FINITE NETS, I. NUMERICAL INVARIANTS

R. H. BRUCK

Introduction. A finite net N of degree k, order n, is a geometrical object of which the precise definition will be given in §1. The geometrical language of the paper proves convenient, but other terminologies are perhaps more familiar. A finite affine (or Euclidean) plane with n points on each line $(n \ge 2)$ is simply a net of degree n + 1, order n (Marshall Hall [1]). A loop of order n is essentially a net of degree 3, order n (Baer [1], Bates [1]). More generally, for $3 \le k \le n + 1$, a set of k - 2 mutually orthogonal $n \times n$ latin squares may be used to define a net of degree k, order n (and conversely) by paralleling Bose's correspondence (Bose [1]) between affine planes and complete sets of orthogonal latin squares.

In the language of latin squares, the problem (explained in §1) of imbedding a net of N of degree k, order n in a net N' of degree k + 1, order n becomes the problem of finding an $n \times n$ latin square orthogonal to each of k - 2 given mutually orthogonal $n \times n$ latin squares. Similarly, adjunction of a line corresponds to the determination of a common "transversal" (in the terminology of Euler [1]) to the k-2 orthogonal squares. Further details of a historical nature will be found in the bibliography.

On each finite net N we define an integer $\phi(N)$, which may be regarded as an invariant in several ways. A necessary condition that a line can be adjoined to N is that $\phi(N) = 1$. (A necessary and sufficient condition is given in Theorem 1 (i).) We define a direct product $N_1 \times N_2$ of nets N_i of the same degree and study the relation between $\phi(N_1 \times N_2)$ and the $\phi(N_i)$ (Theorem 4). From these considerations we deduce the existence of nets of every order n to which no line can be adjoined (Theorem 5). Next we study the relation between the ϕ 's of homomorphic nets (Theorem 6) and we conclude the paper with an explicit evaluation of ϕ for nets of degree 3 (Theorem 7).

1. Nets and the imbedding problem. Let k, n be positive integers, with $k \ge 3$. A (finite) net N of degree k, order n, is a system of undefined objects called "points" and "lines" together with an incidence relationship ("point is on line" or "line passes through point") such that: (i) N contains k (non-empty) classes of lines. (ii) Two lines a, b of N, belonging to distinct classes, have a unique common point P. (iii) Each point P of N is on exactly one line of each class. (iv) Some line of N has exactly n distinct points. It is easy to show that every line of N has exactly n distinct points, that every class of lines contains exactly n distinct lines and that N consists of n^2 distinct points, kn distinct lines. Moreover, either n = 1 or $n \ge k - 1$.

Received October 8, 1949.

If S is a subset of the points of the net N (of degree k, order n) such that each line of N contains exactly one point of S, we shall say that S can be adjoined as a line to N. Considering the n lines of each class, we see that S must consist of exactly n distinct points, no two collinear. If the n^2 points of N can be partitioned into n disjoint sets S_1, \ldots, S_n , each of which can be adjoined as a line to N, then the S_j may be regarded as constituting the n lines of an additional class. In this way N can be *imbedded* in a net N' of degree k + 1, order n, consisting of the points and lines of N (with the same incidence relations) plus one additional class of "parallels". Conversely, if the net N of order n, degree k is a subnet of net N' of order n, degree k + 1 (a subnet in the sense that a point and line of N are incident in N if and only if they are incident in N') then N, N' must have the same points, and one of the lineclasses of N' may be regarded as consisting of n disjoint point-sets S_j , each of which can be adjoined as a line to N. The present paper will be concerned primarily with *necessary* conditions that a line may be adjoined to a net.

2. The integers represented by a net. Let N be a finite net and let f be a single-valued function from the points of N to the rational integers. We shall say that the rational integer m is represented on N by f if f sums to m over the points of each line of N, and represented positively if, in addition, f takes on only non-negative values. Again, if u is a positive integer, we shall say that m is represented mod u on N by f if f sums to m mod u on each line of N. The least positive integer represented on N will be denoted by $\phi(N)$. Clearly $\phi(N)$ is an invariant of N. Moreover, $\phi(N)$ is the (positive) greatest common divisor of the integers represented on N.

THEOREM 1. Let N be a finite net of degree k, order n. Then: (i) A necessary and sufficient condition that a line can be adjoined to N is that 1 be positively represented on N. (ii) n is positively represented on N. (iii) k - 1 is represented on N. (iv) $\phi(N)|(n, k - 1)$. (v) If n is an affine plane (i.e., if k = n + 1,) $\phi(N) = n$. (vi) With at most a finite number of exceptions, every positive integer divisible by $\phi(N)$ is positively represented on N.

COROLLARY. A necessary condition that a line can be adjoined to N is that $\phi(N) = 1$.

Proof. (i) If S can be adjoined as a line to N, define f(P) = 1 or 0 according as P is or is not in S. Then 1 is positively represented on N by f. Conversely, if 1 is positively represented on N by some f, let S be the set of points P for which $f(P) \neq 0$. Then each line of N contains exactly one point P of S (and, incidentally, f(P) = 1.) Hence S can be adjoined to N as a line.

