbulence is driven by convection,
which is an intrinsically vortical flow. There is a large variety of turbulent industrial
flows, but for the vast majority, the turbulence is typically driven by some sort of shear,
which yields vortical flows. The interaction between inertial particles and shocklets in
such compressible turbulent flows has been studied by Yang et al. (2014), who found
particle clustering near shocklets. Zhang et al. (2016) also found clustering near shocklets,
but also noted clustering in regions of low vorticity for small Mach numbers due to
the centrifuge effect. Turbulent flows with purely compressive driving are sometimes
also referred to as acoustic (irrotational) turbulence or wave turbulence. Turbulence in
the interstellar medium is driven predominately by supernova explosions, which are
intrinsically compressive flows (see, e.g. Korpi et al. 1999; Mac Low & Klessen 2004a;
de Avillez & Breitschwerdt 2005; Federrath et al. 2011; Gent et al. 2013a,b, 2020;
Evirgen et al. 2019). At larger flow speeds, however, vorticity can always be produced
by baroclinicity and shocks (Federrath et al. 2011; Del Sordo & Brandenburg 2011; Porter,
Jones & Ryu 2015).

To isolate the distinctive properties of compressive and vortical turbulence, we
simulate isothermal turbulence by applying a stochastic forcing that is either vortical or
compressive. The assumption of isothermality is often made in the context of interstellar
turbulence (Stone, Ostriker & Gammie 1998; Padoan & Nordlund 2002; Mac Low &
Klessen 2004b), and can be motivated by short heating and cooling times. However,
this justification may well be questioned, and we therefore regard isothermality as the
simplest assumption to focus on the new effects of compressibility. Including physically
motivated heating and cooling processes could lead to other new effects that are not
specific to compressibility. For compressive forcing, the pressure enhancements, which are
the result of energy injection of the forcing, are completely compressive. It is only when
the resulting spherical expansion waves interact with each other that some vorticity can
be produced – especially for large Mach number, which is the ratio of root-mean-square
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Spectral characterisation of inertial particle clustering

(r.m.s.) velocity to the sound speed. Likewise, the purely vortical driving can lead to
significant compression and finite flow divergences at larger Mach numbers (see, e.g.
Federrath et al. 2011; Mattsson et al. 2019a).

For purely acoustic turbulence, the energy spectra drop slightly more rapidly with
wavenumber k (like k−2) compared with the k−5/3 Kolmogorov spectrum for vortical
turbulence (Kadomtsev & Petviashvili 1973). Acoustic turbulence does not necessarily
imply large Mach numbers, because the bulk speed may well be less than the wave speed.
Owing to viscosity, purely irrotational flows cannot exist in reality and some level of
vorticity will always be generated (Federrath et al. 2011). Therefore, we prefer to talk about
compressive turbulence instead. Our primary interest lies in the clustering of particles in
these two types of flows for small and large Mach numbers.

There are two rather different approaches to simulating non-interacting inertial particles.
One is to model them as a pressure-less fluid, and the other is to model them as
non-interacting point particles. In both cases, the particles interact with the gas through
friction. We refer to these two approaches as Eulerian and Lagrangian, respectively. Each
of them has advantages and disadvantages. A Lagrangian description is ideal for dilute
systems, but it is susceptible to statistical noise, especially at small length scales where
there are fewer particles. This is a disadvantage of the Lagrangian approach. An important
disadvantage of the fluid description is that it cannot describe how particles of the same
type can go past each other. This is because in the fluid description one only considers
the bulk flow, which is the average velocity of all particles of a specific type in a small
local volume. The bulk velocity is therefore a single-valued function of position. In the
Lagrangian description, by contrast, one does not average, and since there are usually
several particles in every small volume, the flow velocity of the particle phase can be
multi-valued. In particular, when particles go past each other, we have the formation of
caustics. This implies that particles of the same size can have opposite velocities at the
same location, creating phase-space singularities. In the Eulerian approach, this situation
would lead to the formation of shocks – even for dilute particle populations. In the
Lagrangian approach, by contrast, particle populations can go through each other without
any interaction.

Caustic formation can be an important pathway to enhanced particle interaction
(Wilkinson & Mehlig 2005; Bec et al. 2010; Gustavsson et al. 2012; Voßkuhle et al. 2014).
This applies mainly to particles large enough to decouple from the carrier fluid and this
phenomenon can be the main reason why such particles interact. At high Mach numbers,
it is mainly shock interaction and compression of the carrier fluid when shocks meet that
matters (Yang et al. 2014; Zhang et al. 2016). This is because the density increase due to
compression is by far the greatest effect.

A more commonly studied route to enhanced interaction rates is the centrifugal effect
of turbulent eddies, which fling the particles to the edges of the eddies (Maxey & Riley
1983; Maxey 1987; Squires & Eaton 1991; Eaton & Fessler 1994; Falkovich, Fouxon &
Stepanov 2002; Bec 2003; Bec et al. 2007; Zaichik & Alipchenkov 2009; Gustavsson
& Mehlig 2011; Bragg & Collins 2014; Bragg, Ireland & Collins 2015; Bragg 2017;
Bhatnagar, Gustavsson & Mitra 2018; Yavuz et al. 2018). This is because the particles
do not experience the confining pressure that keeps the gas on closed streamlines.
The relative importance of caustics and the centrifugal effects is not well understood
(Voßkuhle et al. 2014). One of the goals of the present study is therefore to assess
their roles separately for vortical and compressively forced turbulence. This assessment
will be based on the knowledge that caustics are only captured by the Lagrangian
approach while the centrifugal effect is captured both by the Lagrangian and the Eulerian
approaches.
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The Lagrangian and Eulerian descriptions are complementary and can also be used
to gauge their respective regimes of validity. This allows us to study, for example,
when and at what length scales statistical noise becomes important, and when caustics
formation becomes important. We focus on three-dimensional simulations, but we also
use one-dimensional simulations, where caustic formation can be studied in isolation.

In both types of approaches, we ignore the back reaction of particles on the flow. This
can become important at large mass loading parameters and can lead to other interesting
effects such as the streaming instability (Johansen & Youdin 2007) and the resonant drag
instability (Squire & Hopkins 2017), which will not be addressed here. We also neglect
gravity and tidal forces.

To analyse particle clustering in incompressible turbulence, radial distribution functions
(RDFs) have commonly been used (Sundaram & Collins 1997; Reade & Collins 2000;
Wang, Wexler & Zhou 2000; Salazar et al. 2008). They have also been used in the
context of compressible transonic turbulence (Pan et al. 2011). Alternatively, one can use
a spectral approach by calculating power spectra of particle densities. In the context of
particle clustering, we only know of the work of Haugen et al. (2018), who have used
power spectra of particle densities. This approach may be more suitable for characterising
particle clustering at different length scales, including, in particular, scales larger than the
Kolmogorov scale. Similar spectral quantities are known as structure factors in the context
of crystallography (Jamieson, Abrahams & Bernstein 1968), liquid metals (Ashcroft &
Lekner 1966) and biomolecular systems (Essmann et al. 1995). The RDFs may be regarded
as the real-space equivalents of these various spectral techniques; see the work of Shaw,
Kostinski & Larsen (2002) which showed that these different measures can be related
to each other; see also the textbook of McQuarrie (2003). However, they can also be
complementary to each other, as we shall show in this paper.

Contrary to earlier work on particle clustering, we are here interested in clustering at
all scales, and not just the Kolmogorov scale. This seems particularly clear for particle
clustering near shocklets, but may in fact also be true for inertial range clustering (Haugen
et al. 2018), which is due to classical vortex clustering at larger scales.

