SEMIGROUPS OF HIGH RANK II DOUBLY NOBLE SEMIGROUPS

by EMILIA GIRALDES*

(Received 3rd July 1984)

1. Introduction

This paper is a sequel to [2]. By a semigroup of high rank we mean a semigroup such that for $s_1 \neq s_2$, $\langle S \setminus \{s_1, s_2\} \rangle \subset S$ (properly). Semigroups of high rank such that $\langle S \setminus \{s\} \rangle \subset S$ (royal semigroups) were classified in [2], where it was also shown that for a noble semigroup (i.e. a semigroup of high rank such that there exists a superfluous element z in S for which $\langle S \setminus \{z\} \rangle = S$) there exists either exactly one superfluous element or exactly two superfluous elements [2, Theorem 3.7].

The main results of [2] give structure theorems for singly noble semigroups (for which there is a unique superfluous element). The purpose of this paper is to describe the structure of doubly noble semigroups, i.e. semigroups S in which there exist two distinct elements z_1, z_2 for which

$$\langle S \setminus \{z_1\} \rangle = \langle S \setminus \{z_2\} \rangle = S.$$

In one important respect the description is easier than in the singly noble case, for a doubly noble semigroup must be a band [2, Theorem 3.7]. Moreover, if we express such a band in the standard way as a semilattice of rectangular bands, then not only must all rectangular bands be in $RZ \cup LZ$ [2, Lemma 2.1], but also the underlying semilattice must be a chain Theorem 3.9. A full structure theorem for doubly noble semigroups is therefore not very hard to obtain, and this is given as Theorem 3.10.

2. Doubly noble semigroups

Let B be a doubly noble semigroup. Then B is a band [2, Theorem 3.7] containing two elements z_1, z_2 such that $\langle B \setminus \{z_1\} \rangle = \langle B \setminus \{z_2\} \rangle = B$, but there do not exist distinct s_1 and s_2 such that $B \setminus \{s_1, s_2\}$ generates B. From [2, Section 3] we have

$$(\forall s, t \in B) \qquad st \in \{s, t, z_1, z_2\} \tag{2.1}$$

$$(\forall s, t \in B \setminus \{z_i\}) \qquad st \in \{s, t, z_i\} \qquad i = 1, 2 \tag{2.2}$$

*This work was finished during a visit to St Andrews by the author, who acknowledges financial support from the Portuguese Instituto Nacional de Investigação Científica (Centro de Algebra de Lisboa).

409

We also have

$$(\forall s, t \in B \setminus \{z_1, z_2\}) \qquad st \in \{s, t\}$$

$$(2.3)$$

for if st were equal to z_1 or z_2 it would follow that $B \setminus \{z_1, z_2\}$ generates B.

Next we have

Theorem 2.4 Let B be a doubly noble band, with $\langle B \setminus \{z_1\} \rangle = \langle B \setminus \{z_2\} \rangle = B$. Then either

$$(\exists x, y \in B \setminus \{z_1, z_2\}) \qquad z_1 = z_2 x \quad and \quad z_2 = z_1 y \tag{2.5}$$

or

$$(\exists x, y \in B \setminus \{z_1, z_2\})$$
 $z_1 = xz_2$ and $z_2 = yz_1$. (2.6)

Proof. From (2.3) and from the fact that $\langle B \setminus \{z_1\} \rangle = B$ we must have either $z_1 = z_2 x$ or $z_1 = xz_2$ for some x in $B \setminus \{z_1, z_2\}$. Equally there exist y in $B \setminus \{z_1, z_2\}$ such that $z_2 = z_1 y$ or $z_2 = yz_1$. If

 $z_1 = z_2 x$ and $z_2 = y z_1$

then

 $z_1 = z_2 x = y z_1 x = y z_2 x^2 = y z_2 x = y z_1 = z_2$

a contradiction. Similarly

 $z_1 = xz_2$ and $z_2 = z_1 y$

lead to a contradiction. The result follows.

