A PROPERTY OF FAREY SEQUENCES, WITH APPLICATIONS TO qTH POWER RESIDUES

PASQUALE PORCELLI and GORDON PALL

The Farey sequence of order $h-1$ consists of the reduced rational fractions from 0 to 1 inclusive, with denominators less than h, and arranged in order of magnitude. Thus, if $h=6$, the sequence is

$$
\begin{equation*}
0 / 1,1 / 5,1 / 4,1 / 3,2 / 5,1 / 2,3 / 5,2 / 3,3 / 4,4 / 5,1 / 1 \tag{1}
\end{equation*}
$$

It is well known that for any two consecutive terms r / s and t / u,

$$
\begin{equation*}
t s-r u=1, \quad s+u \geqslant h . \tag{2}
\end{equation*}
$$

The principal result of this note is the observation that, by means of a Farey sequence, there can be written a complete system of residues, modulo an integer n, this system being expressed by fractions of the form a / u, with a and u suitably bounded.

Theorem 1. The integers of the sequence $1,2, \ldots, n$ are obtained in order, each integer exactly once, in the sequence of sequences associated in the following manner with the terms t / u of a Farey sequence. With the term t / u is associated the sequence (possibly, for small n, empty) of positive integers

$$
\begin{equation*}
(n t+a) / u, \quad-n /(s+u)<a \leqslant n /(u+w), \tag{3}
\end{equation*}
$$

where r / s and v / w denote, respectively, the predecessor and successor of t / u in the Farey sequence (non-positive or positive values a being omitted if t / u is $0 / 1$ or $1 / 1$, respectively), and a runs over these integral values in the stated interval such that $(n t+a) / u$ is an integer.

To illustrate the theorem and its later application, the sequences in the case $h=6$ associated with the terms in (1) are

$$
\begin{aligned}
& a(0 \leqslant a \leqslant n / 6) ;(n+a) / 5 \quad(-n / 6<a \leqslant n / 9, a \equiv-n \bmod 5) ; \\
& (n+a) / 4 \quad(-n / 9<a \leqslant n / 7, a \equiv-n \bmod 4) ; \ldots ; \\
& (2 n+a) / 5 \quad(-n / 8<a \leqslant n / 7, a \equiv-2 n \bmod 5) ; \ldots
\end{aligned}
$$

It will be noted that the sequences associated with different terms of the Farey sequence do not overlap, and between them exactly cover the interval 1 to n. Also, $|a|$ does not exceed $n / 6$, and if n is prime to all the denominators in (1), then the expression a / u (where $1 \leqslant u \leqslant 5$ and $|a| \leqslant n / 6$) gives every residue $\bmod n$, with possibly some overlapping.

The proof of the theorem depends on the simple observation that, if r / s and t / u are consecutive terms of the Farey sequence, then

$$
\begin{equation*}
\frac{r n+\frac{n}{s+u}}{s}=\frac{t n-\frac{n}{s+u}}{u} \tag{4}
\end{equation*}
$$

this reducing to $\left(2_{1}\right)$. It follows that the real numbers from 1 to n are covered by allowing a to assume all real values in the successive intervals in (3). The integers in this interval are therefore obtained by expressing the condition on a for $(n t+a) / u$ to be an integer: namely, a must be an integer congruent to $-n t \bmod u$.

If n is an odd prime p, and $p>2 h-2$, then since $u+w<p$, equality cannot hold in the last part of (3). Thus, the sequence $1,2, \ldots, p-1$ is obtained by allowing a to range over the integers not exceeding numerically the greatest integers in $n /(s+u)$ and $n /(u+w)$. Since $s+u \geqslant h$ and $u+w \geqslant h$, we have the following result.

Theorem 2. Let p be an odd prime, h be a positive integer, $p>2 h-2$, $k=[p / h]$. The sequence $1, \ldots, p-1$ is obtained, possibly with some overlapping, by giving a the positive integer values from 1 to k inclusive such that $(p t \pm a) / u$ are integers. Negative and positive values $\pm a$ are omitted if t / u is $0 / 1$ or $1 / 1$ respectively.

Since $1 \leqslant u<h$ and $1 \leqslant a \leqslant k$, the following is an immediate corollary.
Theorem 3. Let p be an odd prime, h and q be positive integers, $p>2 h-2$, $k=[p / h]$, and D denote the residue modulo p of the qth power of some integer prime to p. Then one of the numbers $D u^{q}(u=1,2, \ldots, h-1)$ is congruent to at least one of the numbers $(\pm 1)^{q},(\pm 2)^{q}, \ldots,(\pm k)^{q}$ modulo p.

It is interesting to notice that if $q=2$ and $h=2$, this reduces to the familiar proposition that the squares of $1,2, \ldots, \frac{1}{2}(p-1)$ constitute a complete system of quadratic residues mod p.

Theorem 3 permits a considerable reduction in the work of solving the congruence $x^{q} \equiv D(\bmod p)$, especially when p is beyond the range of existing tables of indices. The single congruence can be replaced by a system in which D is replaced in turn by $D u^{q}(u=1,2, \ldots, h-1)$ reduced $\bmod p$. If D^{\prime} denotes any one of these residues, the values $D^{\prime}+y p$ need to be constructed only up to the limits $(\pm k)^{q}$, where $k=[p / h]$. The possible values y can be restricted by the method of exclusion. Further restrictions on y can be obtained from the property that the quantities (3) are integral, and by examining the Farey series for any given h, the limit k can be replaced by possibly smaller limits $p /(s+u)$ or $p /(u+w)$ for each particular value of u. In the case $q=2$, by taking h approximately equal to $p^{\frac{1}{2}}$, the amount of work is reduced by a factor of the order of size of $\frac{1}{2} p^{\frac{1}{2}}$, and (as may be more important) the effective range of a table of squares (or q th powers) is greatly increased. Thus, by taking $h=\left[p^{\frac{1}{2}}\right]$, primes up to 10^{8} can be handled with a table of squares up to 10000^{2}. Note, finally that the modulus need not be assumed to be a prime.

Thanks are due to the referee who pointed out an error in our earlier, different proof of Theorem 1, in which we overlooked the possibility that for some n 's, the sequence (3) may be vacuous.

University of Texas and
Illinois Institute of Technology