2. The model

We consider an isothermal gas where the pressure is proportional to the density ρ and
is given by ρc2

s , with cs being the isothermal sound speed. The velocity of the gas u is
governed by the Navier–Stokes and continuity equations

∂u
∂t

+ u · ∇u = −c2
s ∇ ln ρ + f + ρ−1∇ · (2ρνS + ρζshockI∇ · u), (2.1)

∂ ln ρ
∂t

+ u · ∇ ln ρ = −∇ · u, (2.2)

where f is a stochastic forcing term, ν is the kinematic viscosity, ζshock is the shock
viscosity, I is the unit matrix with indices Iij = δij and S is the trace-less rate of strain
tensor with the components

Sij = 1
2(∂ui/∂xj + ∂uj/∂xi)− 1

3δij∇ · u. (2.3)

The forcing term consists either of random plane waves (vortical forcing) that are
δ-correlated in time (Haugen et al. 2012), or of localised pressure enhancements
(compressive forcing) with f = −∇φ, where φ is a Gaussian in space at new locations
in regular time intervals δtf (Mee & Brandenburg 2006). The amplitude of the forcing is
denoted by f0. For further details, we refer the reader to Appendix A.
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In most of the simulations presented here, we perform direct numerical simulations
(DNSs) in the sense that we solve the equations as stated. In those cases, ζshock = 0.
However, to save resources, especially in astrophysics, one often uses a shock-capturing
viscosity (von Neumann & Richtmyer 1950). This broadens the shocks and allows one
to resolve them on a coarser mesh. To assess the effect of such an artificial treatment on
the particle clustering, in some cases we compare the results from the DNS with runs
where a coarser mesh is used together with a shock-capturing viscosity. We adopt the
shock-capturing viscosity of von Neumann & Richtmyer (1950), which corresponds to a
bulk viscosity with

ζshock = Cshockδx2〈−∇ · u〉+. (2.4)

Here, 〈· · · 〉+ denotes a running five point average over all positive arguments,
corresponding to a compression; see Caunt & Korpi (2001) and Haugen, Brandenburg &
Mee (2004) for a detailed description. In contrast to the DNS, we refer to those simulations
as large eddy simulations (LES).

It is important to realise that our Reynolds numbers are small compared with the many
types of compressible flows occurring in nature. Therefore, our simulations are not DNS
in a strict sense. Based on numerical considerations, the kinematic viscosity cannot be
chosen too small. Therefore, we keep its value constant, which implies that the dynamic
viscosity is enhanced in high density regions. On physical grounds, the dynamic viscosity
tends to be more nearly constant, which would imply an enhanced kinematic viscosity
in the regions of lower density outside shocks. This would have reduced the maximum
permissible Reynolds number even further, and might have deprived us from finding
effects related to higher Reynolds numbers.

In both the Lagrangian and Eulerian descriptions, the velocity vp of the particle with
index p couples to the gas through the friction force

F p = − 1
τp
(vp − u). (2.5)

It is assumed that the particles are smaller than the smallest turbulent eddies, which have
sizes that are comparable to the Kolmogorov scale. For the flows considered here, the
particle response time is given by a term that is slightly different for dense and dilute
gases. When the mean-free path of the gas molecules is short, the response time is given
by the Stokes time, modified by a Reynolds number-dependent factor of the form

τ St
p = 2

9
ρp

ρ

a2
p

ν
(1 + 0.15 Re0.687

p )−1, (2.6)

where ap and ρp are the radius and material density, respectively, and Rep = apurms/ν is
the particle Reynolds number. Salazar et al. (2008) used a similar approach to show that the
results of their DNS were comparable to their experimental results of particle clustering
in isotropic turbulence to within the limits of experimental uncertainty. For rarefied gases,
the response time is based on the Epstein drag and is given by (Schaaf 1963; Kwok 1975;
Draine & Salpeter 1979; Mattsson, Fynbo & Villarroel 2019b)

τEp
p =

√
π

8
ρp

ρ

ap

cs

(
1 + 9π

128

∣∣u − vp
∣∣2

c2
s

)−1/2

. (2.7)

The second term inside of the parenthesis becomes important at large Mach numbers.
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In the Lagrangian description, the evolution of a particle p with velocity vp at position
xp is given by

dvp

dt
= F p,

dxp

dt
= vp, (2.8a,b)

where we have ignored the effects of Brownian motion, which leads to the diffusion
of particles. In the associated Eulerian description, diffusion is included and, instead of
(2.8a,b), we solve instead

∂vp

∂t
+ vp · ∇vp = F p + 2

ρp
∇ · (ρpνpSp), (2.9)

∂np

∂t
+ vp · ∇np = −np∇ · vp + κp∇2np, (2.10)

where np is the particle number density and νp and κp are artificial viscosity and diffusivity
for the particle fluid (denoted now by p collectively for all particles). Those terms are
needed for reasons of numerical stability.

We use medium-resolution (N3
mesh = 2563 and 5123) in three-dimensional (3-D) triply

periodic cubic domains with side lengths L and the number of mesh points in each
direction being Nmesh. The smallest wavenumber in the domain is then k1 = 2π/L. Unless
otherwise specified, dust particles are included as inertial particles in five size bins with
4 × 106 particles in each (for the Lagrangian simulations). We use the PENCIL CODE
(Pencil Code Collaboration 2021), which is a high-order, finite-difference code (sixth order
in space and third order in time); see also Brandenburg & Dobler (2002) for details.

We sometimes also give the dimensional values of f0, δtf , ν, etc. Those are based on our
choice cs = 2k1 = 〈ρ〉 = 1 in the numerical calculations. In all cases, we use ρp = 103.

3. Diagnostic tools

3.1. Non-dimensional numbers
The flow is characterised by the Reynolds and Mach numbers

Re = urms

νkf
and Ma = urms

cs
, (3.1a,b)

respectively, where kf is the forcing wavenumber. We also give the value of the Taylor
microscale Reynolds number, Reλ = λu1D/ν, which is based on the Taylor microscale
λ = √

15ν/εK and the 1-D r.m.s. velocity, u1D = urms/
√

3. The behaviour of the particles
is characterised by the Stokes numbers

Stint = τp/τf and StKol = τp/τKol, (3.2a,b)

where τp is the particle response time, τf = (urmskf )
−1 is the time scale related to the size

of large-scale fluid structures, e.g. the forcing scale, and τKol = √
ν/εK is the Kolmogorov

time, where εK = 〈2ρνS2〉 is the energy dissipation rate. Both variants of the Stokes
number are related to particle clustering due to particle inertia. For small Mach numbers,
ρ is close to the mean density ρ̄, allowing us to express εK also in terms of the energy
spectrum E(k). They are normalised such that

∫
E(k) dk = ρ̄〈u2〉/2. We then have εK =

2ρ̄ν
∫

k2E(k) dk. Also of interest is the associated Kolmogorov scale �Kol = (ν3/εK)
1/4.

In the present work, we have defined τf in terms of the wavenumber as (urmskf )
−1. An

alternative definition would be in terms of the length scale 2π/kf , which would make

934 A37-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
43

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1143


Spectral characterisation of inertial particle clustering

τf larger by a factor of 2π, and Stint smaller by the same factor. This might be more
meaningful, because it would result in a better representation of the actual separation
between the Kolmogorov and integral scales, and hence a more correct ratio between Stint
and StKol. We should keep this in mind when comparing these numbers in the rest of the
paper.

The Knudsen number of particles of a certain size is defined as the ratio of the mean-free
path λ of the gas molecules to the size of the particle, i.e., Kn = λ/dp. The drag force on the
particles is inversely proportional to the particle response time; see (2.5). For a continuous
fluid, where the Knudsen number is much smaller than unity, the particle response time is
given by the Stokesian time; see (2.6). For rarefied gases, however, the mean-free path is
large compared with the particle size and the response time is then given by the Epstein
time, as given in (2.7).

The dimensionless particle size parameter (see Hopkins & Lee 2016) is defined as

α = ρp

〈ρ〉
ap

Lf
, (3.3)

where Lf is taken to be the physical forcing scale of the turbulent flow. For small values of
Kn, we find that the mean Stokes number is

〈Stint〉 = 〈τ St
p 〉
τf

≈ (2/9) α Rep

1 + 0.15 Re0.687
p

∼ α Rep, (3.4)

while in the Epstein limit we find

〈Stint〉 = 〈τEp
p 〉
τf

≈
√

π

8
αMrms

(
1 + 9π

128

∣∣u − vp
∣∣2

c2
s

)−1/2

∼ αMrms. (3.5)

From these two relations one can see that, while Stint for a given particle size in the
Epstein limit is mainly affected by compression and essentially unaffected by viscosity
of the carrier fluid, it is inversely proportional to the viscosity in the Stokes limit.