Notice now that (2.5) implies that $z_1 \mathcal{R} z_2$, hence, since B is a band,

$$z_1 z_2 = z_2, \quad z_2 z_1 = z_1. \tag{2.7}$$

Similarly (2.6) implies $z_1 \mathscr{L} z_2$ and so

 $z_1 z_2 = z_1, \quad z_2 z_1 = z_2.$

In the former case we say that B is a *dexter* doubly noble band, in the later case we say that B is a *sinister* doubly noble band. In what follows we shall confine ourselves to the dexter case; results for the sinister case will always follow by duality.

Notice now that the elements x and y appearing in (2.5) must be distinct, if we had $z_1 = z_2 x, z_2 = z_1 x$ it would follow that

$$z_1 = z_2 x = z_2 x^2 = z_1 x = z_2$$

We thus deduce that if B is a doubly noble semigroup, then $|B| \ge 4$.

410

Theorem 2.8. Let B be a dexter doubly noble band. Then (i) for all s in $B \setminus \{z_1\}$

$$sz_1 = s \Rightarrow z_1s = z_2s = sz_2 = s,$$

$$sz_1 = z_1 \Rightarrow z_1s \in \{s, z_1, z_2\},$$

(ii) for all s in $B \setminus \{z_2\}$

$$sz_2 = s \Rightarrow z_1s = z_2s = sz_1 = s,$$

$$sz_2 = z_2 \Rightarrow z_2s \in \{s, z_1, z_2\}.$$

Proof. It will be sufficient to prove (i). So suppose first that $sz_1 = s$. Then by (2.1)

 $sz_2 \in \{s, z_1, z_2\}$ $s = sz_1 = sz_2 z_1.$ by (2.7)

If $sz_2 = z_1$, then $z_1^2 = s$, a contradiction. If $sz_2 = z_2$, then $z_2z_1 = s$, again a contradiction. Hence $sz_2 = s$. By (2.1) we have

$$z_1s, z_2s \in \{s, z_1, z_2\}$$

If $z_1 s = z_1$, then

now

$$z_1 = z_1 s = z_1 s z_2 = z_1 z_2 = z_2$$

a contradiction. If $z_1 s = z_2$ then

$$z_2 = z_1 s = z_1 s z_1 = z_2 z_1 = z_1$$

again a contradiction. Thus $z_1s=s$, and similarly $z_2s=s$. The second part of the statement (i) follows directly from (2.1).

Corollary. (i) For all s in $B \setminus \{z_1\}$,

$$z_1 s \neq s \Rightarrow s z_1 = z_1, s z_2 = z_2.$$

(ii) For all s in $B \setminus \{z_2\}$,

$$z_2 s \neq s \Rightarrow s z_1 = z_1, s z_2 = z_2.$$

Example. Let B_4 be the subsemigroup of $\mathcal{T}(\{1, 2, 3, 4\})$

$$x = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 3 \end{pmatrix} \qquad y = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 4 & 4 \end{pmatrix}$$
$$z_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 3 & 3 \end{pmatrix} \qquad z_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 4 & 4 & 4 \end{pmatrix}$$

This has the Cayley table

	x	у	<i>z</i> ₁	<i>z</i> ₂
x	x	y y	z_1	z ₂
y	x	у	z_1	z_2
z_1	z_1	z_2	z_1	<i>z</i> ₂
z_2	z_1	z_2	z_1	z_2

and is a dexter doubly noble band generated by $B \setminus \{z_1\}$ and $B \setminus \{z_2\}$. It illustrates the fact that the rather weak statement in the second parts of (i) and (ii) in Theorem 2.8 cannot be strengthened. If s = x then

 $sz_1 = z_1$ and $z_1s = z_1$,

if s = y then

 $sz_1 = z_1$ and $z_1s = z_2$,

if $s = z_2$ then

 $sz_1 = z_1$ and $z_1s = s$.

We now show that B_4 is a rather significant example.

Theorem 2.9. Let B be a dexter doubly noble band generated by $B \setminus \{z_1\}$ and $B \setminus \{z_2\}$ and let x, y be elements of $B \setminus \{z_1, z_2\}$ satisfying (2.5). Then $\{x, y, z_1, z_2\}$ is a subband of B isomorphic to B_4 .

