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ESTIMATION OF RIEMANNIAN BARYCENTRES

HUILING LE

Abstract

Using Jacobi field arguments, this paper describes an iterative
procedure for finding the Riemannian barycentres of a class of
probability measures on complete, simply connected Riemannian
manifolds with a finite upper bound on their sectional curvatures.
This, in particular, generalises an earlier result of the author’s
(‘Locating Fréchet means with application to shape spaces’, Adv.
Appl. Probab. 33 (2001) 324–338).

1. Introduction

The concept of the Riemannian barycentre (or Riemannian centre of mass) of a proba-
bility measure on a Riemannian manifold has links with many different research areas.
Among others, Karcher has used it to generalise the mollifier smoothing to maps between
Riemannian manifolds [6]; Émery and Mokobodzki have linked it with convexity [3]; Jost
has used it to provide a simplification of the variational theory [4]; Kendall has applied it to
derive a fully probabilistic approach to the nonlinear elliptic variational theory of harmonic
maps [7]; Oller and Corcuera have exploited it to give an intrinsic approach to statistical
estimation based on the Fisher–Rao metric [12]; and Le has related it to the study of shape
of the means in the statistical analysis of shape [10].

The three main questions concerning the Riemannian barycentre are: whether it exists at
all for a given probability measure; if so, whether it is unique; and then how to estimate it.
For a probability measure with bounded support, the Riemannian barycentre always exists.
Assuming that such a barycentre does exist, an issue related to its location is considered
in [2]. The uniqueness of the Riemannian barycentre inside the support of the probability
measure has been addressed in, for example, [6] and [7]. The result of [7] is essentially
the best possible; see also [8], which is devoted to a cleaner treatment of the Kendall result
without the distractions of harmonic maps. It is easy to give examples where the Riemannian
barycentre ceases to be unique when the condition given in [7] or [8] fails. The issue of
the estimation of Riemannian barycentres has been studied in [11] in the case of locally
symmetric Riemannian manifolds with non-negative sectional curvature, and in [9] in the
context of the simplex shape spaces of non-positive sectional curvature. The result regarding
estimation given in [11] is based on the construction of a contraction mapping using Jacobi
fields. However, this results in a further unsatisfactory restriction on the radii of the balls
supporting the probability measures under consideration.

The focus of the present paper is to improve on the result of [11], and to give an alternative
estimation procedure. We show that, for any complete and simply connected Riemannian
manifold whose sectional curvatures have a finite upper bound, as long as the (finite) radii of
the balls supporting the probability measures satisfy the condition set in [7], the estimate that
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Estimation of Riemannian barycentres

we propose here will always converge to the Riemannian barycentre inside the supporting
ball. Note that we do not require the upper bound of the sectional curvatures to be positive.
However, when the upper bound is non-positive, the corresponding Kendall result does not
require the finiteness of the radii of the supporting balls that we have imposed.

Throughout this paper, we shall always assume that M is a complete and simply con-
nected Riemannian manifold with Riemannian distance d , that its sectional curvatures have
an upper bound κ1 and that, if κ1 > 0, it has injectivity radius inj(M) (see [1, p. 95]).
We shall use r∗ to denote 1

2 min{inj(M), π/
√

κ1} if κ1 > 0, or a given arbitrary positive
constant if κ1 � 0.

2. A Jacobi field estimate

For simplicity, in and only in this section, we shall also assume that the sectional cur-
vatures of M have a lower bound κ0 ∈ R. That will not translate into a global bound in
our applications, since there we shall only be working locally on a geodesic ball. Assuming
such a lower bound κ0, note that in the case when κ1 > 0, if the dimension of M is even or
if the dimension of M is odd and κ0 � κ1/4, then inj(M) � π/

√
κ1 (see [1, pp. 98–100])

so that, in these cases, the constant r∗ defined above will be π/(2
√

κ1).
The open (geodesic) ball

B(x0, r) = {x : d(x, x0) < r}
in M is called convex if, for any x, y ∈ B(x0, r), there is one and only one shortest geodesic
from x to y in M , and this geodesic lies in B(x0, r). Note that the Riemannian distance d

is a smooth function with respect to either of its two variables when both of the variables
are restricted to a convex ball. Note also that, for any x0 ∈ M , the ball B(x0, r) with radius
r � r∗ is convex (see [1, p.103]).