(ii) If f'(P) = 1 for every point P of N, then f' represents n positively on N. (iii) Select an arbitrary point C of N and define h as follows: h(C) = k - n; h(P) = 1 if P is distinct from but collinear with C; h(P) = 0 otherwise. If a is a line through C, h sums, over a, to k - n + n - 1 = k - 1. If a is a line not through C, the k - 1 lines through C which are not in the same class as a meet a in k - 1 distinct points; hence h sums to k - 1 over a in this case also. Therefore h represents k - 1 on N.

(iv) By (ii) and (iii), $\phi(N)$ divides n, k-1 and their greatest common divisor (n, k-1).

(v) Let $\phi(N)$ be represented by f on the affine plane N, and let s be the sum of f over the n^2 points of N. Considering the sum of the sums of f over the n lines of some class, we find $n\phi(N) = s$. On the other hand, if C is a point of N, every point of N (other than C) lies on exactly one of the n + 1 lines through C. Considering the sum of the sums over the n + 1 lines through $nf(C) + s = (n+1)\phi(N)$. Since $s = n\phi(N)$, $nf(C) = \phi(N)$. Therefore $n|\phi(N)|n$, so $\phi(N) = n$. And, incidentally, f(C) = 1 for every point C of N.

(vi) In view of (ii), every positive integral multiple of n is positively represented on N. Next let r be an integer divisible by $\phi(N)$, in the range 0 < r < n. Certainly r is represented on N by some function f. Let m' be the least value assumed by f. Then, if f' is the function defined in (ii) and if m is any integer satisfying $m \ge -m'$, the integer r+mn is positively represented on N by f+mf'. Therefore, in every congruence class of integers mod n divisible by $\phi(N)$, there is at most a finite number of positive integers not represented positively on N.

This completes the proof of Theorem 1. The Corollary follows from (i).

3. A characterization of ϕ . If N is a net of degree k, order n, we shall assume henceforth that the k classes of "parallel" lines have been numbered (arbitrarily, but once and for all) from 1 to k. Thus, if $1 \leq i \leq k$, an *i*-line of N is a line of class *i*. In terms of an arbitrary "centre" C (C a point of N) we introduce a coordinate system as follows: For $1 \leq i \leq k$, the n lines of class *i* are numbered from 1 to n, the *i*-line through C being assigned the number 1. The *i*-line numbered x is designated by (i, x). We also introduce k point-functions I_i , the indicators, by defining $I_i(P) = x$ if (i, x) is the *i*-line through the point P.

If f is a single-valued function from the integer-range $1 \le x \le n$ to the integers, we shall designate by f(*) the sum $f(1) + f(2) + \ldots + f(n)$. In terms of these notations we may prove two theorems.

THEOREM 2. Let N be a net of degree k, order n. Then a necessary and sufficient condition that the integer m be represented on N is that m be represented mod n on N.

THEOREM 3. Let N be a net of degree k, order n. Then $\phi(N)$ is the smallest positive integer s with the following property: If f_1, \ldots, f_k are single-valued functions from the integer-range $1 \leq x \leq n$ to the integers, such that

(1)
$$f_i(1) \equiv 0 \mod n \qquad (i = 1, \ldots, n),$$

(2)
$$\sum_{i=1}^{\kappa} f_i(I_i(P)) \equiv 0 \mod n$$

for each point P of N, then

 $sf_1(^*) \equiv 0 \mod n.$

Proof. If a_1, \ldots, a_{kn} are the kn lines and P_1, \ldots, P_{n2} are the n^2 points of N, in arbitrary arrangements, define the *line-point incidence matrix* A of N by putting 1 or 0 in the *u*th row, *v*th column of A according as P_v does or does not lie on a_u . Also define U to be the column vector of order kn with every element 1. Let X be a column vector of order n^2 and let m be an arbitrary integer. Then m is represented on N if and only if

$$AX = mU$$

for an integral X. In view of Theorem 1 (ii), (3) has a *rational* solution X with every component equal to m/n. If $r = \operatorname{rank} A$, there exist unimodular matrices T, Q (with rational integral components) such that

(4)
$$TAQ = \begin{pmatrix} D_r & 0 \\ 0 & 0 \end{pmatrix}, \qquad D_r = \operatorname{diag}(e_1, e_2, \ldots, e_r),$$

where the positive integers e_j are the *invariant divisors* of A; thus $e_j|e_{j+1}$ for $j = 1, 2, \ldots, r-1$. Setting TU = V, X = QY, we see that (3) may be reduced to

(5)
$$e_j y_j = m v_j \qquad (j = 1, \ldots, r)$$

A necessary and sufficient condition that (3) have an integral solution X is that (5) yield integral values for y_1, \ldots, y_r . In particular, by the definition of $\phi(N)$, if

(6)
$$d_j = (e_j, v_j), e_j = h_j d_j$$
 $(j = 1, ..., r),$

then $\phi(N)$ is the least common multiple

(7)
$$\phi(N) = [h_1, \ldots, h_r].$$

Next let u be any integer divisible by e_r (and hence by each e_j .) Clearly m is represented mod u on N if and only if $AX = mU \mod u$ for an integral X, or, equivalently, if and only if $e_jy_j \equiv mv_j \mod u$ for integral y_j ($j = 1, \ldots, r$). Since $e_j|u$, the latter congruences imply $e_j|mv_j$, $h_j|m$, $\phi(N)|m$. However, if $\phi(N)|m$, m is certainly represented on N. Thus Theorem 2 will be proved when we show that $e_r|n$.

