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T H E Farey sequence of order h — 1 consists of the reduced rational fractions 
from 0 to 1 inclusive, with denominators less than h, and arranged in order 
of magnitude. Thus, if h = 6, the sequence is 

(1) 0 /1 , 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1. 

It is well known that for any two consecutive terms r/s and t/u, 

(2) ts — ru = 1, s + u ^ h. 

The principal result of this note is the observation that, by means of a Farey 
sequence, there can be written a complete system of residues, modulo an 
integer n, this system being expressed by fractions of the form a/u, with a 
and u suitably bounded. 

THEOREM 1. The integers of the sequence 1, 2, . . . , n are obtained in order, 
each integer exactly once, in the sequence of sequences associated in the following 
manner with the terms t/u of a Farey sequence. With the term t/u is associated 
the sequence (possibly, for small n, empty) of positive integers 

(3) (nt + d)/u, — n/(s + u) < a ^ n/(u + w), 

where r/s and v/w denote, respectively, the predecessor and successor of t/u in the 
Farey sequence (non-positive or positive values a being omitted if t/u is 0/1 or 1/1, 
respectively), and a runs over these integral values in the stated interval such that 
{nt + a)/u is an integer. 

To illustrate the theorem and its later application, the sequences in the case 
h = 6 associated with the terms in (1) are 

a (0 ^ a ^ n/Q) ; (n + a)/5 ( — n/6 < a ^ n/9, a = — n mod 5) ; 
(n + a)/4: (— n/9 < a ^ n/7, a = — n mod 4) ; . . . ; 
(2n + a)/b (- n/S < a ^ n/7, a = - 2n mod 5); . . . . 

It will be noted that the sequences associated with different terms of the Farey 
sequence do not overlap, and between them exactly cover the interval 1 to n. 
Also, \a\ does not exceed n/6, and if n is prime to all the denominators in (1), 
then the expression a/u (where 1 ^ u ^ 5 and \a\ ^ n/Q) gives every residue 
mod n, with possibly some overlapping. 

The proof of the theorem depends on the simple observation that, if r/s and 
t/u are consecutive terms of the Farey sequence, then 

n n 
rn + —;— tn — —;— 

. s + u s + u 
(4) = ' 
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this reducing to (2i). It follows that the real numbers from 1 to n are covered 
by allowing a to assume all real values in the successive intervals in (3). The 
integers in this interval are therefore obtained by expressing the condition on 
a for {nt + a)/u to be an integer: namely, a must be an integer congruent to 
— nt mod u. 

If n is an odd prime p, and p > 2h — 2, then since u + w < p, equality 
cannot hold in the last part of (3). Thus, the sequence 1, 2, . . . , p — 1 is 
obtained by allowing a to range over the integers not exceeding numerically 
the greatest integers in n/(s + u) and n/(u + w). Since 5 + u ^ h and 
u + w ^ h, we have the following result. 

THEOREM 2. Let p be an odd prime, h be a positive integer, p > 2h •— 2, 
k = [p/h]. The sequence 1, . . . , p — 1 is obtained, possibly with some over
lapping, by giving a the positive integer values from 1 to k inclusive such that 
(pt ± a)/u are integers. Negative and positive values d= a are omitted if t/u is 
0/1 or 1/1 respectively. 

Since 1 ^ u < h and 1 ^ a ^ k, the following is an immediate corollary. 

THEOREM 3. Let p be an odd prime, h and q be positive integers, p > 2h — 2, 
k = [p/h], and D denote the residue modulo p of the qth power of some integer 
prime to p. Then one of the numbers Duq (u — 1, 2, . . . , h — 1) is congruent 
to at least one of the numbers ( ± l)q, ( ± 2)q, . . . , ( ± k)q modulo p. 

It is interesting to notice that if q = 2 and h = 2, this reduces to the familiar 
proposition that the squares of 1 , 2 , . . . . , \{p — 1) constitute a complete 
system of quadratic residues mod p. 

Theorem 3 permits a considerable reduction in the work of solving the con
gruence xq = D (mod p), especially when p is beyond the range of existing 
tables of indices. The single congruence can be replaced by a system in which 
D is replaced in turn by Duq (u = 1, 2, . . . , h — 1) reduced mod p. If D' 
denotes any one of these residues, the values D' + yp need to be constructed 
only up to the limits (±k)q, where k = [p/h]. The possible values y can be 
restricted by the method of exclusion. Further restrictions on y can be ob
tained from the property that the quantities (3) are integral, and by examining 
the Farey series for any given h, the limit k can be replaced by possibly smaller 
limits p/(s + u) or p/(u + w) for each particular value of u. In the case 
q = 2, by taking h approximately equal to p%, the amount of work is reduced 
by a factor of the order of size of \p^, and (as may be more important) the 
effective range of a table of squares (or gth powers) is greatly increased. Thus, 
by taking h — [p%], primes up to 108 can be handled with a table of squares up 
to 100002. Note, finally that the modulus need not be assumed to be a prime. 

Thanks are due to the referee who pointed out an error in our earlier, dif
ferent proof of Theorem 1, in which we overlooked the possibility that for 
some n's, the sequence (3) may be vacuous. 
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