The following lemma shows the influence of the lower sectional curvature bound on
Jacobi fields; the result is complementary to a similar lower bound on Jacobi fields given
in [5, p. 188], in terms of the upper sectional curvature bound.

Lemma 1. Let γ : [0, �] −→ M be a unit speed geodesic, where � < 2r∗, and let J be a
Jacobi vector field along γ such that J (0) is tangent to γ̇ (0). Then, for all t ∈ [0, �],

〈
J̇ nor(t), J (t)

〉
�




√
κ0 cot

(√
κ0 t

)‖J nor(t)‖2, κ0 > 0,

1
t
‖J nor(t)‖2, κ0 = 0,

√−κ0 coth
(√−κ0 t

)‖J nor(t)‖2, κ0 < 0,

where J nor(t) and J̇ nor(t) denote the normal components, with respect to the geodesic γ

at t , of J (t) and J̇ (t) respectively.

Proof. We prove the lemma for the case when κ0 > 0. The proof for the cases when κ0 � 0
is similar. Without loss of generality, we assume that 〈γ̇ (0), J̇ (0)〉 = ‖J (0)‖ = 0, and that
J̇ (0) �= 0, so that J (t) is non-zero vector field and normal to γ̇ (t) for all t ∈ (0, �].

For a fixed t0 ∈ (0, �], consider the Jacobi field J̃t0(t) = J (t)/‖J (t0)‖ along γ . Then,
since ‖J̃t0(t0)‖ = 1, and since

〈J̇ , J 〉
‖J‖2 =

〈 ˙̃
Jt0 , J̃t0

〉
∥∥J̃t0

∥∥2 ,
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we have

〈J̇ , J 〉(t0)
‖J (t0)‖2 = 〈 ˙̃

Jt0 , J̃t0

〉
(t0)

=
∫ t0

0

d

dt

〈 ˙̃
Jt0 , J̃t0

〉
(t) dt

=
∫ t0

0

{〈 ˙̃
Jt0 ,

˙̃
Jt0

〉
(t) + 〈 ¨̃

Jt0 , J̃t0

〉
(t)

}
dt

=
∫ t0

0

{〈 ˙̃
Jt0 ,

˙̃
Jt0

〉
(t) − 〈

R
(
J̃t0 , γ̇

)
γ̇ , J̃t0

〉
(t)

}
dt,

(1)

where R is the curvature tensor on M .
For t ∈ [0, t0], write E(t) for the parallel translate of J̃t0(t0) along γ in the reverse

direction to γ (t), and let

V (t) = sin
(√

κ0 t
)

sin
(√

κ0 t0
)E(t).

Then, for t ∈ [0, t0], V is a vector field along γ that satisfies the conditions V (0) = J̃t0(0) =
0 and V (t0) = J̃t0(t0). Since for no t ∈ [0, �] is γ (t) conjugate to γ (0) along γ , it follows
from the index lemma (see [1, p. 24]) that∫ t0

0

{∥∥ ˙̃
Jt0(t)

∥∥2 − 〈
R

(
J̃t0 , γ̇

)
γ̇ , J̃t0

〉
(t)

}
dt �

∫ t0

0

{‖V̇ (t)‖2 − 〈R(V, γ̇ )γ̇ , V 〉(t)} dt

�
∫ t0

0

{‖V̇ (t)‖2 − κ0 ‖V (t)‖2} dt.