3.2. Power spectra of particle density
To measure preferential clustering at all scales, from the smallest scale resolved in the
simulation to the size of the simulation box, we compute power spectra of np as (Haugen
et al. 2018)

Pn(k) = 1
2

∑
k−δk/2≤|k|<k+δk/2

∣∣n̂p(k)
∣∣2 d3k, (3.6)

where n̂p(k) = F(np(x)) is the Fourier transform of np, k = (kx, ky, kz) is the wavevector,
and the integration is over concentric shells in wave number space. From the above, we
see that ∫ kmax

k1

Pn(k) dk = 1
2
〈n2

p〉, (3.7)

where kmax = k1Nmesh/2 is the Nyquist wavenumber, and angle brackets, 〈· · · 〉, represent
spatial averaging, which means that 〈n2

p〉1/2 is the r.m.s. particle number density.
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If the particles were randomly distributed, |n̂p(k)| would be on average independent of
k = |k|. In three dimensions, however, the shell integration introduces an additional k2

factor, so we expect

Pn(k) = Ak2, (3.8)

which can be combined with (3.7) to yield

1
2
〈n2

p〉 =
∫ kmax

k1

Ak2 dk = A
3
(k3

max − k3
1) ≈ A

3
k3

max, (3.9)

where we have assumed k1 	 kmax, and A is a constant that we shall be concerned with
later in § 4.2.2. We improve on this description further below, when we analyse concrete
examples.

3.3. Definition of the RDFs
To put our results into the context of other commonly used tools of characterising particle
clustering, we compare the results from our spectral analysis with the corresponding
RDFs. They are defined as (Sundaram & Collins 1997; Reade & Collins 2000; Wang et al.
2000; Salazar et al. 2008)

g(ri) = Ni

N

/
4πr2

i δr
4πR3/3

, (3.10)

where Ni is the number of particle pairs separated by a distance ri ± δr/2, N = Np(Np −
1)/2 is the total number of particle pairs, Np is the number of particles and R is the largest
radius that fits into the domain.

4. Results

In this paper, we are concerned with the differences in particle clustering between vortical
and compressive forcings. To convey an impression of this phenomenon, we begin by
showing in figure 1 the projected particle number densities of snapshots from DNSs
with vortical and compressive forcings for Stokes numbers around unity. Evidently, the
visual impressions for the two types of flow are rather different. Even though the typical
length scales of the forcings are similar in the two cases, the clustering phenomenon
is markedly different. For vortical forcing, the overall contrast between minimum and
maximum particle concentrations is much smaller than for compressive forcing. In the
vortical case, the particle concentrations take a more filamentary and perhaps sheet-like
structure, while in the compressive case, the particle concentrations are more spherical in
shape.

4.1. One-dimensional simulations
To illustrate the effects specific to compressive clustering, let us consider first a 1-D
shock model as an illustrative example. Here, we also compare the Lagrangian particle
simulations with the ones in the Eulerian description.

4.1.1. Applicability of the Eulerian approach
Caustics formation in the particle distribution, which is evident from the presence of
multi-valued particle velocities, is a phenomenon that cannot be described with the
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Figure 1. (a) Projected particle number density in a snapshot from a DNS with vortical forcing (later referred
to as Run V2). (b) The same from a DNS with compressive forcing (later referred to as Run C2). Both cases
correspond the particle size showing the most clustering (Stint = 0.31 and 0.36, respectively).

Eulerian approach; see Boffetta et al. (2007) and Shotorban & Balachandar (2009) for
detailed comparisons. For small enough particle inertia, i.e. for small Stokes numbers,
the Eulerian and Lagrangian approaches should agree with each other. However, there is
also another source of discrepancy. The Lagrangian approach is suitable for modelling
dilute systems, but, due to the finite number of particles, it also has the disadvantage of
suffering from statistical fluctuations when the intention is to model non-dilute systems,
where fluctuations should be small. Statistical noise does not occur in the Eulerian
approach. Thus, for dense systems and small Stokes numbers, the Eulerian approach can be
beneficial. To determine the limits of applicability of the Eulerian approach quantitatively,
we consider a simple 1-D model.

We adopt a localised hump in the fluid density, which we model by a Gaussian in ln ρ(x)
at the position x = 0 in a domain of size −π/2 < x < 3π/2. Thus, we take

ln ρ[(x)/ρ0] = A exp(−x2/2σ 2
s ), (4.1)

where A is an amplitude factor, ρ0 is an overall normalisation coefficient, the width is
given by σ = 0.35 and the ratio of the peak value over the background is 3.1. For these
simulations we use periodic boundary conditions. The initial density profile launches an
acoustic wave; see figure 2 for plots of ux and ρ at t = 0.1 and t = 0.5. The front speed
exceeds the sound speed when the gas speed approaches a certain fraction of the sound
speed; see appendix B for an illustration. We then use the gas velocity and gas density at
t = 0.5 as initial condition for the particles by setting the particle velocity for all particle
sizes equal to the fluid velocity. The particle number density of all particle sizes is set
proportional to the gas density.

In figure 3 we show the particle velocities as a function of position for Lagrangian and
Eulerian models for particle radii ap = 3 × 10−3 and 10−1 at different times. We also
show the gas velocity, which propagates at a speed slightly faster than the sound speed,
cs = 1; see Appendix B for a plot showing the numerically obtained dependence of the
front speed on the gas speed. The lighter particles follow the fluid and are not shown, but
the heavier ones lag behind because they only inherit the speed of the gas at t = 0.5, and
they are too heavy to get accelerated by the passing acoustic wave. At early times (t = 1),
the velocities in the Lagrangian and Eulerian models are close to each other, but at later
times the particle velocities in the Lagrangian description become multi-valued, which
corresponds to caustics formation. This phenomenon becomes more prominent for the
heavier particles since they are not decelerated by the drag from the gas. In the Eulerian
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Figure 2. (a) Gas velocity and (b) density at t = 0.1 (upper row) and t = 0.5 (lower row) in panels (c,d). The
data for t = 0.5 serve as initial condition for the particles.

description, we instead see the formation of a shock. Away from the shock, the Lagrangian
and Eulerian descriptions agree with each other rather well, especially for the heavier
particles. To resolve the shock in the Eulerian simulations, we must apply a certain amount
of artificial viscosity and diffusivity for the particle fluid. If this artificial viscosity is too
small, wiggles occur in the downstream part of the shock, as can already be seen from the
profile of vx(x) in figure 3. Including such artificial viscosity and diffusivity is a purely
numerical device to stabilise the solution, but it is likely to introduce errors in the results.
By comparing with the Lagrangian approach, we will try to assess the extent of such
artifacts.

Snapshots of the particle number densities are shown in figure 4 for the same times
and the same two particle sizes as in figure 3. We see the development of extended
structures with two enhancements on their flanks, characteristic of caustics, as is correctly
reproduced with the Lagrangian approach. The Eulerian approach, on the other hand,
yields just a single albeit very strong spike, which may cause an increase of the
particle-interaction rate even without any caustics forming.

It is of interest to determine the Stokes number relevant for caustics formation. This is
important for knowing the maximum Stokes number for which the Eulerian approximation
can still be used. For smaller Stokes numbers, no artificial particle viscosity and diffusivity
are needed. For larger Stokes numbers, however, the Eulerian approach can represent the
caustics only as shocks, which requires an increasing amount of artificial viscosity and
diffusivity to keep them numerically resolved. The Stokes number is defined through
(3.2a,b). For the solution shown in figure 3, we find that the fluid travel time across the
width of the front �x is

τf = �x/�u, (4.2)

where �u is the fluid velocity at the front. For the current experiments, �x is taken to be
the thickness of the front at the time when the particles were introduced in the simulation;
see Run A in table 1 for more details about the particles.
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Figure 3. Particle velocity in the Lagrangian simulation (solid black) and the Eulerian one (solid red), together
with the gas velocity (dashed blue) at times t = 1, 2 and 3 for ap = 3 × 10−3 (corresponding to Stint = 1, panels
a,c,e) and 10−1 (corresponding to Stint = 30, panels b,d, f ).
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Figure 4. Particle density in the Lagrangian simulation (solid black) and the Eulerian one (solid red), together
with the gas density (dashed blue) at times t = 1, 2 and 3. Two particle sizes are shown: ap = 3 × 10−3 (a,c,e)
and 10−1 (b,d, f ).
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p 1 2 3 4 5 6 7
Run k1ap 10−4 3 × 10−4 10−3 3 × 10−3 10−2 3 × 10−2 10−1

A Stp 0.03 0.1 0.3 1.0 3 10 30
B Stp 0.007 0.02 0.07 0.2 0.7 2.0 6.8

Table 1. Stokes numbers for Runs A (§ 4.1.1) and B (§ 4.1.2).

In the example discussed above, we have τf = 0.72/0.66 ≈ 1.1, and we find caustics
for ap ≥ 10−3, which corresponds to p = 3. To compute the critical Stokes number Stcrit
above which caustics formation occurs, we need to know the ρp/ρ ratio, where we take the
fluid density on the upstream side of the front, which is here ρ ≈ 1.8. We used ρp = 103,
so, altogether, we have Stcrit = 0.30. This means that, for simulations where the Stokes
number is larger than ∼ 0.3, the Eulerian particle approach cannot be used. It is important
to realise that we are here talking about the Stokes number based on the largest fluid scale,
Stint, and not the Kolmogorov scale. As we shall see below, at the numerical resolutions
accessible in our 3-D simulations, the difference between Stint and StKol is not very large.