For $i = 1, \ldots, k$, let the row-vector R_i denote the sum of the *n* rows of *A* corresponding to the lines of class *i*. Since each point lies on exactly one *i*-line R_i has each component equal to 1; thus $R_1 = R_2 = \ldots = R_k$. Let *B* be the matrix of 1 + k(n - 1) rows obtained by deleting from *A* the rows corresponding to the 2-line, 3-line, \ldots , *k*-line through the centre *C*. Clearly, since $R_i = R_1, T'A = \begin{pmatrix} B \\ 0 \end{pmatrix}$ for a unimodular matrix *T'*; hence *B* has the same rank and invariant divisors as *A*. There is therefore no loss of generality in assuming that, in (4), the first *r* rows of *T* have zeros in the columns matching with the k - 1 rows of *A* omitted in *B*. With this understanding, let V_j be the *j*th row of *T* ($j = 1, \ldots, r$); by (4), since *Q* is unimodular, e_j is the greatest

common divisor of the components of V_jA . For any fixed j, let $g_i(x)$ denote the component of V_j in the column corresponding to the line (i, x) of N; thus $g_i(1) = 0$ for i > 1. In V_jA , the column corresponding to point the P has component

(8)
$$\sum_{i=1}^{k} g_i(I_i(P)) \equiv 0 \mod e_j.$$

When P = C, (8) reduces to $g_1(1) \equiv 0 \mod e_j$; hence

(9)
$$g_i(1) \equiv 0 \mod e_j$$
 $(i = 1, ..., k).$

Selecting a fixed line (i, x) and summing the congruence (8) over the *n* points P of (i, x), we derive

(10)
$$\sum_{u \neq i} g_u(*) + ng_i(x) \equiv 0 \mod e_j.$$

From (10), (9), $ng_i(x) \equiv ng_i(1) \equiv 0 \mod e_j$. Thus, if $d = (n, e_j)$ and $e_j = de'$, we have $g_i(x) \equiv 0 \mod e'$ for all *i*, *x*. Since *T* is unimodular, the greatest common divisor of the components of V_j is 1; therefore e' = 1 and $e_j|n$. In particular $e_r|n$, proving Theorem 2.

In similar fashion, letting the g_i be arbitrary rational-valued functions such that $g_i(1) = 0$ for i > 1, and replacing the congruences (8) by equations, we may deduce that $g_i(x) = 0$ for all i, x. This shows that the rows of B are linearly independent, so that

(11)
$$r = 1 + k(n-1).$$

To prove Theorem 3, let V_j have (integer-valued) components $g_i(x)$, as above, and let $f_i(x) = n_j g_i(x)$ where $n = n_j e_j$. Then (9) and (8) become (1) and (2) respectively. On the other hand, $V_j U = v_j$, in the notation of (5), and hence

(12)
$$\sum_{i=1}^{k} f_i(*) = n_j v_j.$$

Multiplying (5) by n_j , we get $ny_j = m.n_jv_j$. Therefore *m* is represented on *N* if and only if $m.n_jv_j \equiv 0 \mod n$ for $j = 1, \ldots, r$. To replace (10) we have $\sum_{u \neq i} f_u(*) \equiv 0 \mod n$, whence, by (12), $n_jv_j \equiv f_i(*)$ for $i = 1, \ldots, k$. In particular, $n_jv_j \equiv f_1(*) \mod n$. Thus, by the definition of *s*, $s.n_jv_j \equiv sf_1(*) \equiv 0 \mod n$, for $j = 1, \ldots, r$. Hence *s* is represented on *N*, $\phi(N)|s$.

We must prove the converse. Certainly $AX = \phi(N)U$ for an integral X. Let f_1, \ldots, f_k be integer-valued functions satisfying (1) and (2), and let V be the row-vector with $f_i(x)$ in the column corresponding to line (i, x). Then VA has component $\sum_{i=1}^{k} f_i(I_i(P))$ in the column corresponding to point P, while $VU = \sum_{i=1}^{k} f_i(*)$. Thus the equation $VAX = \phi(N)VU$, together with the congruences (2), implies that

(13)
$$\phi(N) \sum_{i=1}^{k} f_i(*) \equiv 0 \mod n.$$

By the same methods as before, we deduce from (1) and (2) that (13) is equivalent to $\phi(N)f_1(*) \equiv 0 \mod n$. Since s is the least positive integer such that $sf_1(*) \equiv 0 \mod n$ for all such functions f_i , $s | \phi(N)$. Therefore $\phi(N) = s$. This completes the proofs of Theorems 2, 3.

3. Direct products of nets. Let N_1 , N_2 be nets of orders n_1 , n_2 respectively, and of the same degree k. The *direct product* $N = N_1 \times N_2$ is defined as follows: (i) The points of N are the ordered pairs (P_1, P_2) , with P_j a point of N_j . (ii) For $i = 1, \ldots, k$, the *i*-lines of N are the ordered pairs (a_1, a_2) , with a_j an *i*-line of N_j . (iii) (P_1, P_2) lies on (a_1, a_2) in N if and only if P_j lies on a_j in N_j for j = 1, 2. It is easy to verify that N is a net of degree k, order n_1n_2 . Making the obvious identifications one may establish the commutative and associative laws for direct products.

