FINITE NETS, I. NUMERICAL INVARIANTS

R. H. BRUCK

Introduction. A finite net \(N \) of degree \(k \), order \(n \), is a geometrical object of which the precise definition will be given in §1. The geometrical language of the paper proves convenient, but other terminologies are perhaps more familiar. A finite affine (or Euclidean) plane with \(n \) points on each line \((n \geq 2)\) is simply a net of degree \(n + 1 \), order \(n \) (Marshall Hall [1]). A loop of order \(n \) is essentially a net of degree 3, order \(n \) (Baer [1], Bates [1]). More generally, for \(3 \leq k \leq n + 1 \), a set of \(k - 2 \) mutually orthogonal \(n \times n \) latin squares may be used to define a net of degree \(k \), order \(n \) (and conversely) by paralleling Bose’s correspondence (Bose [1]) between affine planes and complete sets of orthogonal latin squares.

In the language of latin squares, the problem (explained in §1) of imbedding a net of degree \(k \), order \(n \) in a net \(N' \) of degree \(k + 1 \), order \(n \) becomes the problem of finding an \(n \times n \) latin square orthogonal to each of \(k - 2 \) given mutually orthogonal \(n \times n \) latin squares. Similarly, adjunction of a line corresponds to the determination of a common “transversal” (in the terminology of Euler [1]) to the \(k - 2 \) orthogonal squares. Further details of a historical nature will be found in the bibliography.

On each finite net \(N \) we define an integer \(\phi(N) \), which may be regarded as an invariant in several ways. A necessary condition that a line can be adjoined to \(N \) is that \(\phi(N) = 1 \). (A necessary and sufficient condition is given in Theorem 1 (i).) We define a direct product \(N_1 \times N_2 \) of nets \(N_i \) of the same degree and study the relation between \(\phi(N_1 \times N_2) \) and the \(\phi(N_i) \) (Theorem 4). From these considerations we deduce the existence of nets of every order \(n \) to which no line can be adjoined (Theorem 5). Next we study the relation between the \(\phi \)'s of homomorphic nets (Theorem 6) and we conclude the paper with an explicit evaluation of \(\phi \) for nets of degree 3 (Theorem 7).

1. Nets and the imbedding problem. Let \(k \), \(n \) be positive integers, with \(k \geq 3 \). A (finite) net \(N \) of degree \(k \), order \(n \), is a system of undefined objects called “points” and “lines” together with an incidence relationship (“point is on line” or “line passes through point”) such that: (i) \(N \) contains \(k \) (non-empty) classes of lines. (ii) Two lines \(a, b \) of \(N \), belonging to distinct classes, have a unique common point \(P \). (iii) Each point \(P \) of \(N \) is on exactly one line of each class. (iv) Some line of \(N \) has exactly \(n \) distinct points. It is easy to show that every line of \(N \) has exactly \(n \) distinct points, that every class of lines contains exactly \(n \) distinct lines and that \(N \) consists of \(n^2 \) distinct points, \(kn \) distinct lines. Moreover, either \(n = 1 \) or \(n \geq k - 1 \).

Received October 8, 1949.
If S is a subset of the points of the net N (of degree k, order n) such that each line of N contains exactly one point of S, we shall say that S can be adjoined as a line to N. Considering the n lines of each class, we see that S must consist of exactly n distinct points, no two collinear. If the n^2 points of N can be partitioned into n disjoint sets S_1, \ldots, S_n, each of which can be adjoined as a line to N, then the S_i may be regarded as constituting the n lines of an additional class. In this way N can be imbedded in a net N' of degree $k + 1$, order n, consisting of the points and lines of N (with the same incidence relations) plus one additional class of “parallels”. Conversely, if the net N of order n, degree k is a subnet of net N' of order n, degree $k + 1$ (a subnet in the sense that a point and line of N are incident in N if and only if they are incident in N') then N, N' must have the same points, and one of the line-classes of N' may be regarded as consisting of n disjoint point-sets S_i, each of which can be adjoined as a line to N. The present paper will be concerned primarily with necessary conditions that a line may be adjoined to a net.

2. The integers represented by a net. Let N be a finite net and let f be a single-valued function from the points of N to the rational integers. We shall say that the rational integer m is represented on N by f if f sums to m over the points of each line of N, and represented positively if, in addition, f takes on only non-negative values. Again, if u is a positive integer, we shall say that m is represented mod u on N by f if f sums to $m \mod u$ on each line of N. The least positive integer represented on N will be denoted by $\#(N)$. Clearly $\#(N)$ is an invariant of N. Moreover, $\#(N)$ is the (positive) greatest common divisor of the integers represented on N.

Theorem 1. Let N be a finite net of degree k, order n. Then: (i) A necessary and sufficient condition that a line can be adjoined to N is that 1 be positively represented on N. (ii) n is positively represented on N. (iii) $k - 1$ is represented on N. (iv) $\#(N) | (n, k - 1)$. (v) If n is an affine plane (i.e., if $k = n + 1$,) $\#(N) = n$. (vi) With at most a finite number of exceptions, every positive integer divisible by $\#(N)$ is positively represented on N.

Corollary. A necessary condition that a line can be adjoined to N is that $\#(N) = 1$.

Proof. (i) If S can be adjoined as a line to N, define $f(P) = 1$ or 0 according as P is or is not in S. Then 1 is positively represented on N by f. Conversely, if 1 is positively represented on N by some f, let S be the set of points P for which $f(P) \neq 0$. Then each line of N contains exactly one point P of S (and, incidentally, $f(P) = 1$) Hence S can be adjoined to N as a line.