(2)

Let M0 be a Riemannian manifold with the same dimension as that of M and with the
constant sectional curvature κ0, and let γ0 be a unit speed geodesic on M0. Consider a
Jacobi field J0 along γ0 that satisfies the boundary conditions

‖J0(0)‖ = 0, 〈γ̇0(0), J̇0(0)〉 = 0, and ‖J̇0(0)‖ = ‖J̇ (0)‖.
Then, following a similar argument to that given above, we have

〈J̇0, J0〉(t0)
‖J0(t0)‖2 =

∫ t0

0

{∥∥ ˙̃
J0,t0(t)

∥∥2 − κ0
∥∥J̃0,t0(t)

∥∥2
}

dt, (3)

where J̃0,t0(t) = J0(t)/‖J0(t0)‖.
However, since M0 has the constant sectional curvature κ0, we know that J0 must take

the form

J0(t) = 1√
κ0

sin
(√

κ0 t
)
E0(t),

where E0 is the vector field of the parallel translation of J̇0(0) along γ0 (see [5, p. 187]).
Thus, for all t ∈ [0, t0],∥∥ ˙̃

J0,t0(t)
∥∥ = ‖V̇ (t)‖ and

∥∥J̃0,t0(t)
∥∥ = ‖V (t)‖.

The required result then follows from (1), (2), (3) and the fact that

〈J̇0, J0〉(t0)
‖J0(t0)‖2 = √

κ0 cot
(√

κ0 t0
)
.
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Note that, if γ is a geodesic [0, 1] −→ M with speed ‖γ̇ ‖ < 2r∗ and J is a Jacobi
field along γ , then γ (t/‖γ̇ ‖) is a unit speed geodesic [0, ‖γ̇ ‖] −→ M and J (t/‖γ̇ ‖) is a
Jacobi field along γ (t/‖γ̇ ‖). Thus, the result of Lemma 1 for the estimate for J (t/‖γ̇ ‖) in
particular gives, for t ∈ [0, 1],

〈J̇ nor(t), J (t)〉 �




‖γ̇ ‖√κ0 cot
(‖γ̇ ‖√κ0 t

)‖J nor(t)‖2, κ0 > 0,

1
t
‖J nor(t)‖2, κ0 = 0,

‖γ̇ ‖√−κ0 coth
(‖γ̇ ‖√−κ0 t

)‖J nor(t)‖2, κ0 < 0.

Since θ cot(θ) � 1 for θ ∈ [0, π), we have the following result.

Corollary. Suppose that γ : [0, 1] −→ M is a geodesic with ‖γ̇ ‖ < 2r∗, and let J be a
Jacobi vector field along γ such that J (0) is tangent to γ̇ (0). Then

〈J̇ nor(1), J (1)〉 � c(r∗, κ0)‖J nor(1)‖2,

where

c(r∗, κ0) =
{

1, κ0 � 0,

2r∗
√−κ0 coth

(
2r∗

√−κ0
)
, κ0 < 0.

(4)

Note that, since θ coth(θ) � 1 for θ � 0, we always have c(r∗, κ0) � 1. Note also that
θ coth(θ) is an increasing function that is unbounded above for θ � 0.

3. Finding the Riemannian barycentre

Suppose that µ is a probability measure on M , and define

Fµ : M −→ R+; x 	−→ 1

2

∫
M

d(x, y)2 dµ(y).

Then a point x̂ ∈ M is a Riemannian barycentre of µ if and only if the energy functional
Fµ achieves its local minimum at x̂.

The following result is due to W. S. Kendall; the uniqueness clauses are given by [7,
Theorem 7.3] and the characterisation is a direct consequence of [7, proof of Lemma 7.2].

Lemma 2. (i) If κ1 > 0 and if the support of µ is contained in the ball B(x0, r) with r � r∗,
then the Riemannian barycentre x̂ of µ in B(x0, r) is unique.

(ii) If κ1 � 0 and if Fµ is finite at a point of M , then the Riemannian barycentre x̂ of µ is
always unique.

In either case, the barycentre is characterised by grad Fµ(x̂) = 0.

This result is a generalisation of an earlier result of Karcher [6], where the same con-
clusion holds under the more restrictive requirement that r < r∗/2. Note that it is shown
in [11] that, under Karcher’s condition, Fµ actually achieves its global minimum at the
Riemannian barycentre x̂ of µ in B(x0, r).

The main result of this paper is an estimate of the Riemannian barycentre x̂ under the
conditions set in Lemma 2, with the further restriction that the support of µ be contained in
a finite ball B(x0, r) when κ1 � 0. To describe our results, we now write κ0 for the lower
bound of the sectional curvatures in B(x0, r). Since r is finite, κ0 is also finite.
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We first look at the behaviour of Fµ along a geodesic.