If N_1 has a coordinate system centered about C_1 , with indicators I_i , and N_2 has a coordinate system centered about C_2 , with indicators J_i , we introduce a natural coordinate system for $N = N_1 \times N_2$ as follows: Take $C = (C_1, C_2)$ as centre. If a_j is the *i*-line (i, x_j) of N_j (j = 1, 2) denote by $(i; x_1, x_2)$ the *i*-line (a_1, a_2) of N. Define the indicators I_i of N by $I_i(P_1, P_2) = (x_1, x_2)$ where $(i; x_1, x_2)$ is the *i*-line of N through (P_1, P_2) . Moreover, if $f(x_1, x_2)$ is a function from the integer-domain $1 \leq x_1 \leq n_1, 1 \leq x_2 \leq n_2$ to the integers, denote by $f(*, x_2)$ the sum $f(1, x_2) + f(2, x_2) + \ldots + f(n_1, x_2)$. Similar meanings are assigned to $f(x_1, *)$ and f(*, *).

THEOREM 4. Let N_j be a net of order n_j and degree k, for j = 1, 2, and let $N = N_1 \times N_2$. Write

(14)
$$d = (n_1, n_2), \quad n_1 = dq_1, \quad n_2 = dq_2.$$

Then there exist positive integers a, b such that

(15)
$$(q_1, \phi(N_1)) \cdot (q_2, \phi(N_2)) = a \cdot \phi(N),$$

(16)
$$(d, k-1) \cdot \phi(N) = b [\phi(N_1), \phi(N_2)],$$

(17)
$$ab \mid (d, k-1).$$

COROLLARY 1. If $(n_1, n_2, k - 1) = 1$, then $\phi(N_1 \times N_2) = \phi(N_1)\phi(N_2)$.

COROLLARY 2. If $(q_1q_2, k-1) = 1$, then $\phi(N_1 \times N_2) = 1$.

COROLLARY 3. For any finite net N, $\phi(N \times N) = 1$.

Proof. In the present notation the content of Theorem 3 may be expressed as follows: $\phi(N)$ is the least positive integer such that, for integer-valued functions f_i , the congruences

(18)
$$f_i(1, 1) \equiv 0 \mod n_1 n_2,$$

(19)
$$\sum_{i=1}^{k} f_i(I_i(P_1), J_i(P_2)) \equiv 0 \mod n_1 n_2$$

for all points (P_1, P_2) of N, imply

(20)
$$\phi(N)f_1(*,*) \equiv 0 \mod n_1n_2.$$

Keeping P_1 fixed in (19), select a line (i, x_2) of N_2 and sum over all points P_2 of (i, x_2) . Then

(21)
$$\sum_{j \neq i} f_j(I_j(P_1), *) + n_2 f_i(I_i(P_1), x_2) \equiv 0 \mod n_1 n_2.$$

Since the sum in (21) is independent of x_2 , we have

$$n_2 f_i(I_i(P_1), x_2) \equiv n_2 f_i(I_i(P_1), 1) \mod n_1 n_2,$$

i.e.

(22)
$$f_i(x_1, x_2) \equiv f_i(x_1, 1) \mod n_1$$

for all i, x_1 , x_2 in their respective ranges. Similarly,

(23)
$$f_i(x_1, x_2) \equiv f(1, x_2) \mod n_2$$

Since d divides n_1 , n_2 , we deduce from (22), (23) and (18) that

(24)
$$f_i(x_1, x_2) \equiv 0 \mod d.$$

Returning to (21), choose any line (j, x_1) of N_1 , with $j \neq i$, and sum over all points P_1 of (j, x_1) . There results

(25)
$$\sum_{p \neq i, j} f_p(*, *) + n_1 f_j(x_1, *) + n_2 f_i(*, x_2) \equiv 0 \mod n_1 n_2$$

for all i, j $(i \neq j)$ and x_1, x_2 . As in the proof of Theorem 3, $f_p(*, *) \equiv f_1(*, *) \mod n_1 n_2$. And since, by Theorem 1, $\phi(N)$ divides $k - 1, (k - 1)f_1(*, *) \equiv 0 \mod n_1 n_2$. Therefore (25) is equivalent to

(26)
$$f_1(*,*) \equiv n_1 f_j(x_1,*) + n_2 f_i(*,x_2) \mod n_1 n_2.$$

Since $k \ge 3$, and since in (26) the only restriction is $i \ne j$, (26) is equivalent to

(27)
$$f_1(*,*) \equiv n_1 f_1(x_1,*) + n_2 f_1(*,x_2) \mod n_1 n_2.$$

Define t_1 , t_2 as the least positive integers such that

(28)
$$t_1 n_2 f_1(*, x_2) \equiv 0, \qquad t_2 n_1 f_1(x_1, *) \equiv 0 \mod n_1 n_2$$

for all f_i satisfying (18), (19). By (27), $t_1t_2f_1(*, *) \equiv 0 \mod n_1n_2$. Hence, by the property (20) of $\phi(N)$,

$$(29) \qquad \qquad \phi(N) \mid t_1 t_2.$$

Since $q_1d = n_1$, (24) implies $q_1n_2f_1(*, x_2) \equiv 0 \mod n_1n_2$. Thus $t_1 \mid q_1$. Similarly,