4.1.2. A mechanism for compressive supersonic clustering
The preferential particle concentrations near shocklets in compressible turbulent flows
found and discussed by Yang et al. (2014) and Zhang et al. (2016) suggest that irrotational
supersonic flows can yield new ways of clustering that would not occur in vortical subsonic
flows. One idea for such a mechanism is that particles of a suitable mass that move toward
each other on two colliding shocks, will be decelerated as the shocks collide, but the
particles are too heavy to become re-accelerated as the shocks depart again immediately
after the collision. The particles will then be left behind after the shocks move away,
forming a cluster. To test this idea, we use an experiment similar to that described in
§ 4.1.1, but with a stronger density enhancement.

We emphasise that the particle acceleration is always due to the drag on the particles
because of the relative velocity difference between the particles and the fluid. However,
the drag becomes stronger when the density is high; see (2.6) and (2.7), so the density also
plays a role.

In § 4.1.1, we used the gas velocity and density at a certain time to reinitialise the
particles by setting the particle velocity for all particle sizes to a value equal to the fluid
velocity. The initial width of the density distribution is again 0.35. However, the density
enhancement of the gas is now so strong that its distribution is so different from a Gaussian
that it can no longer be used for reinitialising the particles in a simple way. We therefore
reinitialise the fluid density equal to the density of the lightest particles and then set the
density and velocity of the heavier particles to the same as the lightest particles. The
ratio of the peak value of the density over its background then turns out to be 22. In this
experiment, we only use the Lagrangian approach. See Run B in table 1 for more details
about the particles.

The result of this experiment is shown in figure 5, where we plot xt diagrams of ρ and
np for different particle sizes. For small particles with small Stokes numbers, the particles
follow the gas. This can be seen by the similarity between panels (a,b). To estimate Stint
in this case, we used �u = 2.6 and �x = 0.08, so τf = 0.08/2.6 ≈ 0.03. For our largest
particles with ap = 0.1, we find ρ ≈ 300; see the blue lines in figure 6. We again used
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densities. Note that shock clustering is most evident in panel (e).

2.0
–3

–2

–1

1

2

3

0

–3

–2

–1

1

2

3600

500

400

300

200

100

0

600

500

400

300

200

100

0

600

500

400

300 ρ

200

100

0

0

–3

–2

–1

1

2

3

0

u 
an

d 
v

6

2.5 3.0 3.5 4.0
x

4.5 2.0 2.5 3.0 3.5 4.0
x

4.5 2.0 2.5 3.0 3.5 4.0
x

4.5

(b)(a) (c)

Figure 6. Velocity of particles with radius a6 (black dots) and fluid velocity (red lines), as well as the gas
density (blue lines and axes on the right) at t = 1.18 (a), close to the time t∗ = 1.16 when the shocks meet and
the gas density develops a peak. Panels (b,c) show the same at t = t∗ + τ6 = 1.22 and t∗ + 2τ6 = 1.28.

ρp = 103, which yields ρp/ρ = 1000/300 ≈ 3. Therefore, τp = √
π/8 (ρp/ρ)(ap/cs) ≈

0.2, so we have Stint ∼ 7.
For our largest particle size with Stint ≈ 7, the two counter-streaming particle clouds

associated with the two opposing shocks tend to run through each other owing to their large
inertia, as we can see from figure 5( f ). For the intermediate size, where Stint ≈ 2, however,
a sizeable particle cloud is left behind at the original position of the collision of the two
shocks; see figure 5(e). This critical value is close to unity, as one might have expected. We
conclude from this that a particle cluster will form after the collision of two shocks if the
Stokes number is around unity. Here, the Stokes number is based on the width and speed of
the shock fronts. This mechanism for particle clustering is fundamentally different from
the classical eddy mechanism of Maxey & Riley and it operates only for large enough
Mach numbers. For such flows, however, it may be the dominating mechanism.
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The biggest uncertainty in our estimate of Stint lies in the value of ρ. In the following,
we focus on the particles in bin 6, and denote the corresponding velocity by v6 and the
response time of those particles by τ6. To determine the relevant value of ρ, we show
in figure 6 the profiles of ρ(x) together with those of v6(x) and u(x) at times t∗ + τ6/3,
t∗ + τ6 and t∗ + 2τ6, where t∗ = 1.16 is the time when the shocks meet and the gas density
develops a peak. We see that the peak in ρ reaches values of around 400, but at the time
t∗ + τ6, the particles will have slowed down considerably. Therefore, the relevant density
to be used is the temporally averaged density at the peak until that time, which is below
300.

4.2. Three-dimensional simulations
In this section, we present our main result concerning the detection of two separate
clustering mechanisms through the Stokes number dependence of the spectral particle
number density. Before presenting this, we discuss several peripheral aspects of the
problem: we first demonstrate that the effect of statistical noise on the power spectra can
be eliminated and we show how the results depend on the Reynolds number. We also show
that the results are insensitive to the choice of the drag law (Stokesian vs Epstein drag).
The Eulerian approach is only used to determine its limits of applicability at small Stokes
numbers and the lack of agreement at larger ones. We finish with a demonstration of the
artifacts caused by using a shock viscosity, which is avoided in the bulk of this paper.

4.2.1. Overview of the different runs
In the previous sections, we studied several aspects of particle clustering in idealised
1-D simulations. We will now proceed by turning our attention to fully 3-D turbulence
simulations. As described in § 2, two kinds of forcings are employed in this work. In
table 2, run names starting with ‘V’ use vortical forcings, while those starting with ‘C’
adopt spherical expansion wave forcing (compressive forcing). The numbers behind those
letters indicate different forcing strengths, which yield different Mach numbers. Different
Reynolds numbers are indicated by letters a and b. We also list the ranges [Stmin

int , Stmax
int ]

and [Stmin
Kol , Stmax

Kol ] of Stokes numbers, as defined in (3.2a,b). The run with Stokes drag is
denoted by the letter S at the end. We also compare with corresponding Eulerian models
(table 3), where we have included an artificial viscosity and diffusivity needed to stabilise
the simulations; see (2.9) and (2.10). For simulations with larger Mach numbers, the
mesh must be refined in order to resolve the shocks. This means that the mesh spacing
is significantly smaller than the Kolmogorov scale and, hence, that the Reynolds number
must be decreased in order to confine the computational cost.

Contour plots of particle number density are shown in figure 7 for Run V2b. The
different panels correspond to different Stokes numbers. It is clearly seen that the
clustering is strongest for our intermediate Stokes numbers, Stint = 0.33 and 3.3; see
figure 7(b,c). For the very smallest and largest Stokes numbers, we see almost no
clustering; see figure 7(a,d). In those cases, the values of α are 0.7 and 7, respectively,
where we have used Lf = k−1

f .
In figure 8, we show scatter plots of the particle number density as a function of fluid

density for all fluid grid cells in the domain. In (a), showing results for the smallest
Stokes numbers, we see that there is a strong correlation between the two. This is because
these small particles follow the fluid almost perfectly, which means that, when the fluid
is compressed (high fluid density), the particle field is also compressed (high particle
number density). When the Stokes number is increased, but is still rather small, we see in
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Case forcing f0 δtf ν Ma Re Reλ τkin τKol Stmin
int Stmax

int Stmin
Kol Stmax

Kol

V1 vort. 0.02 — 0.001 0.15 103 53 4.3 1.8 7.3 × 10−4 7.3 1.7 × 10−3 17
V1S vort. 0.02 — 0.001 0.15 103 53 4.4 1.8 5.1 × 10−4 5.1 1.2 × 10−3 12
V2 vort. 0.2 — 0.01 0.67 45 32 1.0 0.56 3.1 × 10−3 31 5.5 × 10−3 55
V2a vort. 0.2 — 0.02 0.59 20 18 1.13 0.81 2.8 × 10−3 28 3.9 × 10−3 39
V2b vort. 0.2 — 0.005 0.71 95 52 0.94 0.39 3.3 × 10−3 33 8.0 × 10−3 80
V3 vort. 0.5 — 0.05 1.00 13 13 0.67 0.50 4.7 × 10−3 47 6.3 × 10−3 63
V3a vort. 0.5 — 0.02 1.14 38 26 0.59 0.32 5.3 × 10−3 53 9.9 × 10−3 99
C1 comp. 0.5 0.5 0.005 0.19 25 19 3.53 1.89 8.9 × 10−4 8.9 1.7 × 10−3 17
C1a comp. 0.5 0.5 0.002 0.19 64 29 3.47 1.22 9.0 × 10−4 9.0 2.6 × 10−3 26
C1.5 comp. 1.5 1.0 0.015 0.39 17 15 1.72 1.16 2.4 × 10−2 54 3.6 × 10−2 80
C2 comp. 4.0 1.0 0.02 0.76 25 13 0.88 0.57 3.6 × 10−3 36 5.5 × 10−3 55

Table 2. Summary of our simulations; ‘comp’ and ‘vort’ refer to compressive and vortical forcings, respectively.
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Case forcing f0 δtf ν νp Ma Re Nmesh

V1 vort. 0.02 — 0.001 0.005 0.15 103 256
V2 vort. 0.2 — 0.01 0.01 0.67 45 512
C1 exp. 0.5 0.05 0.002 0.001 0.19 96 512
C2 exp. 4.0 1.0 0.05 0.05 0.72 14 512

Table 3. Summary of Eulerian runs. For all these runs, the artificial diffusivity (κp) equals the artificial
viscosity (νp).