Lemma 3. If the support of µ is contained in the ball B(x0, r∗) then, along any geodesic
γ : [0, 1] −→ B(x0, r∗),

d2

dt2 Fµ(γ (t)) � c(r∗, κ0)‖γ̇ (t)‖2,

where the constant c(r∗, κ0) � 1 is given by (4).

Proof. Consider the family of geodesics from y to γ (t): cy(s, t) = expy{s exp−1
y (γ (t))}.

Since, for any x, y ∈ B(x0, r∗), there is a unique shortest geodesic between them that lies
entirely in B(x0, r∗), it follows that there is a unique v ∈ Ty(M) such that exp−1

y (x) = v,
where Ty(M) denotes the tangent space of M at y and expy is the Riemannian exponential
map of M at y. Hence the geodesic cy(·, t) is well defined. Note also that, for each t ∈ [0, 1],
the geodesic cy(·, t) lies entirely in B(x0, r∗) with total length less than 2r∗.

It is shown in [6] that

d2

dt2 Fµ(γ (t)) =
∫

M

〈
γ̇ (t),

D

ds

dcy(s, t)

dt

∣∣∣∣
s=1

〉
dµ(y).

If we denote the Jacobi field dcy(s, t)/dt along s −→ cy(s, t) by J (s), then J (0) = 0,
J (1) = γ̇ (t) independent of y and

J̇ (1) = D

ds

dcy(s, t)

dt

∣∣∣∣
s=1

.

On the other hand, since J̇ tan is a tangential Jacobi field along s −→ cy(s, t) with J tan(0) =
0, we have J̇ tan(1) = J tan(1) (see [5, p. 172]). Thus we see, by the corollary to Lemma 1,
that

d2

dt2 Fµ(γ (t)) =
∫

M

〈J (1), J̇ (1)〉 dµ(y)

=
∫

M

{〈J (1), J̇ nor(1)〉 + 〈J (1), J̇ tan(1)〉} dµ(y)

�
∫

M

{‖J (1)nor‖2 + ‖J (1)tan‖2} dµ(y)

= c(r∗, κ0)‖γ̇ (t)‖2,

as required.

Since r∗ is at most half the injectivity radius, it follows that there is a unique

vy ∈ exp−1
x (B(x0, r∗)) ∩ Bx(2r∗)

such that exp−1
x (y) = vy , where Bx(2r∗) = {v ∈ Tx(M) : |v| < 2r∗}. Note that |vy | =

d(x, y). Thus, if the support of µ is contained in the ball B(x0, r∗), we have, for any
x ∈ B(x0, r∗),

grad Fµ(x) = −
∫

M

exp−1
x (y) dµ(y)

= −
∫

exp−1
x (B(x0,r∗))∩Bx(2r∗)

v d(µ ◦ expx)(v).

(5)
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Extending µ ◦ expx to the entire tangent space Tx(M) by defining

µ ◦ expx

{
Tx(M) \ (

exp−1
x (B(x0, r∗)) ∩ Bx(2r∗)

)} = 0,

we can write

grad Fµ(x) = −
∫

Tx(M)

v d(µ ◦ expx)(v) (6)

and, clearly, the right-hand expression in (6) is the negative of the Euclidean mean of the
induced probability distribution µ ◦ expx on Tx(M).

For x ∈ B(x0, r∗), denote by γx(t) the geodesic

γx(t) = expx(−t grad Fµ(x)), t ∈ R. (7)

The following lemma shows that the restriction of Fµ to γx decreases over an interval
[0, tx], where tx � 1/(2c(r∗, κ0)). It also gives a lower bound for the absolute value of that
decrease.

Lemma 4. Suppose that the support of µ is contained in the ball B(x0, r∗). Then, for each
x ∈ B(x0, r∗), there exists a tx ∈ (0, 1/(2c(r∗, κ0))] such that, if grad Fµ(x) �= 0, Fµ(γx(t))

is decreasing on (0, tx] and

Fµ(x) − Fµ(γx(t)) � t

2
‖ grad Fµ(x)‖2, t ∈ (0, tx]. (8)

Proof. For each x ∈ B(x0, r∗), let

tx = 1

2c(r∗, κ0)
sup

{
t ∈ [0, 1] : γx(t) ∈ B(x0, r∗)

}
.