(30)
$$t_j | q_j$$
 $(j = 1, 2).$

Since the q_j are relatively prime, so are the t_j . Next choose any fixed value

for x_2 and define functions $F_i(x_1) = f_i(x_1, x_2)$. From (22), $F_i(x_1) \equiv f_i(x_1, 1) \mod n_1$. Thus, from (18), $F_i(1) \equiv 0 \mod n_1$. Moreover, by (19),

$$\sum_{i=1}^{k} F_{i}(I_{i}(P_{1})) \equiv \sum_{i=1}^{k} f_{i}(I_{i}(P_{1}), J_{i}(C_{2})) \equiv 0 \mod n_{1}.$$

Therefore, by Theorem 3, $0 \equiv \phi(N_1)F_1(*) \equiv \phi(N_1)f_1(*, x_2) \mod n_1$, and so $\phi(N_1)n_2f_1(*, x_2) \equiv 0 \mod n_1n_2$. Hence (and similarly)

(31)
$$t_j \mid \phi(N_j)$$
 $(j = 1, 2).$

By (30), (31), t_j divides the greatest common divisor of q_j and $\phi(N_j)$. Hence (29) implies (15) for some positive integer a.

To obtain (16), let $g_i(x_1)$ be any set of integer-valued functions satisfying equations analogous to (1), (2) for N_1 , and set $f_i(x_1, x_2) = n_2 g_i(x_1)$. Then the f_i will satisfy (18), (19). Therefore $\phi(N)f_1(*, *) = \phi(N)(n_2)^2 g_1(*) \equiv 0 \mod n_1 n_2$, $\phi(N)n_2 g_1(*) \equiv 0 \mod n_1$, $\phi(N_1) \mid \phi(N)n_2$. Since $\phi(N_1) \mid (n_1, k - 1)$ and since $(n_1, n_2) = d$, we may improve the last statement to $\phi(N_1) \mid (d, k-1)\phi(N)$. Similarly for $\phi(N_2)$. Hence the least common multiple $[\phi(N_1), \phi(N_2)]$ divides $(d, k - 1)\phi(N)$, proving (16) for some positive integer b.

Eliminating $\phi(N)$ from (15), (16), we derive $ab[\phi(N_1), \phi(N_2)] = (d, k - 1)$ $(q_1, \phi(N_1))(q_2, \phi(N_2))$. Since the integers $(q_j, \phi(N_j))$ are relatively prime divisors of $[\phi(N_1), \phi(N_2)]$, we have (17). This completes the proof of Theorem 4. In the case of Corollary 1, a = b = 1, by (17), and then $\phi(N) = \phi(N_1)$ $\phi(N_2)$ by (16) and the fact that $(\phi(N_1), \phi(N_2))$ is a divisor of $(n_1, n_2, k - 1) = 1$.

In the case of Corollary 2, the left-hand side of (15) is 1, since, for example, $(q_1, \phi(N_1))$ divides $(q_1, k - 1) = 1$. Thus $\phi(N) = 1$. And Corollary 3 corresponds to the special case $q_1 = 1 = q_2$ of Corollary 2.

THEOREM 5. Let n > 1 be a positive integer with factorization $n = \prod p(i)^{m(i)}$ where the p(i) are distinct primes and the m(i) are positive integers. Let $r = \min (p(1)^{m(1)}, p(2)^{m(2)}, \ldots)$. Then there exists a net N of order n, degree r + 1, such that $\phi(N) = r > 1$. In particular, no line can be adjoined to N.

COROLLARY. If k is any integer such that $3 \leq k \leq r+1$, there exists a net N of order n, degree k.

Proof. For any prime p and positive integer m, let E(p, m) be an affine plane of order p^m (and degree $p^m + 1$.) Such a plane exists, for example, the plane obtained by using coordinates (in the familiar manner of elementary plane geometry) from the field $GF(p^m)$. For each i, we may define a net N_i of degree r+1, order $p(i)^{m(i)}$ from an E(p(i), m(i)) by deleting some $(p(i)^{m(i)}+1)-(r+1)$ classes of lines. Set $N = N_1 \times N_2 \times \ldots$ By an obvious extension of Corollary 1 to Theorem 4, $\phi(N) = \phi(N_1)\phi(N_2) \ldots$. For exactly one i, $N_i = E(p(i), m(i))$ and $\phi(N_i) = p(i)^{m(i)} = r$. For all other i, lines can be adjoined to N_i , so $\phi(N_i) = 1$. Therefore $\phi(N) = r > 1$. As for the Corollary we need merely delete some r + 1 - k classes of lines from N.

R. H. BRUCK

4. Homomorphic nets. Let N, N' be nets of the same degree k. A homomorphism θ of N upon N' is a single-valued, exhaustive mapping of N upon N' which maps points upon points, *i*-lines upon *i*-lines (for $i = 1, \ldots, k$) and preserves incidence. The requirement that *i*-lines be mapped upon *i*-lines may seem artificial. The obvious generalization, however, is no more necessary than the little used concept of "anti-homomorphism" in group theory, and adds complications to the proofs. (See Bates [1] for a similar restriction in regard to 3-nets.)

A homomorphism θ of N upon N' is called an *isomorphism* if it is one-to-one, and a zero homomorphism if N' has order one. A net N is *simple* if its only homomorphisms upon nets are isomorphisms and zero homomorphisms.