Proof. We know that $z_1z_2 = z_2$, $z_2z_1 = z_1$ from (2.7). From (2.5) it follows that

$$z_1 x = z_2 x^2 = z_2 x = z_1$$

and similarly that $z_2y = z_2$. From the corollary to Theorem 2.8 it follows that

$$xz_1 = yz_1 = z_1$$
 $xz_2 = yz_2 = z_2$.

From (2.3) it follows that $xy \in \{x, y\}$. Now xy = x implies that

$$z_1 = z_2 x = z_2 x y = z_1 y = z_2$$

a contradiction. Hence xy = y. Similarly yx = x. The result is now clear.

3. A structure theorem for doubly noble bands

Following the pattern established in [2] we begin by examining the structure of a dexter doubly noble band with exactly two \mathcal{J} -classes.

Let us examine the following construction. Let A and Z be disjoint right zero semigroups where $|A| \ge 2$, $|Z| \ge 2$. Let P be a proper subset of A such that $|P| \ge 1$ and let z_1 and z_2 be fixed elements of Z. Define a multiplication on $A \cup Z$ by the rules

$$az = z \qquad (z \in Z, a \in A)$$

$$za = z \qquad (z \in Z \setminus \{z_1, z_2\}, a \in A)$$

$$z_1a = z_2a = z_1 \qquad (a \in P)$$

$$z_1a = z_2a = z_2 \qquad (a \in A \setminus P).$$
(3.1)

It is possible to check directly that this is an associative multiplication. It is easy also to see that S is a doubly noble band, with superfluous elements z_1 and z_2 and with two \mathscr{J} -classes, namely A and Z. By analogy with the notational devices used in [2] we can write

$$B = DNB_{R}^{R} (A, Z; P; z_{1}, z_{2})$$
(3.2)

Notice that the example B_4 described following Theorem 2.8 is

$$B_4 = DNB_R^R (\{x, y\}, \{z_1, z_2\}; \{x\}; z_1, z_2).$$

A sinister doubly noble band dual to (3.2) is easily described and is denoted by

$$DNB_{L}^{L}(A, Z; P; z_{1}, z_{2}).$$
 (3.3)

We now prove

Theorem 3.4. Every doubly noble semigroup with two \mathcal{J} -classes is isomorphic to a semigroup of type (3.2) or (3.3).

Proof. Let B be a doubly noble band with elements z_1, z_2 such that

$$\langle B \setminus \{z_1\} \rangle = \langle B \setminus \{z_2\} \rangle = B.$$

EMILIA GIRALDES

Suppose first that B is dexter. Then $z_1 \mathscr{R} z_2$ and so certainly z_1, z_2 are in the same \mathscr{J} -class Z, then $|Z| \ge 2$. We know by [2, Lemma 2.1] that Z is either left or right zero, by (2.7) it follows that Z is right zero.

There exist x, y in $B \setminus \{z_1, z_2\}$ such that $z_1 = z_2 x, z_2 = z_1 y$. If $x \in \mathbb{Z}$ then

$$x = z_2 x = z_1$$

a contradiction. Hence $x \notin Z$, and similarly $y \notin Z$. Hence $x, y \in A$ ($|A| \ge 2$), the other \mathscr{J} class of B. By Theorem 2.9, $\{x, y, z_1, z_2\}$ is a subband of B isomorphic to B_4 . Hence in particular xy = y, yx = x, and so A, which must be either left zero or right zero, is in fact right zero. B is thus a two element chain of right zero semigroups A and Z, with

$$AZ \subseteq Z, ZA \subseteq Z. \tag{3.5}$$

For $a \in A$ and $z \in Z$ we have $az = z' \in Z$. In fact

 $z' = az = az^2 = z'z = z$

so we have

$$az = z$$
 $(a \in A, z \in Z).$ (3.6)

If $z \in \mathbb{Z} \setminus \{z_1, z_2\}$ then by (2.3) and (3.5)