–6 –4 –2 0 2 4 6 –6 –4 –2 0 2 4 6

–6
–6

–4

–2

2

4

6

0

–6

–4

–2

2

4

6

0

–6

–4

–2

2

4

6

0

–6

–4

–2

2

4

6

0

–4 –2 0 2 4 6 –6 –4 –2 0 2 4 6

(b)(a)

(c) (d )

Figure 7. Contour plots of particle number density for (a) Stint = 0.033, (b) 0.33, (c) 3.3 and (d) 33 for case
V2b. Dark shades denote high densities. The particle number density has been integrated over the perpendicular
direction for four mesh zones.

figure 8(b) that the two fields are only weakly correlated. Finally, for those Stokes numbers
where we see the strongest clustering in figure 7(b), we show in figure 8(c) that there is no
correlation between particle and fluid densities. We can also see the effect of the inertial
clustering itself in that there is a large number of grid cells without any particles (np = 0),
while there is also a significant number of grid cells containing many particles (np > 2),
which is not the case for the smaller Stokes numbers.
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4.2.2. Kinetic energy and density power spectra
In this paper, we make extensive use of particle power spectra. In this context, it is useful
to show first the relevant spectra for the gas. In figure 9, we show kinetic energy spectra
together with power spectra of the gas density for cases V1, V2, C1 and C2. The peak of
the kinetic energy spectrum occurs at k/k1 = 3 for the cases with vortical forcings (V1 and
V2). This wavenumber indicates where the main power of the external forcing is found.
For the cases with compressive forcing, however, the peak in the kinetic energy spectrum
is found for k/k1 between 1 and 2. The density power spectra follow the kinetic energy
spectra fairly well, although there is a vertical shift. For the compressive forcing, we are
driving strong flow divergencies, which results in Pρ(k) being large compared with EK(k).
Since the vortical forcing is divergence free, the corresponding density variation is small,
as seen through the smaller values of Pρ(k) compared with EK(k). We can also see that
the extent of the vertical shift is larger for smaller Mach numbers. This is because the fluid
is less compressed for smaller Mach numbers.

4.2.3. Initial and tracer particle spectra
In the following, we study power spectra of particle number densities for particles that
are embedded in a fluid where turbulence is generated either with vortical or compressive
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forcing (Runs V1–V3 and Runs C1–C2, respectively). Since particles are tracked in a
Lagrangian fashion, it is convenient to allocate each Lagrangian particle to the nearest
Eulerian neighbours in each direction in the fluid mesh. In this way, for every particle size,
we generate a variable on the fluid mesh that contains the number of particles that reside
within or in the neighbourhood of a given grid cell. These variables can now be used to
calculate the particle power spectra for each particle size. The size of the neighbourhood of
grid cells that will be influenced by a given particle depends on the interpolation scheme
used, which in our case is a second-order linear scheme (Johansen et al. 2007).

Initially, the particles are randomly distributed over the entire simulation box. This
means that the initial power spectra for the different particle sizes are just white noise,
which corresponds to a k2 spectrum; see § 3.2. If every particle is associated solely with
the very nearest grid point of the Eulerian mesh, the k2 scaling would then be valid for the
full wavenumber range. For the current work, however, the contribution from a particle
is distributed over several nearby grid points through a linear interpolation scheme. This
means that the k2 scaling will not extend all the way to the largest wavenumbers. Instead,
for k > k∗, the spectrum, hereafter Pn,noise, becomes less steep and eventually reaches a
maximum, before it goes down towards the very end.

In analogy with (3.9), we now get

1
2
〈n2

p〉 =
∫ kmax

k1

Pn,noise(k) dk =
∫ kmax

k1

Ak̃2 dk ≡ A
3

k̃3
eff , (4.3)

where k̃ = k/[1 + (k/k∗)3] has been substituted for k in order to account for the departure
from k for k � k∗ ≡ κkmax, with κ ≈ 0.789 being a parameter proportional to the position
of the local maximum of Pn(k). This implies that Pn,noise = Ak̃2. Defining therefore
κ = k∗/kmax, we find k̃3

eff = (1 + κ)(1 − κ + κ2)/κ3k3
max ≈ (1.45 kmax)

3. By re-arranging
the above equation, the constant A, defined in § 3.2, is found to be A = 3(〈n2

p〉/2)/k̃3
eff ≈

0.49〈n2
p〉/k3

max. Together with (3.8) we then obtain the initial power spectrum of the
particles as

Pn,noise ≈ 0.49
〈n2

p〉B2

k3
max

k̃2, (4.4)

where the constant on the right-hand side is defined as B = 〈ρ〉/〈np〉 and is introduced to
compensate for the fact that the fluid and particle density fields do not have the same mean
value. This compensation is required in order to obtain (4.5).

Particles that are very small, having essentially vanishing Stokes numbers, will follow
the gas perfectly. If the fluid is incompressible, particles will be re-shuffled owing
to turbulence, but their mean separation will be unchanged with time, which means
that there is no particle clustering. Hence, the power spectrum of tracer particles in
an incompressible fluid would equal Pn,noise for all times. If, however, the fluid is
compressible, the compression of the fluid may be so strong that the resulting fluctuations
in particle number density becomes larger than the white noise. The particle power
spectrum will then be the same as the one for the fluid density. For tracer particles we
therefore expect the power spectrum of the particles to be given by

Pn,model(k) = Pρ(k)+ Pn,noise(k). (4.5)

In figure 10(a), we compare the calculated particle spectra from the simulations Pn(k)
(solid lines) with the modelled spectra Pn,model(k) (dashed lines) for the four runs V1, V2,
C1 and C2 for the lightest particles. We see that the calculated and modelled spectra are
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Figure 10. (a) Power spectra of particle number density for the smallest Stokes numbers, which are essentially
tracer particles (solid lines) for cases V1, V2, C1 and C2. The dashed lines denote the model spectrum as
presented in (4.5). (b) Comparison of numerical power spectra (solid) and model spectra using (4.5) (dashed)
for the smallest particles of Run C1 with Np = 2.5 × 106 (blue), 20 × 106 (red) and 160 × 106 (black).

remarkably similar for all cases. The k2 part of the spectrum is a real physical effect and is a
result of having a finite number of particles in the simulation, such a feature cannot be seen
if the particles are tracked by the Eulerian approach. Instead, one would then see that the
particle spectra follow the fluid density spectrum for all wavenumbers. Unless the particle
suspension consists of an infinite number of particles, this behaviour is incorrect and is
due to the fact that the Eulerian approach treats the particle suspension as a continuous
fluid and not as a collection of a finite number of discrete particles.

In figure 10(b), we show the numerical particle spectra for the particles with the smallest
Stokes number of Run C1, obtained with three different numbers of particles (solid lines).
The numerical results are then compared with the model data given by (4.5). We see
that the model results reproduce the simulation results for all particle numbers. But, more
importantly, we note that the effect of the finite number of particles becomes less dominant
when the number of particles is increased, which is as expected. For the black line (Np =
160 × 106), 10 times more particles than fluid mesh points were used. This highlights the
difficulty in exploring weak clustering at large wavenumbers for large Reynolds numbers.