LEMMA 1. Let N, N' be nets of respective orders n, n' and of the same degree k. Let θ be a homomorphism of N upon N'. For each point P' of N', let M(P') be the subset of N consisting of all points P of N such that $P\theta = P'$ and of all lines a of N such that a θ passes through P'. Then n = mn' for a positive integer m, and each M(P') is a subnet of N, of order m, degree k.

COROLLARY. Every finite affine plane is a simple net.

Proof. Consider one of the sets M = M(P'). Then M contains lines of each of the k classes in N, since the k lines through P' are images under θ . If a, b are lines of distinct classes in N, such that $a\theta$, $b\theta$ pass through P', the intersection point $P = a \cdot b$ satisfies $P\theta = P'$, and hence is in M. If Q is in M, each of the k lines through Q is in M. Hence M is a net of degree k and of some order m. In particular, for each i, M has exactly m i-lines, and these are precisely the *i*-lines of N which map into the *i*-lines through P'. If Q' is a point of N', distinct from P', the *i*-line through P' and the *j*-line through Q' $(j \neq i)$ must meet in a point R' of N'. Then M(R'), M(P') have the same *i*-lines, hence the same order m. Therefore each of the $(n')^2$ subnets M(P') has order m, showing that $(n')^2m^2 = n^2$ or n = mn'.

As for the Corollary, if the net N has order n = k - 1, then k - 1 = mn'. But either n' = 1 or $n' \ge k - 1$; and the second alternative gives n' = k - 1, m = 1. Hence every homomorphism of N upon a net is either a zero homomorphism or an isomorphism. Thus N is simple. This Corollary offers a partial explanation of the lack of success in attempting to define homomorphisms of projective planes (Marshall Hall [1]).

With the notation of Lemma 1, define D to be the greatest common divisor of all the integers $\phi(P') = \phi(M(P'))$. Also write

(32)
$$d = (m, n'), \quad m = du, \quad n' = dv.$$

THEOREM 6. Let N be a net of degree k, order n = mn', possessing a proper homomorphism θ upon a net N' of order n'. (Thus $m, n' \ge k - 1$.) Then

(33)
$$\phi(N) \mid [\phi(N'), (u, D)], \qquad \phi(N') \mid (d, k - 1)\phi(N).$$

Proof. If $\phi(N)$ is represented on N by the point function f(P), define $g(P') = \sum f(P)$ where the sum is taken over the m^2 points P such that $P\theta = P'$. Then it is easy to see that g represents $m\phi(N)$ on N'. Hence $\phi(N') \mid m\phi(N)$. By (32) and the fact that $\phi(N') \mid (n', k - 1)$, we deduce the second relation of (33). If a, b, c are integers, one readily verifies the identity ([a, b], [a, c]) = [a, (b, c)]. Thus the relation

(34)
$$\phi(N) \mid [\phi(N'), (u, \phi(C'))],$$

holding for every point C' of N', implies the first relation of (33). We complete the proof by establishing (34).

Let θ' be any one-to-one mapping of the points of N' into the points of N, such that $P'\theta'\theta = P'$. Thus $P'\theta'$ is in M(P') for each P' of N'. Choose any point C' as centre in N' and take $C = C'\theta'$ as centre in N. Let I_i , J_i be the indicator functions for N, N' respectively. As an additional notation, define

(35)
$$I_i(P') = I_i(P'\theta'), \qquad P' \text{ in } N'.$$

If f(x) is a function from the integer-range $1 \le x \le n$ to the integers, define f(*) as before. Also define

(36)
$$f(i, P') = \sum' f(x),$$

where the sum in (36) is taken over all x such that (i, x) is a line of M(P'). Now let f_i be functions satisfying (1), (2) of Theorem 3. For any point P' of N', and any line (i, x) of M(P'), sum (2) over all points P common to (i, x) and M(P'). Thus

(37)
$$\sum_{j \neq i} f_j(j, P') + m f_i(x) \equiv 0 \mod n.$$

Since the second term of (37) is independent of the choice of (i, x) in M(P'),

(38)
$$f_i(x) \equiv f_i(I_i(P')) \mod n', \qquad (i, x) \text{ in } M(P').$$

By (38), $f_i(x)$ is determined mod n' by the line $(i, x') = (i, x)\theta$ of N'. Thus (mod n') we may define a set of integer-valued functions $F_i(x')$, on the range $1 \le x' \le n'$, by

(39)
$$F_i(x') \equiv f_i(x) \mod n' \qquad \text{if } (i, x)\theta = (i, x').$$

Clearly the F_i satisfy the conditions corresponding to (1), (2) for N'. Therefore, by Theorem 3,

(40)
$$\phi(N')F_1(*) \equiv 0 \mod n'.$$

Next pick $j \neq i$ and consider the line (j, 1) of N'. By (39), (38),

(41)
$$F_i(*) \equiv \sum f_i(I_i(P')) \mod n'$$

where the sum in (41) is over the points P' of (j, 1). Moreover $f_j(j, P') = f_j(j, C')$ for P' on (j, 1), since, for each P' of (j, 1), the *j*-lines of M(P') are

those lines (j, x) such that $(j, x)\theta = (j, 1)$. Hence, if in (37) we sum over all points P' of (j, 1), there results