 $za\in\{z,a\}\cap Z.$

Thus

$$za = z \qquad (a \in A, z \in \mathbb{Z} \setminus \{z_1, z_2\}). \tag{3.7}$$

Finally notice that by (2.1) and (3.5)

$$z_1 a \in \{a, z_1, z_2\} \cap Z = \{z_1, z_2\}.$$

If $z_1 a = z_1$ then by (2.5)

$$z_2 a = z_1 y a = z_1 a = z_1$$

(since A is a right zero semigroup). Similarly if $z_1a=z_2$ then $z_2a=z_2$. Thus A divides into complementary sets given by

$$P = \{a \in A: z_1 a = z_2 a = z_1\}$$
$$A \setminus P = \{a \in A: z_1 a = z_2 a = z_2\}.$$

Both sets are non-empty, since $x \in P$ and $y \in A \setminus P$. Thus

$$z_1 a = z_2 a = z_1 \qquad a \in P$$

$$z_1 a = z_2 a = z_2 \qquad a \in A \setminus P.$$
(3.8)

Comparing (3.6), (3.7) and (3.8) with (3.1) we see that

$$B \simeq DNB_R^R \quad (A, Z; P; z_1, z_2).$$

In obtaining a more general theory for doubly noble bands the following result is crucial.

Theorem 3.9. Let $B = \mathscr{B}[Y: \{E_a : \alpha \in Y\}]$ be a doubly noble band, expressed as a semilattice Y of rectangular bands. Then Y is a chain.

Proof. Suppose not, and let α be a branch point of Y. Thus there exist $\beta, \gamma > \alpha$ such that $\beta\gamma = \alpha$. Since $E_{\beta}E_{\gamma} \subset E_{\alpha}$ it follows that one element z of E_{α} can be expressed as a product xy with $x \in E_{\beta}$, $y \in E_{\gamma}$ and so $x \neq z$, $y \neq z$. Thus $\langle B \setminus \{z\} \rangle = B$. Hence $z \in \{z_1, z_2\}$ and so $\{z_1, z_2\} \in E_{\alpha}$. On the other hand $x, y \in B \setminus \{z_1, z_2\}$ and so $xy \in \{x, y\}$. Then $xy \in E_{\alpha} \cap \{x, y\} = \emptyset$ and we have a contradiction.

Now let B an arbitrary doubly noble semigroup and E_0 the \mathscr{J} -class of B containing z_1 and z_2 . Then $E_0 \in \mathbb{RZ}$ and B is a chain

$$B = \mathscr{B}[Y: \{E_{\alpha}: \alpha \in Y\}]$$

where there is at least one element α in Y, such that $\alpha > 0$. There exist x, y in $B \setminus E_0$ such that

$$z_2 x = z_1, \ z_1 y = z_2$$

and we have seen for any x, y satisfying these equations we have xy = y, yx = x, giving $x \mathcal{R} y$. It follows that

$$\{u \in B: z_2 u = z_1\} \cup \{v \in B: z_1 v = z_2\}$$

is contained in a single \mathscr{J} -class, say E_{α} , $\alpha > 0$, for if $z_1 u = z_1$, then $u \mathscr{R} y$, and if $z_1 v = z_2$ then $v \mathscr{R} x$. Then $E_{\alpha} \in \mathbb{RZ}$ and the structure of the subband $E_{\alpha} \cup E_0$ is that of

$$DNB_R^R(E_0; E_a; P; z_1, z_2).$$

Consider now the subband $E_{\gamma} \cup E_0$ where $\gamma > 0$ $\gamma \neq \alpha$. If $u \in E_{\gamma}$ then $z_1 u \neq z_2$ and so by (2.1)

$$z_1 u \in \{z_1, u\} \cap E_0 = \{z_1\}.$$

Thus $z_1 u = z_1$, and similarly $z_2 u = z_2$. If $z \in E_0 \setminus \{z_1, z_2\}$ then our previous argument using (2.3) gives

$$zu\in\{z,u\}\cap E_0$$

and so zu = z for all $u \in E_y$ and $z \in E_0$. Also for all $u \in E_y$ and all $z \in E_0$, $uz \in E_0$ and so

$$uz = uz^2 = (uz)z = z$$

by the right zero property of E_0 . Thus $E_{\gamma} \cup E_0$ has the structure of royal semigroup, as described in [2].

Every subband $E_v \cup E_{\mu}$, such that $v, \mu \neq 0$ is a royal band.