4.2.4. Comparison of cases with Epstein and Stokesian drag
For rarefied gases, the molecular mean-free path is large compared with the particle size,
and the response time is then given by the Epstein time, as presented in (2.7). For a dense
(continuous) fluid, however, where Kn < 1, the response time is given by the modified
Stokes time; see (2.6). To compare the effect of using these two response times, we show
in figure 11 power spectra of particle number densities for simulations using Epstein and
Stokes drags for approximate Stokes numbers between 6 × 10−4 and 6. We see that the
two reflect rather similar trends. At least part of the remaining discrepancies can probably
be explained by small differences in the actual Stokes numbers for the two drag laws.
Both for small and large Stokes numbers, we see a k2 spectrum, indicative of random
particle distributions at high wavenumbers (small scales). Initially, particles of all sizes
were randomly distributed, and hence they had a k2 spectrum. However, the reasons
that we still see a k2 spectrum at later times are different for the smallest and largest
particles. The largest particles are so heavy that their response times are far too long for
the particles to be able to react to the turbulent eddies associated with the smallest spatial
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Figure 11. Comparison of power spectra of particle number densities for Run V1 using Epstein (solid lines)
and Stokes drag (dotted lines) for Stint = 6 × 10−4 (black), 6 × 10−3 (orange), 6 × 10−2 (red), 0.6 (green) and
6 (blue) for (a) Pn(k) and (b) Pn(k)− Pnoise.

and temporal scales. This is why the power spectra of the heavier particles still show their
initial k2 spectrum at small scales. The smallest particles, by contrast, are being re-shuffled
by the turbulence and therefore maintain a random particle distribution. They do not have
enough inertia to move from one fluid element to another, which is a requirement for
the particles to form inertia-based clusters. They are fundamentally different from the
short-lived increase in the particle number density, which occurs always when the fluid
volume in which the tracer particles reside, is compressed – for example due to the passing
of an acoustic wave or shock.

4.2.5. Applicability of the Eulerian approach for particles
In figure 12, particle power spectra for different Stokes numbers are shown for our four
main runs, V1, V2, C1 and C2. The solid lines correspond to results obtained with the
Lagrangian approach for the particles, while the Eulerian particle approach was used for
the simulations visualised by the dotted lines. For V1 and V2, as shown in figure 12(a,c),
we see that the two approaches yield similar results for the smaller Stokes number up
to the wavenumbers where the k2 scaling commences in the Lagrangian simulations,
which corresponds to k ∼ 4k1 for the 5 × 4 million particles chosen for these simulations
with five different radii. When the Stokes number is increased (different colours), the
Lagrangian and Eulerian spectra for k/k1 ≤ 4 are still comparable for V1, but for V2
we see a clear difference for the largest Stokes numbers, and not just for the largest
wavenumbers; see also Boffetta et al. (2007) and Shotorban & Balachandar (2009) for
similar results.

We recall that in the 1-D simulations, the critical value of Stint for the occurrence
of caustics was around 0.3; see the discussion at the end of § 4.2.5. In the present
case of 3-D turbulence, we also see a difference between the Eulerian and Lagrangian
simulations near Stint = 0.3, but only for the spherical expansion waves; see figure 12(d).
When the turbulence is driven compressively, as in Runs C1 and C2, which are shown
in figure 12(b,d), we see that the Eulerian and Lagrangian approaches yield comparable
results only for the very smallest Stokes numbers. Thus, the range of applicability of the
Eulerian approach depends on the type of forcing and is more restrictive in the compressive
case. For the other cases, the differences are rather small, except perhaps for the heaviest
particles. This difference could also be caused by our usage of artificial viscosity and

934 A37-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
43

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1143


Spectral characterisation of inertial particle clustering

100

100

101 102 100 101 102

101 102

k/k1

101 101 102

k/k1

(a) (b)

(c) (d)

P
n 
(k

)

10–5

10–6

10–7

10–4

10–3

10–1

10–2

10–5

10–6

10–7

10–4

10–3

10–1

10–2

P
n 
(k

)

10–5

10–6

10–7

10–4

10–3

10–1

10–2

10–5

10–6

10–7

10–4

10–3

10–1

10–2

Stint = 7
Stint = 0.7
Stint = 7×10–2

Stint = 7×10–3

Stint = 7×10–4

Lagrangian
Eulerian

Stint = 31
Stint = 3.1
Stint = 3.1×10–1

Stint = 3.1×10–2

Stint = 3.1×10–3

Stint = 34
Stint = 3.4
Stint = 3.4×10–1

Stint = 3.4×10–2

Stint = 3.4×10–3

Stint = 9
Stint = 0.9
Stint = 9×10–2

Stint = 9×10–3

Stint = 9×10–4

Figure 12. Comparison of power spectra of particle number densities for Runs V1 (a), C1 (b), V2 (c) and C2
(d). The dashed lines in panel (d) are obtained by adding Pn,noise, as given in (4.4), to the spectra obtained from
the Eulerian simulation of Run C2.

diffusivity in the Eulerian simulations. At large wavenumbers, on the other hand, there is
always a large difference, but this is mainly caused by the effect of noise.

For Run C2 in figure 12(d), we also show the power spectra from the Eulerian approach
with the contribution from Pn,noise of (4.4) being added. This models a power spectrum
that is accounting for the noise from a finite number of Lagrangian particles; see the dashed
lines. For the smallest Stokes number, we see that the solid and dashed lines almost overlap,
but for all other Stokes numbers the resemblance is poor. This means that, except for the
very smallest Stokes numbers, the differences between the particle power spectra obtained
with the Lagrangian and Eulerian particle approaches are not primarily due to the noise
contribution of the Lagrangian approach. Furthermore, from the results shown in figure 12,
we can also conclude that the Eulerian approach should not be used to track particles unless
the Stokes number is low.

As expected from the discussion above (§ 4.2.3), we notice a k2 behaviour for the
smallest Stokes numbers; see figure 12. This applies, of course, only to the Lagrangian
simulations with a finite number of particles, and cannot be seen in the corresponding
Eulerian simulations. However, there is a clear departure from the k2 behaviour as the
Stokes number is increased. The reason is that particle inertia now starts to have an effect
on the clustering. This clustering is not due to fluid compression, but rather due to other
inertia-based clustering mechanisms, such as the Maxey–Riley mechanism.

For intermediate Stokes numbers, the particle power spectra resemble those presented in
Haugen et al. (2018). In that paper, the authors speculate that the peak in the particle power
spectra is associated with the similarity in the characteristic time scales of the turbulence

934 A37-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
43

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1143


N.E.L. Haugen, A. Brandenburg, C. Sandin and L. Mattsson

100 101 102

k/k1

100 101 102

k/k1

(a) (b)

0.0100

0.0010

0.0001

P
n 
(k

)

0.0100

0.0010

0.0001

P
n 
(k

) –
 P

no
is

e (
k)

3.1×10–3

Stint =

Re=20, V2a
Re=45, V2
Re=95, V2b

3.1×10–2

3.1×10–1

3.1
31

3.1×10–3

Stint =

3.1×10–2

3.1×10–1

3.1
31

Figure 13. Comparison of power spectra of particle number densities for Run V2 (dashed lines) with
Run V2a (dotted lines) and Run V2b (solid lines) for (a) Pn(k) and (b) Pn(k)− Pnoise(k).

and the response time of the particles. However, such a connection could not be confirmed
in their work owing to their limited Reynolds number. We see here the same trend as
found by Haugen et al. namely that the individual maxima of the spectra are insensitive
to the Stokes number. We expect this to change at higher Reynolds numbers and higher
resolution.

4.2.6. Reynolds number dependence
In order to investigate the nature of the inertia-based clustering further, we would like to
run simulations with much larger Reynolds numbers. In the DNS, this becomes very costly
when the Mach number is large and shocks need to be resolved. In figure 13, we show the
power spectra for different Stokes and Reynolds numbers. For the smaller Stokes numbers,
an increase in Re leads to an increase in spectral power. For the larger Stokes numbers, the
trend is opposite. Looking at the Kolmogorov-based Stokes number (StKol), however, we
see that, for a given value of Re, we get more power and hence more clustering when the
Kolmogorov-based Stokes number is closer to unity. For the Reynolds numbers obtained
here, it therefore seems that it is the Kolmogorov based Stokes number that controls the
strength of the clustering, not the one based on the integral scale (Stint). The same has also
been found in other low Reynolds number studies (Bec et al. 2007; Baker et al. 2017). As
the Reynolds number is increased, however, one eventually reaches a point where particles
with Stint around unity will be much slower than the smallest turbulent eddies and they will
therefore be totally decoupled from the Kolmogorov scale. Hence, the clustering cannot
be determined by StKol in such cases. The nature of this large-scale particle clustering still
remains to be understood, because much larger resolution would be needed.