(ii) If $f'(P) = 1$ for every point P of N, then f' represents n positively on N.

(iii) Select an arbitrary point C of N and define h as follows: $h(C) = k - n$; $h(P) = 1$ if P is distinct from but collinear with C; $h(P) = 0$ otherwise. If a is a line through C, h sums, over a, to $k - n + n - 1 = k - 1$. If a is a line not through C, the $k - 1$ lines through C which are not in the same class as
a meet a in \(k - 1 \) distinct points; hence \(h \) sums to \(k - 1 \) over \(a \) in this case also. Therefore \(h \) represents \(k - 1 \) on \(N \).

(iv) By (ii) and (iii), \(\phi(N) \) divides \(n, k - 1 \) and their greatest common divisor \((n, k - 1)\).

(v) Let \(\phi(N) \) be represented by \(f \) on the affine plane \(N \), and let \(s \) be the sum of \(f \) over the \(n^2 \) points of \(N \). Considering the sum of the sums of \(f \) over the \(n \) lines of some class, we find \(nf(N) = s \). On the other hand, if \(C \) is a point of \(N \), every point of \(N \) (other than \(C \)) lies on exactly one of the \(n + 1 \) lines through \(C \). Considering the sum of the sums over the \(n + 1 \) lines through \(C \), we find \(nf(C) + s = (n + 1)\phi(N) \). Since \(s = n\phi(N), nf(C) = \phi(N) \). Therefore \(n|\phi(N)\), so \(\phi(N) = n \). And, incidentally, \(f(C) = 1 \) for every point \(C \) of \(N \).

(vi) In view of (ii), every positive integral multiple of \(n \) is positively represented on \(N \). Next let \(r \) be an integer divisible by \(\phi(N) \), in the range \(0 < r < n \). Certainly \(r \) is represented on \(N \) by some function \(f \). Let \(m' \) be the least value assumed by \(f \). Then, if \(f' \) is the function defined in (ii) and if \(m \) is any integer satisfying \(m \geq -m' \), the integer \(r + mn \) is positively represented on \(N \) by \(f + mf' \). Therefore, in every congruence class of integers mod \(n \) divisible by \(\phi(N) \), there is at most a finite number of positive integers not represented positively on \(N \).

This completes the proof of Theorem 1. The Corollary follows from (i).

3. A characterization of \(\phi \). If \(N \) is a net of degree \(k \), order \(n \), we shall assume henceforth that the \(k \) classes of "parallel" lines have been numbered (arbitrarily, but once and for all) from 1 to \(k \). Thus, if \(1 \leq i \leq k \), an \(i \)-line of \(N \) is a line of class \(i \). In terms of an arbitrary "centre" \(C \) (a point of \(N \)) we introduce a coordinate system as follows: For \(1 \leq i \leq k \), the \(n \) lines of class \(i \) are numbered from 1 to \(n \), the \(i \)-line through \(C \) being assigned the number 1. The \(i \)-line numbered \(x \) is designated by \((i, x) \). We also introduce \(k \) point-functions \(I_i \), the indicators, by defining \(I_i(P) = x \) if \((i, x) \) is the \(i \)-line through the point \(P \).

If \(f \) is a single-valued function from the integer-range \(1 \leq x \leq n \) to the integers, we shall designate by \(f(*) \) the sum \(f(1) + f(2) + \ldots + f(n) \). In terms of these notations we may prove two theorems.

Theorem 2. Let \(N \) be a net of degree \(k \), order \(n \). Then a necessary and sufficient condition that the integer \(m \) be represented on \(N \) is that \(m \equiv \phi(N) \mod n \) on \(N \).

Theorem 3. Let \(N \) be a net of degree \(k \), order \(n \). Then \(\phi(N) \) is the smallest positive integer \(s \) with the following property: If \(f_1, \ldots, f_k \) are single-valued functions from the integer-range \(1 \leq x \leq n \) to the integers, such that

\[
\begin{align*}
(1) & \quad f_i(1) \equiv 0 \mod n \quad (i = 1, \ldots, n), \\
(2) & \quad \sum_{i=1}^{k} f_i(I_i(P)) \equiv 0 \mod n
\end{align*}
\]

for each point \(P \) of \(N \), then

\[
sf_1(*) \equiv 0 \mod n.
\]
Finite Nets, I. Numerical Invariants

Proof. If a_1, \ldots, a_{kn} are the kn lines and P_1, \ldots, P_{n^2} are the n^2 points of N, in arbitrary arrangements, define the line-point incidence matrix A of N by putting 1 or 0 in the vth row, wth column of A according as P_w does or does not lie on a_v. Also define U to be the column vector of order kn with every element 1. Let X be a column vector of order n^2 and let m be an arbitrary integer. Then m is represented on N if and only if

$$AX = mU$$

for an integral X. In view of Theorem 1 (ii), (3) has a rational solution X with every component equal to m/n. If $r = \text{rank } A$, there exist unimodular matrices T, Q (with rational integral components) such that

$$TAQ = \begin{pmatrix} D_r & 0 \\ 0 & 0 \end{pmatrix}, \quad D_r = \text{diag}(e_1, e_2, \ldots, e_r),$$

where the positive integers e_j are the invariant divisors of A; thus $e_j | e_{j+1}$ for $j = 1, 2, \ldots, r - 1$. Setting $TU = V, X = QY$, we see that (3) may be reduced to