We now show that α covers 0. For suppose that α does not cover 0 and let $b \in E_{\delta}$ where $0 < \delta < \alpha$. Then both $E_{\alpha} \cup E_{0}$ and $E_{\alpha} \cup E_{\delta}$ are royal. Choose x in E_{α} such that $z_{1} = z_{2}x$: then

$$z_1 = z_2 x = (z_2 b) x = z_2 (bx) = z_2 b = z_2,$$

a contradiction.

We have therefore proved the converse half of the following theorem; where Ω denotes the class of all non-zero cardinal numbers.

Theorem 3.10. Let (Y, \leq) be a chain and let 0 be a fixed non maximal element of Y and suppose that Y contains an element 1 covering 0. Let $M: Y \to \Omega$ and $H: Y \to \{R, L\}$ be maps and suppose that $M(0) \geq 2$, $M(1) \geq 2$ and H(0) = H(1) = R. Let E_{β} , $\beta \in Y$, be a set containing $M(\beta)$ elements and having right or left-zero semigroup structure according as $H(\beta)$ is R or L. Let B the disjoint union $B = \bigcup \{E_{\beta}: \beta \in Y\}$ and $z_1, z_2 \in E_0$. Let $\emptyset \neq P \subseteq E_1$.

Extend the binary operation on E_{β} , $\beta \in Y$ to B giving $E_1 \cup E_0$ the structure

$$DNB_{R}^{R}(E_{1}, E_{0}; P; z_{1}, z_{2})$$

and all other unions $E_{\beta} \cup E_{\gamma}$ the structure

$$\operatorname{Roy}(\{\beta,\gamma\}, M | \{\beta,\gamma\}, H | \{\beta,\gamma\})$$
(3.12)

(see [2, Theorem 2.2]). Then B is a dexter doubly noble band, denoted by

Conversely, every dexter doubly noble band is isomorphic to one constructed in this way.

Proof. All that remains is to show that the multiplication described in B is associative. Let $a \in E_{\alpha}$, $b \in E_{\beta}$, $c \in E_{\gamma}$, where α , β , γ are distinct elements of Y. By (3.12) the associativity is obvious from the properties of royal semigroups unless $\{0, 1\} \subset \{\alpha, \beta, \gamma\}$.

If $\{\alpha, \beta, \gamma\}$ includes one element of Y that is lower than 0 then the associativity is again clear. Since $E_1 \cup E_0 \setminus \{z_1, z_2\}$ is royal we need only consider the six cases.

- (i) $a \in \{z_1, z_2\}, \beta = 1, \gamma > 1$,
- (ii) $a \in \{z_1, z_2\}, \beta > 1, \gamma = 1,$
- (iii) $b \in \{z_1, z_2\}, \alpha = 1, \gamma > 1,$
- (iv) $b \in \{z_1, z_2\}, \alpha > 1, \gamma = 1$,
- (v) $c \in \{z_1, z_2\}, \alpha = 1, \beta > 1,$
- (vi) $c \in \{z_1, z_2\}, \alpha > 1, \beta = 1.$

All the verifications are routine and a sample verification will suffice. In case (i) $z_1b \in \{z_1, z_2\} \subset E_0$ and so bc = b; hence

$$(z_1b)c = z_1b = z_1(bc).$$

The other cases are similar.

If $|\{\alpha, \beta, \gamma\}| < 3$ the associativity is obvious.

REFERENCES

1. A. H. CLIFFORD, Semigroups admitting relative inverses, Ann. of Math. 42 (1941), 1037-1049.

2. E. GIRALDES and JOHN M. HOWIE, Semigroups of high rank, Proc. Edinburgh Math. Soc. 28 (1985), 13-34.

3. J. M. HOWIE, An introduction to semigroup theory (Academic Press, London, 1976).

4. D. MCLEAN, Idempotent semigroups, American Math. Monthly 61 (1954), 110-113.

5. M. PETRICH, Lectures in semigroups (Akademie-Verlag, Berlin, 1977).

Departmento de Matemática Faculdade de Ciências Universidade de Lisboa 1300 Lisboa Portugal