(42)
$$\sum_{p \neq i, j} f_p(*) + n' f_j(j, C') + m F_i(*) \equiv 0 \mod n$$

As in the proof of Theorem 5, (42) is equivalent to

(43)
$$f_1(*) \equiv n' f_1(1, C') + m F_1(*) \mod n.$$

If *t* is the least positive integer such that

$$(44) tn'f_1(1, C') \equiv 0 \mod n$$

for all functions f_i satisfying (1), (2), then (40), (43) imply $[\phi(N'), t] f_1(*) \equiv 0 \mod n$. Hence

(45)
$$\phi(N) \mid [\phi(N'), t].$$

Since C is the centre for M(C') as well as for N, and since $m \mid n$, the f_i satisfy conditions analogous to (1), (2) for the net M(C'). And since $f_1(1, C')$ denotes for M(C') the sum analogous to $f_1(*)$ for N, $\phi(C') f_1(1, C') \equiv 0 \mod m$. Inasmuch as n = mn', this and (44) imply $t \mid \phi(C')$. Again, from (38), if (1, x) is in M(C'), $f_1(x) \equiv f_1(I_1(C')) \equiv f_1(1) \equiv 0 \mod n'$ and therefore $f_1(1, C') \equiv 0 \mod n'$. Moreover, $un' \cdot n' = nv$, by (32), so that $un'f(1, C') \equiv 0 \mod n$. Hence $t \mid u$. Therefore

(46)
$$t \mid (u, \phi(C')).$$

And (45), (46) combine to give (34). This completes the proof of Theorem 6.

5. Explicit evaluation of ϕ for nets of degree 3. A set G together with an operation (.) is called a *loop* provided: (i) if a, b are in G, a. b is a uniquely determined element of G; (ii) if a, b are in G there exists a unique x in G such that $x \cdot a = b$ and a unique y in G such that $a \cdot y = b$; (iii) there exists a (unique) element 1 of G such that $a \cdot 1 = 1 \cdot a = a$ for every a in G. A loop is a group if and only if it obeys the associative law $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. The concepts of homomorphism, normal subloop and quotient loop are quite similar to the corresponding concepts in group theory (Albert [1], Baer [2], Bruck [1]). For our purposes the essential facts are these: If the loop G of order n possesses a homomorphism θ upon a loop G' of order n', then the kernel H of θ is a normal subloop of G and G/H is isomorphic to G'. Moreover H has order m where n = mn', and each element of G' is the image under θ of precisely m distinct elements of G. Finally, there is a one-to-one correspondence between the normal subloops of G and the homomorphisms of G upon loops.

From a loop G of order n, we form a net N = N(G) of order n, degree 3, as follows: The points of N are the n^2 ordered pairs (x, y) of elements of G. Each a of G determines: (i) a 1-line x = a whose points are the n points (a, y); (ii) a 2-line y = a whose points are the n points (x, a); (iii) a 3-line $x \cdot y = a$

whose points are the *n* points (x, y) with $x \cdot y = a$. As shown in Bates [1], every net of order *n*, degree 3 may be so defined in terms of a suitable loop *G* of order *n*. We define $\phi(G) = \phi(N(G))$.

THEOREM 7. Let G be a finite loop of order n. If G contains a normal subloop H of odd order such that the quotient loop G/H is a cyclic group of even order, then $\phi(G) = 2$. In all other cases, $\phi(G) = 1$.

COROLLARY 1. Necessary and sufficient conditions that $\phi(G) = 2$ are that $n = m \cdot 2^t$ for m odd, $t \ge 1$, that G contain a normal subloop K of order m, and that G/K be the cyclic group of order 2^t .

COROLLARY 2. If n = 4m + 2, then $\phi(G) = 2$ if and only if G contains a subloop of order 2m + 1.

COROLLARY 3. If G is a group of order n = 4m + 2, then $\phi(G) = 2$.

Proof. Take C = (1, 1) as the centre of the net N(G) and define indicators $I_i(i = 1, 2, 3)$ so that if P = (x, y) then $I_1(P) = x$, $I_2(P) = y$, $I_3(P) = x \cdot y$. Conditions (1), (2) of Theorem 3 become

(47)
$$f_1(1) \equiv f_2(1) \equiv f_3(1) \equiv 0 \mod n$$
,

(48)
$$f_1(x) + f_2(y) + f_3(x \cdot y) \equiv 0 \mod n$$
,

for all x, y of G. Setting, in turn, x = 1 and y = 1 in (48), we find, by (47), that $-f_3(x) \equiv f_1(x) \equiv f_2(x) \equiv f(x)$, say, mod n so that (47), (48) can be replaced by

(49)
$$f(x \cdot y) \equiv f(x) + f(y) \mod n$$

for all x, y of G. In view of (49), the mapping $x \to f(x)$ is a homoorphism of G upon some subgroup Z of the additive group of the integers mod n. Thus Z is a cyclic group.