$$e_j y_j = m v_j \quad (j = 1, \ldots, r).$$

A necessary and sufficient condition that (3) have an integral solution X is that (5) yield integral values for y_1, \ldots, y_r. In particular, by the definition of $\phi(N)$, if

$$d_j = (e_j, v_j), \quad e_j = h_j d_j \quad (j = 1, \ldots, r),$$

then $\phi(N)$ is the least common multiple

$$\phi(N) = [h_1, \ldots, h_r].$$

Next let u be any integer divisible by e_r (and hence by each e_j.) Clearly m is represented mod u on N if and only if $AX = mU$ mod u for an integral X, or, equivalently, if and only if $e_j y_j = m v_j$ mod u for integral y_j ($j = 1, \ldots, r$). Since $e_j | u$, the latter congruences imply $e_j | m v_j, h_j | m, \phi(N) | m$. However, if $\phi(N) | m$, m is certainly represented on N. Thus Theorem 2 will be proved when we show that $e_r | n$.

For $i = 1, \ldots, k$, let the row-vector R_i denote the sum of the n rows of A corresponding to the lines of class i. Since each point lies on exactly one i-line R_i has each component equal to 1; thus $R_1 = R_2 = \ldots = R_k$. Let B be the matrix of $1 + k(n - 1)$ rows obtained by deleting from A the rows corresponding to the 2-line, 3-line, \ldots, k-line through the centre C. Clearly, since $R_i = R_1, T'A = \begin{pmatrix} B \\ 0 \end{pmatrix}$ for a unimodular matrix T'; hence B has the same rank and invariant divisors as A. There is therefore no loss of generality in assuming that, in (4), the first r rows of T have zeros in the columns matching with the $k - 1$ rows of A omitted in B. With this understanding, let V_j be the jth row of T ($j = 1, \ldots, r$); by (4), since Q is unimodular, e_j is the greatest
common divisor of the components of V_jA. For any fixed j, let $g_i(x)$ denote the component of V_j in the column corresponding to the line (i, x) of N; thus $g_i(1) = 0$ for $i > 1$. In V_jA, the column corresponding to point P has component

$$\sum_{i=1}^{k} g_i(I_i(P)) \equiv 0 \mod e_j.$$

When $P = C$, (8) reduces to $g_1(1) \equiv 0 \mod e_j$; hence

$$g_i(1) \equiv 0 \mod e_j \quad (i = 1, \ldots, k).$$

Selecting a fixed line (i, x) and summing the congruence (8) over the n points P of (i, x), we derive

$$\sum_{u \neq i} g_u(*) + ng_i(x) \equiv 0 \mod e_j.$$

From (10), (9), $ng_i(x) \equiv ng_i(1) \equiv 0 \mod e_j$. Thus, if $d = (n, e_j)$ and $e_j = de'$, we have $g_i(x) \equiv 0 \mod e'$ for all i, x. Since T is unimodular, the greatest common divisor of the components of V_j is 1; therefore $e' = 1$ and $e_j | n$. In particular $e_r | n$, proving Theorem 2.

In similar fashion, letting the g_i be arbitrary rational-valued functions such that $g_i(1) = 0$ for $i > 1$, and replacing the congruences (8) by equations, we may deduce that $g_i(x) = 0$ for all i, x. This shows that the rows of B are linearly independent, so that

$$r = 1 + k(n - 1).$$

To prove Theorem 3, let V_j have (integer-valued) components $g_i(x)$, as above, and let $f_i(x) = n_jg_i(x)$ where $n = nj e_j$. Then (9) and (8) become (1) and (2) respectively. On the other hand, $V_jU = v_j$, in the notation of (5), and hence

$$\sum_{i=1}^{k} f_i(*) = n_j v_j.$$

Multiplying (5) by n_j, we get $ny_j = m n_j v_j$. Therefore m is represented on N if and only if $m n_j v_j \equiv 0 \mod n$ for $j = 1, \ldots, r$. To replace (10) we have $\sum_{u \neq i} f_u(*) \equiv 0 \mod n$, whence, by (12), $n_j v_j \equiv f_i(*)$ for $i = 1, \ldots, k$. In particular, $n_j v_j \equiv f_i(*) \mod n$. Thus, by the definition of s, $s n_j v_j \equiv s f_i(*) \equiv 0 \mod n$, for $j = 1, \ldots, r$. Hence s is represented on $N, \phi(N) | s$.

We must prove the converse. Certainly $AX = \phi(N)U$ for an integral X. Let f_1, \ldots, f_k be integer-valued functions satisfying (1) and (2), and let V be the row-vector with $f_i(x)$ in the column corresponding to line (i, x). Then VA has component $\sum_{i=1}^{k} f_i(I_i(P))$ in the column corresponding to point P, while $VU = \sum_{i=1}^{k} f_i(*)$. Thus the equation $VAX = \phi(N)U$, together with the congruences (2), implies that

$$\phi(N) \sum_{i=1}^{k} f_i(*) \equiv 0 \mod n.$$
By the same methods as before, we deduce from (1) and (2) that (13) is equivalent to \(\phi(N)f_1(*) = 0 \mod n \). Since \(s \) is the least positive integer such that \(s f_1(*) = 0 \mod n \) for all such functions \(f_i \), \(s|\phi(N) \). Therefore \(\phi(N) = s \). This completes the proofs of Theorems 2, 3.

3. Direct products of nets. Let \(N_1, N_2 \) be nets of orders \(n_1, n_2 \) respectively, and of the same degree \(k \). The direct product \(N = N_1 \times N_2 \) is defined as follows:

(i) The points of \(N \) are the ordered pairs \((P_1, P_2) \), with \(P_j \) a point of \(N_j \).