4.2.7. Clustering mechanisms
From Run C1, shown in figure 12(b), we see that the spectra for Stint = 0.09 and 0.9 are
very similar. This may be an indication of a non-monotonic behaviour of the spectral
evolution with Stokes number. In order to investigate this further, we perform a new
simulation that is identical to Run C1 except that we now include many more closely
spaced particle sizes (Stokes numbers). The spectra for some of these Stokes numbers
are shown in the figure 14(a). From this we see that the spectral power increases from
Stint = 0.018 up until Stint = 0.3, before it decreases again as we move towards Stint = 1.5.
Finally, a clear increase is seen for larger Stokes numbers. In figure 14(b) we plot the
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Figure 14. Values of Pn(k) and Pn(Stint) for Run C1 with more particle sizes. The different line types in panel
(a), marked in the legend, correspond to the line types of the short vertical lines on the upper abscissa of panel
(b). Likewise, the different colours in panel (b), indicated in the legend, correspond to the colours of the short
vertical lines in panel (a).

power for five different wavenumbers as a function of the particle Stokes number in order
to see this non-monotonic behaviour more clearly. Here we see that, for all wavenumbers
shown, the power spectra attain two distinct maxima: the first is around Stint = 0.3, while
the other is found between Stint = 10 and 30. It is not immediately clear what is causing
this non-monotonic behaviour, but we argue here that it is due to a change in the relative
importance between two different particle clustering mechanisms. Since compressive
forcing was used for this run, the two competing mechanisms are most likely (i) the
shock-clustering mechanism, as described in § 4.1.2, and (ii) the classical Maxey–Riley
clustering mechanism.

If one of the peaks is due to the shock-clustering mechanism, we would expect it
to be stronger as the Mach number is increased. We therefore perform an intermediate
simulation (Run C1.5) where we increase the Mach number to Ma = 0.39 to investigate
this. The results are shown in figure 15, where it is clearly seen that the first peak has
become substantially stronger, and also moved somewhat to the right. The second peak is,
however, almost unchanged, except for a smaller shift to the left. This seems to indicate
that it is the first peak that is due to the shock-clustering mechanism. There may well
be parallels with the simulations of Yang et al. (2014) and Zhang et al. (2016), which
used, however, a shock-capturing scheme and were therefore not DNS. We now proceed
by increasing the Mach number even further (Run C2) and show the results in figure 16.
The first peak has now become so strong that the second peak is only visible as a weak
shoulder for Stint ≈ 10. We will now continue by investigating the mechanism behind the
second peak.

For the classical eddy mechanism of Maxey & Riley, we expect the clustering to depend
primarily on the vortical part of the velocity field. Hence, the Stokes number for the second
peak should be of the order of unity if the fluid time scale is calculated based on the vortical
part of the velocity field. To check this, we have performed a Helmholtz decomposition
of the velocity field by computing the vector and scalar potential of u = ∇ × ψ + ∇φ.
The r.m.s. values of the corresponding velocity fields are given in table 4. We also list
the estimated peak Stokes numbers from the simulations at k/k1 = 32 and those based
on the vortical velocity field. We see that the vortical peak Stokes numbers are 1.2 and
1.6 for Runs C1 and C1.5, while for Run C2, we only see an indication of a shoulder at
Stvort

peak2 = 1.6, at least for smaller values of k. This could be taken as an indication that
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Figure 15. Similar to figure 14, but for Run C1.5 with more particle sizes.

101100 102

10–3

10–3

10–4

10–4

10–5

10–510–6

10–1 100 101 102

κ/κ1

κ/κ1 = 2
κ/κ1 = 4
κ/κ1 = 8
κ/κ1 = 16
κ/κ1 = 32

P
n(
κ
)

P
n(

St
in

t)

Stint

Stint = 0.048
Stint = 0.16
Stint = 0.8
Stint = 4.2
Stint = 14
Stint = 107

(b)(a)

Figure 16. Similar to figure 14, but for Run C2 with more particle sizes.

Run urms uvort
rms upot

rms Stpeak1 Stpeak2 Stvort
peak1 Stvort

peak2

C1 0.170 0.017 0.169 0.15 12 0.02 1.2
C1.5 0.352 0.11 0.334 0.6 5 0.19 1.6
C2 0.865 0.200 0.842 2 (7) 0.46 (1.6)

Table 4. The r.m.s. velocities for the Helmholtz decomposed velocities together with the estimated peak Stokes
numbers from the simulations and those based on the vortical velocity field. The numbers in parentheses are
more uncertain. The reason for this is that, for Run C2, the second peak appears as a shoulder only, and no
clear maximum can be identified.

the second peak is indeed due to the classical eddy mechanism of Maxey & Riley, or the
non-local clustering mechanism discussed by Bragg et al. (2015).

In figure 17, we show the particle concentrations for Run C1.5 in order to determine if
we can see any trace of the two different mechanisms behind the particle clustering. We
see that clustering is now apparent for a very broad range of Stokes numbers, ranging from
Stint = 0.3 to 50. Both for small and large values of Stint do we see blob-like clusters, while
for intermediate values the structures are more sheet like. Other than that, there is no real
difference in the morphology of structures between small and large Stokes numbers.

In figure 18 we present similar results as in figures 14 and 16, but now for the low
Mach number case with vortical forcing (Run V1). Our results are therefore more similar
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Figure 17. Similar to figure 7, but for Run C1.5 showing contour plots of particle number density for Stint in
the range from 0.1 to 53.

to earlier ones for incompressible turbulence (see, for example, Ireland, Bragg & Collins
2016a,b). Here, there is no indication of anything more than a single peak. This peak,
which is due to the classical eddy clustering of Maxey & Riley, is found to be around
Stint ≈ 1, as expected.

4.2.8. The RDFs
Typically, the RDF is mainly used for small distances of a few Kolmogorov lengths, but
here we are interested in larger distances, too. To speed up the calculation in that case,
we use the numbers of particles at each mesh point and sum up the products of particle
numbers between all pairs of mesh points where the particle number is finite. We show
in figures 19 and 20 RDFs for Runs C1.5 and V1. The abscissa is normalised by the
smallest wavenumber in the domain, k1 = 2π/L. This means that particle separations up
to half the domain size are shown. Owing to the discrete spacing of mesh points within the
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Figure 18. Similar to figure 14, but for Run V1 with more particle sizes.
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Figure 19. RDFs for Run C1.5, (a) shown as a function of r for different Stokes numbers, and (b) as a function
of St for five different separations (rk1 = 0.025, 0.07, 0.12, 0.17 and 0.22). The different line types in panel
(a), marked in the legend, correspond to the line types of the short vertical lines on the upper abscissa of panel
(b). Likewise, the different colours in panel (b), indicated in the legend, correspond to the colours of the short
vertical lines in panel (a).

various shells, the resulting g(r) was not smooth, but this problem is readily alleviated by
normalising instead with an empirically determined discrete version of g(r) for a random
particle distribution. We note that RDFs based on the mean particle number per mesh point
can also be used for the Eulerian approach, in spite of its other shortcomings.

In incompressible Kolmogorov-type turbulence, g(r) tends to show a gradual decline
with increasing r (Salazar et al. 2008). This overall trend is also seen in the present
cases of compressible turbulence. This is characteristic of the fractal nature of the particle
distribution. In the case of Run C1.5, however, we also see characteristic peaks of g(Stint)
for Stint ≈ 1 and 10. These values of Stint agree with those where enhanced clustering was
found in figure 15. For the run with vortical forcing, we only see a single peak both in the
spectra and the RDFs as a function of Stokes number; see figures 18 and 20.

It may be useful to compare our results of large-scale clustering with earlier ones by
Saw et al. (2012), who also claimed to have found large-scale clustering in wind tunnel
experiments. In their case, however, such clustering was believed to be mainly the result
of their initially inhomogeneous field of particles. They computed RDFs, which showed
a characteristic shoulder at about a hundred Kolmogorov scales. Our simulations do not
show such a shoulder, but this could be owing to a lack of scale separation. It would have
been interesting to see their RDFs also as a function of Stokes number in addition to just
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Figure 20. Similar to figure 19, but for Run V1.
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(dashed-dotted lines) and Run V3s02 (dotted lines) for (a) Pn(k) and (b) Pn(k)− Pnoise.
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Figure 22. Values of EK(k) (a) and Pρ(k) (b) for Runs V3 and V3a (DNS with ν = 0.05 and 0.02,
respectively) as well as Runs V3s01, V3s02 and V3s1 (LES with Cν = 0.1, 0.2 and 1, respectively).

the separation. In particular, it would then be important to include also larger values of the
Stokes number.
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Figure 24. Sketch summarising the various clustering mechanisms discussed in this paper.