Conversely, if G is homomorphic to a cyclic group Z of order n', we may assume without loss of generality that Z is a subgroup of the additive group of integers mod n and that the homomorphism is given by (49). Also n = mn'where m is the order of the kernel, and exactly m elements of G map upon each element of Z. If t is the sum of the elements of Z it is easily verified (compare Paige [1]) that t is the unit 0 if n' is odd and the unique element of order two if n' is even. In any case, by Theorem 3, $\phi(G)$ is the least positive integer s such that

$$(50) sf(*) \equiv smt \equiv 0 \mod n$$

for all integer-valued f satisfying (49). Clearly $\phi(G) \mid 2$.

If n' is even, t has order two. If also m is odd, (50) implies that $2 \mid \phi(G)$. Therefore $\phi(G) = 2$, proving the first statement of Theorem 7.

Next suppose that G is such that there exists no f for which m is odd and n'

is even. If *m* is odd, *n'* is odd and $t \equiv 0$, so that $f(*) \equiv 0 \mod n$. If *m* is even, $f(*) \equiv mt \equiv 0$, since $2t \equiv 0 \mod n$. Therefore $\phi(G) = 1$. This completes the proof of Theorem 7. The Corollaries are immediate consequences of known facts about loops and groups.

BIBLIOGRAPHY

A. A. Albert

[1] Quasigroups I, Trans. Amer. Soc., vol. 54 (1943), 502-519;

Quasigroups II, loc. cit., vol. 55 (1944), 401-419.

Reinhold Baer

- [1] Nets and groups, Trans. Amer. Math. Soc., vol. 46 (1939), 110-141;
- Nets and groups. II, loc. cit., vol. 47 (1940), 435-439.

[2] The homomorphism theorems for loops, Amer. J. Math., vol. 67 (1945), 450-460.

P. T. Bateman

[1] A remark on infinite groups, Amer. Math. Monthly, vol. 57 (1950), 623-624. Grace E. Bates

[1] Free loops and nets and their generalizations, Amer. J. Math., vol. 69 (1947), 499-550. G. Bol

- [1] Geweben und Gruppen, Math. Ann., vol. 114 (1937), 414-431.
- R. C. Bose

[1] On the application of the properties of Galois fields to the problem of construction of hyper-Graeco-latin squares, Sankya, Indian Journal of Statistics, vol. 3 (1938), 323-338.

R. C. Bose and K. R. Nair

[1] On complete sets of latin squares, Sankya, vol. 5 (1942), 361-382.

R. H. Bruck

[1] Contributions to the theory of loops, Trans. Amer. Math. Soc., vol. 60 (1946), 245-354. R. H. Bruck and H. J. Ryser

[1] The non-existence of certain finite projective planes, Can. J. Math., vol. 1 (1949), 88-93. L. Euler

[1] Recherches sur une nouvelle espèce de quarrés magiques, Collected works, series prima, vol. 7, 291-392.

R. A. Fisher and F. Yates

[1] The 6×6 latin squares, Proc. Camb. Phil. Soc., vol. 30 (1934), 492-507.

[2] Statistical tables for agricultural, biological and medical research (Edinburgh, 1943.) Marshall Hall

[1] Projective planes, Trans. Amer. Math. Soc., vol. 54 (1943), 29-77. M. G. Kendall

[1] Who discovered the latin square?, American Statistician, vol. 2 (1948), 13.

F. W. Levi

[1] Finite geometrical systems (University of Calcutta, 1942.)

C. C. MacDuffee

[1] The theory of matrices (New York, 1946.)

H. F. MacNeish

[1] Euler squares, Ann. of Math., vol. 23 (1921-2), 221-227.

H. B. Mann

[1] The construction of orthogonal squares, Ann. of Math. Statistics, vol. 13 (1942), 418-423.

[2] On orthogonal latin squares, Bull. Amer. Math. Soc., vol. 50 (1944), 249-257.

[3] Analysis and design of experiments (New York, 1949.)

H. W. Norton

[1] The 7×7 squares, Ann. Eugen., vol. 9 (1939), 269-307.

L. J. Paige

[1] A note on finite abelian groups, Bull. Amer. Math. Soc., vol. 53 (1947), 590-593.

[2] Neofields, Duke Math. J., vol. 16 (1949), 39-60.

[1] Enumération des carrés latins. Application au 7^e ordre. Conjecture pour les ordres supérieurs. (Published by the author, Marseille, 1948.)

W. L. Stevens

[1] The completely orthogonalized latin square, Ann. Eugen., vol. 9 (1939), 82-93.

G. Tarry

 Le problème de 36 officiers, Compte Rendu de l'Association Française pour l'Avancement de Science Naturel, vol. 1 (1900), 122-123; vol. 2 (1901), 170-203.

University of Wisconsin

Vol. II, No. 2: Errata

WATER WAVES OVER A CHANNEL OF FINITE DEPTH

Albert E. Heins

p. 216: Instead of $L_+(w)$, read $1/L_+(w)$. Also, for exp $[\chi(w)]$ in this expression read exp $[-\chi(w)]$.

p. 221: Multiply $|L_+(\pm \kappa)|^2$ by b. Multiply $|L_+(\pm \kappa')|^2$ by $b\rho_0$.

Divide the expression for $\left|\frac{L_{+}(\pm \kappa)}{L_{+}(\pm \kappa')}\right|^{2}$ by ρ_{0}^{2} .

In the formulas for t_1 and t_2 , $\kappa \rho_0/2$ and $2\kappa'/\rho_0$ should be replaced by 2κ and $2\kappa'$, respectively.

Albert Sade