(ii) For \(i = 1, \ldots, k \), the \(i \)-lines of \(N \) are the ordered pairs \((a_1, a_2) \), with \(a_j \) an \(i \)-line of \(N_j \). (iii) \((P_1, P_2) \) lies on \((a_1, a_2) \) in \(N \) if and only if \(P_j \) lies on \(a_j \) in \(N_j \) for \(j = 1, 2 \). It is easy to verify that \(N \) is a net of degree \(k \), order \(n_1n_2 \).

Making the obvious identifications one may establish the commutative and associative laws for direct products.

If \(N_1 \) has a coordinate system centered about \(C_1 \), with indicators \(I_i \), and \(N_2 \) has a coordinate system centered about \(C_2 \), with indicators \(J_j \), we introduce a natural coordinate system for \(N = N_1 \times N_2 \) as follows: Take \(C = (C_1, C_2) \) as centre. If \(a_j \) is the \(i \)-line \((i, x_j) \) of \(N_j \) \((j = 1, 2) \) denote by \((i; x_1, x_2) \) the \(i \)-line \((a_1, a_2) \) of \(N \). Define the indicators \(I_i \) of \(N \) by \(I_i(P_1, P_2) = (x_1, x_2) \) where \((i; x_1, x_2) \) is the \(i \)-line of \(N \) through \((P_1, P_2) \). Moreover, if \(f(x_1, x_2) \) is a function from the integer-domain \(1 \leq x_1 \leq n_1, 1 \leq x_2 \leq n_2 \) to the integers, denote by \(f(*) \) the sum \(f(1, x_2) + f(2, x_2) + \ldots + f(n_1, x_2) \). Similar meanings are assigned to \(f(x_1, *) \) and \(f(*, *) \).

Theorem 4. Let \(N_j \) be a net of order \(n_j \) and degree \(k \), for \(j = 1, 2 \), and let \(N = N_1 \times N_2 \). Write

\[
\begin{align*}
 d &= (n_1, n_2), \quad n_1 = dq_1, \quad n_2 = dq_2, \\
\end{align*}
\]

Then there exist positive integers \(a, b \) such that

\[
\begin{align*}
 (q_1, \phi(N_1)) \cdot (q_2, \phi(N_2)) &= a \cdot \phi(N), \\
 (d, k - 1) \cdot \phi(N) &= b [\phi(N_1), \phi(N_2)], \\
 ab &\mid (d, k - 1).
\end{align*}
\]

Corollary 1. If \((n_1, n_2, k - 1) = 1 \), then \(\phi(N_1 \times N_2) = \phi(N_1)\phi(N_2) \).

Corollary 2. If \((d, q_2, k - 1) = 1 \), then \(\phi(N_1 \times N_2) = 1 \).

Corollary 3. For any finite net \(N \), \(\phi(N \times N) = 1 \).

Proof. In the present notation the content of Theorem 3 may be expressed as follows: \(\phi(N) \) is the least positive integer such that, for integer-valued functions \(f_i \), the congruences

\[
\begin{align*}
 f_i(1, 1) &\equiv 0 \mod n_1n_2, \\
 \sum_{i=1}^{k} f_i(I_i(P_1), J_i(P_2)) &\equiv 0 \mod n_1n_2
\end{align*}
\]
for all points \((P_1, P_2)\) of \(N\), imply

\[(20) \quad \phi(N)f_1(\ast, \ast) \equiv 0 \mod n_1n_2.\]

Keeping \(P_1\) fixed in (19), select a line \((i, x_2)\) of \(N_2\) and sum over all points \(P_2\) of \((i, x_2)\). Then

\[(21) \quad \sum_{j \neq i} f_j(I_j(P_1), \ast) + n_2f_i(I_i(P_1), x_2) \equiv 0 \mod n_1n_2.\]

Since the sum in (21) is independent of \(x_2\), we have

\[n_2f_i(I_i(P_1), x_2) \equiv n_2f_i(I_i(P_1), 1) \mod n_1n_2,\]

i.e.

\[(22) \quad f_i(x_1, x_2) = f_i(x_1, 1) \mod n_1\]

for all \(i, x_1, x_2\) in their respective ranges. Similarly,

\[(23) \quad f_i(x_1, x_2) = f_i(1, x_2) \mod n_2.\]

Since \(d\) divides \(n_1, n_2\), we deduce from (22), (23) and (18) that

\[(24) \quad f_i(x_1, x_2) \equiv 0 \mod d.\]

Returning to (21), choose any line \((j, x_1)\) of \(N_1\), with \(j \neq i\), and sum over all points \(P_1\) of \((j, x_1)\). There results

\[(25) \quad \sum_{\phi \neq i, j} f_\phi(\ast, \ast) + n_1f_j(x_1, \ast) + n_2f_i(\ast, x_2) \equiv 0 \mod n_1n_2\]

for all \(i, j (i \neq j)\) and \(x_1, x_2\). As in the proof of Theorem 3, \(f_\phi(\ast, \ast) = f_i(\ast, \ast) \mod n_1n_2\). And since, by Theorem 1, \(\phi(N)\) divides \(k - 1, (k - 1)f_i(\ast, \ast) \equiv 0 \mod n_1n_2\). Therefore (25) is equivalent to

\[(26) \quad f_i(\ast, \ast) = n_1f_j(x_1, \ast) + n_2f_i(\ast, x_2) \mod n_1n_2.\]