Note that, for any x ∈ ∂B(x0, r∗), grad Fµ(x) is transverse to ∂B(x0, r∗) by (5), and hence

tx > 0, for all x ∈ B(x0, r∗).

Then tx ∈ (0, 1/(2c(r∗, κ0))], and, if grad Fµ(x) = 0, then γx(t) = x for all t , and so
tx = 1/(2c(r∗, κ0)).

If grad Fµ(x) �= 0, then it follows from

dγx(t)

dt

∣∣∣∣
t=0

= − grad Fµ(x)

that

dFµ(γx(t))

dt

∣∣∣∣
t=0

=
〈
grad Fµ(x),

dγx(t)

dt

∣∣∣∣
t=0

〉
= −‖gradFµ(x)‖2 < 0. (9)

On the other hand, since γx(t) lies in B(x0, r∗) for t ∈ [0, tx], we see, by Lemma 3, that

d2Fµ(γx(t))

dt2 � c(r∗, κ0)‖ grad Fµ(x)‖2, t ∈ [0, tx].
This, together with (9), implies that, for t ∈ (0, tx],

dFµ(γx(t))

dt
� −‖gradFµ(x)‖2 + c(r∗, κ0)‖ grad Fµ(x)‖2t

� − 1
2‖ grad Fµ(x)‖2 < 0,

(10)

and so, in particular, Fµ(γx(t)) is decreasing on (0, tx]. The result (8) is a consequence of
(10) together with the mean-value theorem.
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We are now in a position to establish the main result of the paper.
Suppose that the support of µ is contained in the ball B(x0, r∗). For a given x ∈

B(x0, r∗), we now define a sequence of points {xn : n � 0} in M as follows:

x0 = x and xn+1 = expxn
(−txn grad Fµ(xn)), for n � 0.

Theorem. Suppose that the support of µ is contained in the ball B(x0, r∗), and that
{xn : n � 0} are defined as above. Then, for any x ∈ B(x0, r∗), the sequence {xn : n � 0}
defined above converges to the Riemmanian barycentre x̂ of µ in B(x0, r∗) as n → ∞.

Note that the theorem generalises the result given in [11] on the estimation of Riemmanian
barycentres, which was obtained using a different method.

Proof. Suppose first that, for all n > 0, grad Fµ(xn) �= 0. Then, by Lemma 4,

Fµ(xn) > Fµ(xn+1). (11)

Equation (11) shows that the sequence Fµ(xn), n � 0, is a strictly decreasing sequence that
is also bounded below by zero, so that limn→∞ Fµ(xn) exists.

Since the initial conditions for γx vary smoothly with x, tx is continuous in x, so we find
that t∗ = inf{tx : x ∈ B(x0, r∗)} is strictly positive and that, by Lemma 3,

Fµ(xn) − Fµ(xn+1) � t∗
2

‖ grad Fµ(xn)‖2.

Hence the convergence of {Fµ(xn) : n � 0} implies that

lim
n→∞ ‖ grad Fµ(xn)‖ = 0. (12)

Since {xn : n � 0} is contained in B(x0, r∗) and so is a bounded sequence, there is a
convergent subsequence with limit x̃ in the ball. It is clear that grad Fµ(x̃) = 0 and so, by
Lemma 2, we must have x̃ = x̂. It then follows that x̂ is the only possible limit of any
convergent subsequence of {xn : n � 0}. This in turn implies that {xn : n � 0} itself
converges to x̂, since otherwise we could find a subsequence that converges to a limit other
than x̂, contradicting the above conclusion.

If there is an n0 > 0 such that grad Fµ(xn0) = 0, then xn0 = x̂, and it is easy to see that,
for all n > n0, xn = xn0 .

Acknowledgement. I am grateful to an anonymous referee for comments that have guided
me to a stronger version of the results.
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