Run �Kol δx εK Ma Re

V1 0.042 0.049 0.0003 0.15 101
V2b 0.044 0.025 0.034 0.72 95
V3a 0.080 0.025 0.199 1.14 38
V3s01 0.074 0.098 0.267 1.15 38
V3s02 0.076 0.098 0.234 1.14 38
C2 0.213 0.049 0.064 0.74 15
C2a 0.107 0.025 0.061 0.76 38
C2s05 0.106 0.098 0.065 0.75 37
C2s1 0.106 0.098 0.063 0.74 37

Table 5. Summary of the Kolmogorov scale �Kol = (ν3/εK)
1/4, mesh spacing δx, energy dissipation rate εK

and Mach and Reynolds numbers.

4.2.9. Shock-capturing viscosity
Finally, let us discuss how well the clustering results can be modelled using lower
numerical resolution together with a shock viscosity to stabilise the code. Such a shock
viscosity was used in the LES of Yang et al. (2014) and Zhang et al. (2016), but it
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remained unclear to what extent this affected the accuracy of their results. To perform
a meaningful comparison between DNS and LES, it is interesting to have an even larger
value of Ma. To be able to do this, it is interesting to have an even larger value of Ma.
Therefore, we consider a DNS with Ma = 1.14 (Run V3a) and compare with two LES
with different values of Cshock; see (2.4). The result for the density spectra is shown in
figure 21. We see that for all values of Stint, except for Stint = 0.53, the LES spectra (dashed
and dashed-dotted lines) are close to the DNS for k/k1 < 20. For Stint = 0.53 (red lines),
however, the agreement exists only up to k/k1 ≈ 6. Surprisingly, a similar departure is not
seen in the kinetic energy and fluid density spectra shown in figure 22. A major difference
is, of course, that the LES do not resolve the small length scales at all, which is also
why their spectra are shorter. The discrepancy in the particle density spectra between LES
and DNS therefore suggests that the clustering, which occurs mostly at those intermediate
values of Stint, depends on physical effects at the scale of the shocks, corresponding to
high wavenumbers. If this is indeed the case, this departure between DNS and LES may
become worse at larger values of Ma. It will be interesting to revisit this question in future
simulations at higher resolution.

We should point out that the name LES is, in the present context, somewhat of
a misnomer, because here all the eddies are actually resolved. This is because the
Kolmogorov scale in Run V3 is approximately three times as large as the mesh spacing;
see table 5. In the LES, the mesh spacing is four times larger than in the DNS, which
means that we are resolving down to almost the Kolmogorov scale.

The quality of LES is worse for runs with compressive forcing; see figure 23, where
we show the results for Run C2 with Ma = 0.76. We see that for Stint = 3.6 (green lines),
the agreement between DNS and LES is rather poor even for small values of k/k1. For
Stint = 0.36 (red lines), the agreement is slightly better, but again only for small values of
k/k1.

5. Conclusions

In this work we have used particle power spectra to investigate particle clustering for
compressible isotropic turbulence. We have shown that, by plotting the dependence on
the Stokes number for a particular wavenumber, they are a particularly suitable tool
for identifying large-scale clustering owing to various clustering mechanisms such as
Maxey–Riley and shock clustering. For studying small-scale clustering, the conventional
RDFs remain a more suitable tool.

We have studied the effect of using either the Epstein drag, which applies for Kn 
 1,
or the modified Stokesian drag, which applies for Kn 	 1. As long as the particle radii
are non-dimensionalised with the Stokes number, the power spectra resulting from the
two drag laws turned out to be similar. This supports the general usefulness of the Stokes
number – even for compressible flows and very diverse drag laws.

When using the concept of power spectra to analyse particle clustering of Lagrangian
particles, it is important to realise that the number of particles used will have an effect
on the power at large wavenumbers (small scales). This is due to the fact that, if too few
particles are used, there are not enough particles to populate such small clusters and it
becomes impossible to identify clusters at small scales. This effect is clearly seen through
the presence of a k2 contribution in the power spectra at small scales. The magnitude of
the k2 contribution is proportional to the inverse of the total number of particles in the
simulation. If the Eulerian approach is used for the particles, it is implicitly assumed that
an infinite number of particles are involved. This implies that the k2 contribution to the
power spectra is absent. However, this only applies to cases with an infinite number of
particles.
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When using the Eulerian particle approach, multi-valued particle velocities are not
possible. This is because the Eulerian approach cannot represent caustics, which implies
that only very small Stokes numbers would be modelled correctly. Furthermore, for larger
Stokes numbers, artificial diffusion and viscosity must be used for the particle fluid in
order to stabilise the simulations. This can yield non-physical results. Hence, the Eulerian
particle approach can only be used to simulate a very large number of particles that are
small enough so that they behave almost as tracers.

The main finding of the present study is that there is a significant difference in
the clustering, depending on how the turbulence is generated. For vortical forcing, the
clustering peaks at an integral-scale-based Stokes number of around unity. As already
explained in § 3.1, there is an ambiguity regarding the most meaningful normalisation of
Stint, and one could argue for one that would make its value smaller by a factor of 2π.
However, when we use compressive forcing, we drive strong flow divergences. In that
case, we find that clustering peaks at two different integral-scale-based Stokes numbers,
one somewhat below unity, and the other at much larger Stokes numbers. We argue that the
first peak is explained by shock clustering, similar to what was found by Yang et al. (2014)
and Zhang et al. (2016), while the second is the usual Maxey–Riley clustering (based on
the centrifugal sling effect), and its integral-scale-based Stokes number is found to be
around unity if it is evaluated based on the vortical part of the velocity field; see figure 24
for a summary.

In order to resolve shocks in high Mach number DNS, a very fine mesh is required.
In many cases, interesting physics is, however, not related to the internal structure of the
shocks themselves, but to the flows outside the shocks. It is therefore often regarded as
useful to model shocks through a shock viscosity instead of resolving them, such that a
coarser mesh can be used. We investigated the effect on the particle clustering by using
a shock-capturing viscosity to broaden the shocks. For the simulations performed here,
the shock broadening meant that the mesh was allowed to have four times less grid points
in each direction. We found that the cases with shock-capturing viscosity reproduced the
results of a fully resolved DNS for the first decade of wavenumbers rather accurately.
However, the relatively strong clustering at small scales that was found for the DNS
of particles with integral-scale-based Stokes numbers slightly less than unity were not
reproduced. In view of these caveats, it would be interesting to revisit the earlier work of
Yang et al. (2014) and Zhang et al. (2016).
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Figure 25. Front speed vs gas speed from the 1-D experiment described in the text (plus signs and black
line), compared with the associated Doppler speeds, cs + umax (blue) and (c2

s + u2
max)

1/2 (red).

Appendix A. Forcing algorithms

The purpose of this appendix is to summarise the two types of forcings. For vortical
forcing, we choose

f (x, t) = Re{N f̃ (k, t) exp[ik · x + iϕ]}, (A1)

where we select randomly at each time step a phase −π < ϕ ≤ π and the components of
the wavevector k from a discrete set of wavevectors with average wavenumber kf . Here, x
is the position vector and N = f0(cskf δt)1/2 is a normalisation factor, where δt is the time
step and f0 is an amplitude factor. To ensure that f̃ is solenoidal, i.e. perpendicular to k,
we write is as

f̃ (k) = (k × ê)/[k2 − (k · ê)2]1/2, (A2)

where ê is an arbitrary unit vector that is not aligned with k.
For compressive forcing with f = −∇φ, the potential φ is given by

φ(x, t) = N exp{[x − xf (t)]2/R2}, (A3)

where R = 2/kf is the initial radius of the expansion waves and xf (t) are random positions
that change in forcing intervals δtf . Here, the normalisation factor is N = cs(csR/δtf )1/2.

Appendix B. Front speed vs gas speed

In § 4.1.1, we used counter-propagating acoustic waves to drive inertial particles into each
other. The speed of these waves is equal to the sound speed when the speed is small, but
can become comparable to the gas speed for large velocities. This is shown in figure 25.
Note that, even at subsonic gas speeds, the wave speed may exceed the speed of sound.
Interestingly, the front speed is slightly faster than the associated Doppler speed, cs + umax,
but slower than (c2

s + u2
max)

1/2.
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