Since \(k \geq 3\), and since in (26) the only restriction is \(i \neq j\), (26) is equivalent to

\[(27) \quad f_i(\ast, \ast) = n_1f_j(x_1, \ast) + n_2f_i(\ast, x_2) \mod n_1n_2.\]

Define \(t_1, t_2\) as the least positive integers such that

\[(28) \quad t_1n_2f_i(\ast, x_2) = 0, \quad t_2n_1f_i(x_1, \ast) = 0 \quad \mod n_1n_2\]

for all \(f_i\) satisfying (18), (19). By (27), \(t_1t_2f_i(\ast, \ast) \equiv 0 \mod n_1n_2\). Hence, by the property (20) of \(\phi(N)\),

\[(29) \quad \phi(N) \mid t_1t_2.\]

Since \(qd = n_1\), (24) implies \(q_1n_2f_1(\ast, x_2) \equiv 0 \mod n_1n_2\). Thus \(t_1 \mid q_1\).

Similarly,

\[(30) \quad t_j \mid q_j \quad \quad (j = 1, 2).\]

Since the \(q_j\) are relatively prime, so are the \(t_j\). Next choose any fixed value.
for x_2 and define functions $F_i(x_1) = f_i(x_1, x_2)$. From (22), $F_i(x_1) \equiv f_i(x_1, 1) \mod n_1$. Thus, from (18), $F_i(1) \equiv 0 \mod n_1$. Moreover, by (19),

$$\sum_{i=1}^k F_i(I_i(P_1)) \equiv \sum_{i=1}^k f_i(I_i(P_1)) \mod n_1.$$

Therefore, by Theorem 3, $0 = \phi(N_1)F_i(*) \equiv \phi(N_1)f_i(*, x_2) \mod n_1$, and so $\phi(N_1)n_2f_i(*, x_2) \equiv 0 \mod n_1n_2$. Hence (and similarly)

$$t_j \mid \phi(N_j) \quad (j = 1, 2).$$

By (30), (31), t_j divides the greatest common divisor of q_j and $\phi(N_j)$. Hence (29) implies (15) for some positive integer a.

To obtain (16), let $g_i(x_1)$ be any set of integer-valued functions satisfying equations analogous to (1), (2) for N_1, and set $f_i(*, x_2) = \sum_{i=1}^k g_i(x_1)$. Then the f_i will satisfy (18), (19). Therefore $\phi(N)f_i(*, *) = \phi(N_1)(n_2)g_i(*) \equiv 0 \mod n_1n_2$, $\phi(N)n_2g_i(*) \equiv 0 \mod n_1$, $\phi(N_1) \mid (n_1, k - 1)$ and since $(n_1, n_2) = d$, we may improve the last statement to $\phi(N_1)|(d, k - 1)\phi(N)$. Similarly for $\phi(N_2)$. Hence the least common multiple $[\phi(N_1), \phi(N_2)]$ divides $(d, k - 1)\phi(N)$, proving (16) for some positive integer b.

Eliminating $\phi(N)$ from (15), (16), we derive $ab[\phi(N_1), \phi(N_2)]= (d, k - 1)$ $(q_1, \phi(N_1))(q_2, \phi(N_2))$. Since the integers $(q_1, \phi(N_1))$ are relatively prime divisors of $[\phi(N_1), \phi(N_2)]$, we have (17). This completes the proof of Theorem 4. In the case of Corollary 1, $a = b = 1$, by (17), and then $\phi(N) = \phi(N_1)\phi(N_2)$ by (16) and the fact that $\phi(N_1), \phi(N_2)$ is a divisor of $(n_1, n_2, k - 1) = 1$.

In the case of Corollary 2, the left-hand side of (15) is 1, since, for example, $(q_1, \phi(N_1))$ divides $(q_1, k - 1) = 1$. Thus $\phi(N) = 1$. And Corollary 3 corresponds to the special case $q_1 = 1 = q_2$ of Corollary 2.

Theorem 5. Let $n > 1$ be a positive integer with factorization $n = \Pi p(i)^{m(i)}$ where the $p(i)$ are distinct primes and the $m(i)$ are positive integers. Let $r = \min (p(1)^{m(1)}, p(2)^{m(2)}, \ldots)$. Then there exists a net N of order n, degree $r + 1$, such that $\phi(N) = r$. In particular, no line can be adjoined to N.

Corollary. If k is any integer such that $3 \leq k \leq r + 1$, there exists a net N of order n, degree k.

Proof. For any prime p and positive integer m, let $E(p, m)$ be an affine plane of order p^m (and degree $p^m + 1$). Such a plane exists, for example, the plane obtained by using coordinates (in the familiar manner of elementary plane geometry) from the field $GF(p^m)$. For each i, we may define a net N_i of degree $r + 1$, order $p(i)^{m(i)}$ from an $E(p(i), m(i))$ by deleting some $(p(i)^{m(i)} + 1) - (r + 1)$ classes of lines. Set $N = N_1 \times N_2 \times \ldots$. By an obvious extension of Corollary 1 to Theorem 4, $\phi(N) = \phi(N_1)\phi(N_2) \ldots$. For exactly one i, $N_i = E(p(i), m(i))$ and $\phi(N_i) = p(i)^{m(i)} = r$. For all other i, lines can be adjoined to N_i, so $\phi(N_i) = 1$. Therefore $\phi(N) = r > 1$. As for the Corollary we need merely delete some $r + 1 - k$ classes of lines from N.

Downloaded from https://www.cambridge.org/core. 17 Jul 2021 at 12:48:50, subject to the Cambridge Core terms of use.
4. Homomorphic nets. Let \(N, N' \) be nets of the same degree \(k \). A homomorphism \(\theta \) of \(N \) upon \(N' \) is a single-valued, exhaustive mapping of \(N \) upon \(N' \) which maps points upon points, \(i \)-lines upon \(i \)-lines (for \(i = 1, \ldots, k \)) and preserves incidence. The requirement that \(i \)-lines be mapped upon \(i \)-lines may seem artificial. The obvious generalization, however, is no more necessary than the little used concept of "anti-homomorphism" in group theory, and adds complications to the proofs. (See Bates [1] for a similar restriction in regard to 3-nets.)

A homomorphism \(\theta \) of \(N \) upon \(N' \) is called an isomorphism if it is one-to-one, and a zero homomorphism if \(N' \) has order one. A net \(N \) is simple if its only homomorphisms upon nets are isomorphisms and zero homomorphisms.

Lemma 1. Let \(N, N' \) be nets of respective orders \(n, n' \) and of the same degree \(k \). Let \(\theta \) be a homomorphism of \(N \) upon \(N' \). For each point \(P' \) of \(N' \), let \(M(P') \) be the subset of \(N \) consisting of all points \(P \) of \(N \) such that \(P\theta = P' \) and of all lines \(a \) of \(N \) such that \(a\theta \) passes through \(P \). Then \(n = mn' \) for a positive integer \(m \), and each \(M(P') \) is a subnet of \(N \), of order \(m \), degree \(k \).

Corollary. Every finite affine plane is a simple net.

Proof. Consider one of the sets \(M = M(P') \). Then \(M \) contains lines of each of the \(k \) classes in \(N \), since the \(k \) lines through \(P' \) are images under \(\theta \). If \(a, b \) are lines of distinct classes in \(N \), such that \(a\theta, b\theta \) pass through \(P' \), the intersection point \(P = a . b \) satisfies \(P\theta = P' \) and hence is in \(M \). If \(Q \) is in \(M \), each of the \(k \) lines through \(Q \) is in \(M \). Hence \(M \) is a net of degree \(k \) and of some order \(m \). In particular, for each \(i \), \(M \) has exactly \(m \) \(i \)-lines, and these are precisely the \(i \)-lines of \(N \) which map into the \(i \)-lines through \(P' \). If \(Q' \) is a point of \(N' \), distinct from \(P' \), the \(i \)-line through \(P' \) and the \(j \)-line through \(Q' \) (\(j \neq i \)) must meet in a point \(R' \) of \(N' \). Then \(M(R') \), \(M(P') \) have the same \(i \)-lines, hence the same order \(m \); and \(M(Q'), M(R') \) have the same \(j \)-lines, hence the same order \(m \). Therefore each of the \((n')^2\) subnets \(M(P') \) has order \(m \), showing that \((n')^2m^2 = n^2 \) or \(n = mn' \).

As for the Corollary, if the net \(N \) has order \(n = k - 1 \), then \(k - 1 = mn' \). But either \(n' = 1 \) or \(n' \geq k - 1 \); and the second alternative gives \(n' = k - 1 \), \(m = 1 \). Hence every homomorphism of \(N \) upon a net is either a zero homomorphism or an isomorphism. Thus \(N \) is simple. This Corollary offers a partial explanation of the lack of success in attempting to define homomorphisms of projective planes (Marshall Hall [1]).

With the notation of Lemma 1, define \(D \) to be the greatest common divisor of all the integers \(\phi(P') = \phi(M(P')) \). Also write

\[
(32) \quad d = (m, n'), \quad m = du, \quad n' = dv.
\]

Theorem 6. Let \(N \) be a net of degree \(k \), order \(n = mn' \), possessing a proper homomorphism \(\theta \) upon a net \(N' \) of order \(n' \). (Thus \(m, n' \geq k - 1 \).) Then

\[
(33) \quad \phi(N) \mid [\phi(N'), (u, D)], \quad \phi(N') \mid (d, k - 1)\phi(N).
\]
Proof. If \(\phi(N) \) is represented on \(N \) by the point function \(f(P) \), define \(g(P') = \sum f(P) \) where the sum is taken over the \(m^2 \) points \(P \) such that \(P\theta = P' \). Then it is easy to see that \(g \) represents \(m\phi(N) \) on \(N' \). Hence \(\phi(N') \mid m\phi(N) \).

By (32) and the fact that \(\phi(N') \mid (n', k - 1) \), we deduce the second relation of (33). If \(a, b, c \) are integers, one readily verifies the identity \(([a, b], [a, c]) = [a, (b, c)] \). Thus the relation

\[
\phi(N) \mid [\phi(N'), (u, \phi(C'))],
\]

holding for every point \(C' \) of \(N' \), implies the first relation of (33). We complete the proof by establishing (34).

Let \(\theta' \) be any one-to-one mapping of the points of \(N' \) into the points of \(N \), such that \(P\theta\theta' = P' \). Thus \(P\theta' \) is in \(M(P') \) for each \(P' \) of \(N' \). Choose any point \(C' \) as centre in \(N' \) and take \(C = C'\theta' \) as centre in \(N \). Let \(I_i, J_i \) be the indicator functions for \(N, N' \) respectively. As an additional notation, define

\[
I_i(P') = I_i(P\theta'), \quad P' \text{ in } N'.
\]

If \(f(x) \) is a function from the integer-range \(1 \leq x \leq n \) to the integers, define \(f(*) \) as before. Also define

\[
f(i, P') = \sum_j f(x),
\]

where the sum in (36) is taken over all \(x \) such that \((i, x) \) is a line of \(M(P') \).

Now let \(f_i \) be functions satisfying (1), (2) of Theorem 3. For any point \(P' \) of \(N' \), and any line \((i, x) \) of \(M(P') \), sum (2) over all points \(P \) common to \((i, x) \) and \(M(P') \). Thus

\[
\sum_{j \neq i} f_i(j, P') + mf_i(x) \equiv 0 \mod n.
\]

Since the second term of (37) is independent of the choice of \((i, x) \) in \(M(P') \),

\[
f_i(x) \equiv f_i(I_i(P')) \mod n', \quad (i, x) \text{ in } M(P').
\]

By (38), \(f_i(x) \) is determined \(\mod n' \) by the line \((i, x') = (i, x)\theta \) of \(N' \). Thus (mod \(n' \)) we may define a set of integer-valued functions \(F_i(x') \), on the range \(1 \leq x' \leq n' \), by

\[
F_i(x') \equiv f_i(x) \mod n' \quad \text{if } (i, x)\theta = (i, x').
\]

Clearly the \(F_i \) satisfy the conditions corresponding to (1), (2) for \(N' \). Therefore, by Theorem 3,

\[
\phi(N')F_i(*) \equiv 0 \mod n'.
\]

Next pick \(j \neq i \) and consider the line \((j, 1) \) of \(N' \). By (39), (38),

\[
F_i(*) \equiv \sum' f_i(I_i(P')) \mod n'
\]

where the sum in (41) is over the points \(P' \) of \((j, 1) \). Moreover \(f_i(j, P') = f_i(j, C') \) for \(P' \) on \((j, 1) \), since, for each \(P' \) of \((j, 1) \), the \(j \)-lines of \(M(P') \) are
those lines \((j, x)\) such that \((j, x)\theta = (j, 1)\). Hence, if in (37) we sum over all points \(P'\) of \((j, 1)\), there results
\[
(42) \sum_{\varphi \neq i, j} f_\varphi(*) + n'f_j(1, C') + mF_i(*) \equiv 0 \mod n.
\]
As in the proof of Theorem 5, (42) is equivalent to
\[
(43) f_i(*) = n'f_i(1, C') + mF_i(*) \mod n.
\]
If \(t\) is the least positive integer such that
\[
(44) t n'f_i(1, C') \equiv 0 \mod n
\]
for all functions \(f_i\) satisfying (1), (2), then (40), (43) imply \([\phi(N'), t] f_i(*) \equiv 0 \mod n\). Hence
\[
(45) \phi(N') \mid [\phi(N'), t].
\]
Since \(C\) is the centre for \(M(C')\) as well as for \(N\), and since \(m \mid n\), the \(f_i\) satisfy conditions analogous to (1), (2) for the net \(M(C')\). And since \(f_i(1, C')\) denotes for \(M(C')\) the sum analogous to \(f_i(*)\) for \(N\), \(\phi(C')f_i(1, C') \equiv 0 \mod m\). Inasmuch as \(n = mn'\), this and (44) imply \(t \mid \phi(C')\). Again, from (38), if \((1, x)\) is in \(M(C')\), \(f_1(x) \equiv f_1(I_i(C')) \equiv f_1(1) \equiv 0 \mod n'\) and therefore \(f_i(1, C') \equiv 0 \mod n'\). Moreover, \(un' \cdot n' = nv\), by (32), so that \(un'f(1, C') \equiv 0 \mod n\). Hence \(t \mid u\). Therefore
\[
(46) t \mid (u, \phi(C')).
\]
And (45), (46) combine to give (34). This completes the proof of Theorem 6.

5. Explicit evaluation of \(\phi\) for nets of degree 3. A set \(G\) together with an operation \((\cdot)\) is called a loop provided: (i) if \(a, b\) are in \(G\), \(a \cdot b\) is a uniquely determined element of \(G\); (ii) if \(a, b\) are in \(G\) there exists a unique \(x\) in \(G\) such that \(x \cdot a = b\) and a unique \(y\) in \(G\) such that \(a \cdot y = b\); (iii) there exists a (unique) element 1 of \(G\) such that \(a \cdot 1 = 1 \cdot a = a\) for every \(a\) in \(G\). A loop is a group if and only if it obeys the associative law \((a \cdot b) \cdot c = a \cdot (b \cdot c)\). The concepts of homomorphism, normal subloop and quotient loop are quite similar to the corresponding concepts in group theory (Albert [1], Baer [2], Bruck [1]). For our purposes the essential facts are these: If the loop \(G\) of order \(n\) possesses a homomorphism \(\theta\) upon a loop \(G'\) of order \(n'\), then the kernel \(H\) of \(\theta\) is a normal subloop of \(G\) and \(G/H\) is isomorphic to \(G'\). Moreover \(H\) has order \(m\) where \(n = mn'\), and each element of \(G'\) is the image under \(\theta\) of precisely \(m\) distinct elements of \(G\). Finally, there is a one-to-one correspondence between the normal subloops of \(G\) and the homomorphisms of \(G\) upon loops.

From a loop \(G\) of order \(n\), we form a net \(N = N(G)\) of order \(n\), degree 3, as follows: The points of \(N\) are the \(n^2\) ordered pairs \((x, y)\) of elements of \(G\). Each \(a\) of \(G\) determines: (i) a 1-line \(x = a\) whose points are the \(n\) points \((a, y)\); (ii) a 2-line \(y = a\) whose points are the \(n\) points \((x, a)\); (iii) a 3-line \(x \cdot y = a\)
whose points are the \(n \) points \((x, y)\) with \(x \cdot y = a \). As shown in Bates [1], every net of order \(n \), degree 3 may be so defined in terms of a suitable loop \(G \) of order \(n \). We define \(\phi(G) = \phi(N(G)) \).

Theorem 7. Let \(G \) be a finite loop of order \(n \). If \(G \) contains a normal subloop \(H \) of odd order such that the quotient loop \(G/H \) is a cyclic group of even order, then \(\phi(G) = 2 \). In all other cases, \(\phi(G) = 1 \).

Corollary 1. Necessary and sufficient conditions that \(\phi(G) = 2 \) are that \(n = m \cdot 2^i \) for \(m \) odd, \(i \geq 1 \), that \(G \) contain a normal subloop \(K \) of order \(m \), and that \(G/K \) be the cyclic group of order \(2^i \).

Corollary 2. If \(n = 4m + 2 \), then \(\phi(G) = 2 \) if and only if \(G \) contains a subloop of order \(2m + 1 \).

Corollary 3. If \(G \) is a group of order \(n = 4m + 2 \), then \(\phi(G) = 2 \).

Proof. Take \(C = (1, 1) \) as the centre of the net \(N(G) \) and define indicators \(I_i(i = 1, 2, 3) \) so that if \(P = (x, y) \) then \(I_1(P) = x \), \(I_2(P) = y \), \(I_3(P) = x \cdot y \). Conditions (1), (2) of Theorem 3 become

\[
\begin{align*}
(47) \quad f_1(1) &= f_2(1) = f_3(1) = 0 \mod n, \\
(48) \quad f_1(x) + f_2(y) + f_3(x \cdot y) &= 0 \mod n,
\end{align*}
\]

for all \(x, y \) of \(G \). Setting, in turn, \(x = 1 \) and \(y = 1 \) in (48), we find, by (47), that \(-f_3(x) \equiv f_1(x) \equiv f_2(x) \equiv f(x) \), say, \(\mod n \) so that (47), (48) can be replaced by

\[
(49) \quad f(x \cdot y) = f(x) + f(y) \mod n
\]

for all \(x, y \) of \(G \). In view of (49), the mapping \(x \rightarrow f(x) \) is a homomorphism of \(G \) upon some subgroup \(Z \) of the additive group of the integers \(\mod n \). Thus \(Z \) is a cyclic group.

Conversely, if \(G \) is homomorph to a cyclic group \(Z \) of order \(n' \), we may assume without loss of generality that \(Z \) is a subgroup of the additive group of integers \(\mod n \) and that the homomorphism is given by (49). Also \(n = mn' \) where \(m \) is the order of the kernel, and exactly \(m \) elements of \(G \) map upon each element of \(Z \). If \(t \) is the sum of the elements of \(Z \) it is easily verified (compare Paige [1]) that \(t \) is the unit 0 if \(n' \) is odd and the unique element of order two if \(n' \) is even. In any case, by Theorem 3, \(\phi(G) \) is the least positive integer \(s \) such that

\[
(50) \quad sf(*) = smt = 0 \mod n
\]

for all integer-valued \(f \) satisfying (49). Clearly \(\phi(G) \ | 2 \).

If \(n' \) is even, \(t \) has order two. If also \(m \) is odd, (50) implies that \(2 \ | \ \phi(G) \). Therefore \(\phi(G) = 2 \), proving the first statement of Theorem 7.

Next suppose that \(G \) is such that there exists no \(f \) for which \(m \) is odd and \(n' \)
is even. If m is odd, n' is odd and $t = 0$, so that $f(*) = 0 \mod n$. If m is even, $f(*) = mt = 0$, since $2t = 0 \mod n$. Therefore $\phi(G) = 1$. This completes the proof of Theorem 7. The Corollaries are immediate consequences of known facts about loops and groups.

BIBLIOGRAPHY

A. A. Albert
Quasigroups II, loc. cit., vol. 55 (1944), 401-419.

Reinhold Baer

P. T. Bateman

Grace E. Bates

G. Bol

R. C. Bose
[1] On the application of the properties of Galois fields to the problem of construction of hyper-

R. C. Bose and K. R. Nair

R. H. Bruck

R. H. Bruck and H. J. Ryser

L. Euler

R. A. Fisher and F. Yates
[2] Statistical tables for agricultural, biological and medical research (Edinburgh, 1943.)

Marshall Hall

M. G. Kendall

F. W. Levi
[1] Finite geometrical systems (University of Calcutta, 1942.)

C. C. MacDuffee

H. F. MacNeish

H. B. Mann

H. W. Norton
L. J. Paige

Albert Sade

W. L. Stevens

G. Tarry

University of Wisconsin

Vol. II, No. 2: Errata

WATER WAVES OVER A CHANNEL OF FINITE DEPTH

Albert E. Heins

p. 216: Instead of $L_+(w)$, read $1/L_+(w)$. Also, for $\chi(w)$ in this expression read $\exp[-\chi(w)]$.

p. 221: Multiply $|L_+ (\pm \kappa)|^2$ by b.

Multiply $|L_+ (\pm \kappa')|^2$ by $b\rho_0$.

Divide the expression for $\frac{|L_+ (\pm \kappa)|^2}{|L_+ (\pm \kappa')|}$ by ρ_0^2.

In the formulas for t_1 and t_2, $\kappa\rho_0/2$ and $2\kappa'/\rho_0$ should be replaced by 2κ and $2\kappa'$, respectively.