FINITE NETS, I. NUMERICAL INVARIANTS

R. H. BRUCK

Introduction. A finite net N of degree k, order n, is a geometrical object of which the precise definition will be given in §1. The geometrical language of the paper proves convenient, but other terminologies are perhaps more familiar. A finite affine (or Euclidean) plane with n points on each line ($n \geqslant 2$) is simply a net of degree $n+1$, order n (Marshall Hall [1]). A loop of order n is essentially a net of degree 3 , order n (Baer [1], Bates [1]). More generally, for $3 \leqslant k \leqslant n+1$, a set of $k-2$ mutually orthogonal $n \times n$ latin squares may be used to define a net of degree k, order n (and conversely) by paralleling Bose's correspondence (Bose [1]) between affine planes and complete sets of orthogonal latin squares.

In the language of latin squares, the problem (explained in §1) of imbedding a net of N of degree k, order n in a net N^{\prime} of degree $k+1$, order n becomes the problem of finding an $n \times n$ latin square orthogonal to each of $k-2$ given mutually orthogonal $n \times n$ latin squares. Similarly, adjunction of a line corresponds to the determination of a common "transversal" (in the terminology of Euler [1]) to the $k-2$ orthogonal squares. Further details of a historical nature will be found in the bibliography.

On each finite net N we define an integer $\phi(N)$, which may be regarded as an invariant in several ways. A necessary condition that a line can be adjoined to N is that $\phi(N)=1$. (A necessary and sufficient condition is given in Theorem 1 (i).) We define a direct product $N_{1} \times N_{2}$ of nets N_{i} of the same degree and study the relation between $\phi\left(N_{1} \times N_{2}\right)$ and the $\phi\left(N_{i}\right)$ (Theorem 4). From these considerations we deduce the existence of nets of every order n to which no line can be adjoined (Theorem 5). Next we study the relation between the ϕ 's of homomorphic nets (Theorem 6) and we conclude the paper with an explicit evaluation of ϕ for nets of degree 3 (Theorem 7).

1. Nets and the imbedding problem. Let k, n be positive integers, with $k \geqslant 3$. A (finite) net N of degree k, order n, is a system of undefined objects called "points" and "lines" together with an incidence relationship ("point is on line" or "line passes through point") such that: (i) N contains k (nonempty) classes of lines. (ii) Two lines a, b of N, belonging to distinct classes, have a unique common point P. (iii) Each point P of N is on exactly one line of each class. (iv) Some line of N has exactly n distinct points. It is easy to show that every line of N has exactly n distinct points, that every class of lines contains exactly n distinct lines and that N consists of n^{2} distinct points, $k n$ distinct lines. Moreover, either $n=1$ or $n \geqslant k-1$.
[^0]If S is a subset of the points of the net N (of degree k, order n) such that each line of N contains exactly one point of S, we shall say that S can be adjoined as a line to N. Considering the n lines of each class, we see that S must consist of exactly n distinct points, no two collinear. If the n^{2} points of N can be partitioned into n disjoint sets S_{1}, \ldots, S_{n}, each of which can be adjoined as a line to N, then the S_{j} may be regarded as constituting the n lines of an additional class. In this way N can be imbedded in a net N^{\prime} of degree $k+1$, order n, consisting of the points and lines of N (with the same incidence relations) plus one additional class of "parallels". Conversely, if the net N of order n, degree k is a subnet of net N^{\prime} of order n, degree $k+1$ (a subnet in the sense that a point and line of N are incident in N if and only if they are incident in N^{\prime}) then N, N^{\prime} must have the same points, and one of the lineclasses of N^{\prime} may be regarded as consisting of n disjoint point-sets S_{j}, each of which can be adjoined as a line to N. The present paper will be concerned primarily with necessary conditions that a line may be adjoined to a net.
2. The integers represented by a net. Let N be a finite net and let f be a single-valued function from the points of N to the rational integers. We shall say that the rational integer m is represented on N by f if f sums to m over the points of each line of N, and represented positively if, in addition, f takes on only non-negative values. Again, if u is a positive integer, we shall say that m is represented $\bmod u$ on $N b y f$ if f sums to $m \bmod u$ on each line of N. The least positive integer represented on N will be denoted by $\phi(N)$. Clearly $\phi(N)$ is an invariant of N. Moreover, $\phi(N)$ is the (positive) greatest common divisor of the integers represented on N.

Theorem 1. Let N be a finite net of degree k, order n. Then: (i) A necessary and sufficient condition that a line can be adjoined to N is that 1 be positively represented on N. (ii) n is positively represented on N. (iii) $k-1$ is represented on N. (iv) $\phi(N) \mid(n, k-1)$. (v) If n is an affine plane (i.e., if $k=n+1,) \phi(N)=n$. (vi) With at most a finite number of exceptions, every positive integer divisible by $\phi(N)$ is positively represented on N.

Corollary. A necessary condition that a line can be adjoined to N is that $\phi(N)=1$.

Proof. (i) If S can be adjoined as a line to N, define $f(P)=1$ or 0 according as P is or is not in S. Then 1 is positively represented on N by f. Conversely, if 1 is positively represented on N by some f, let S be the set of points P for which $f(P) \neq 0$. Then each line of N contains exactly one point P of S (and, incidentally, $f(P)=1$.) Hence S can be adjoined to N as a line.
(ii) If $f^{\prime}(P)=1$ for every point P of N, then f^{\prime} represents n positively on N.
(iii) Select an arbitrary point C of N and define h as follows: $h(C)=k-n$; $h(P)=1$ if P is distinct from but collinear with $C ; h(P)=0$ otherwise. If a is a line through C, h sums, over a, to $k-n+n-1=k-1$. If a is a line not through C, the $k-1$ lines through C which are not in the same class as
a meet a in $k-1$ distinct points; hence h sums to $k-1$ over a in this case also. Therefore h represents $k-1$ on N.
(iv) By (ii) and (iii), $\phi(N)$ divides $n, k-1$ and their greatest common divisor ($n, k-1$).
(v) Let $\phi(N)$ be represented by f on the affine plane N, and let s be the sum of f over the n^{2} points of N. Considering the sum of the sums of f over the n lines of some class, we find $n \phi(N)=s$. On the other hand, if C is a point of N, every point of N (other than C) lies on exactly one of the $n+1$ lines through C. Considering the sum of the sums over the $n+1$ lines through C, we find $n f(C)+s=(n+1) \phi(N)$. Since $s=n \phi(N), n f(C)=\phi(N)$. Therefore $n|\phi(N)| n$, so $\phi(N)=n$. And, incidentally, $f(C)=1$ for every point C of N.
(vi) In view of (ii), every positive integral multiple of n is positively represented on N. Next let r be an integer divisible by $\phi(N)$, in the range $0<r<n$. Certainly r is represented on N by some function f. Let m^{\prime} be the least value assumed by f. Then, if f^{\prime} is the function defined in (ii) and if m is any integer satisfying $m \geqslant-m^{\prime}$, the integer $r+m n$ is positively represented on N by $f+m f^{\prime}$. Therefore, in every congruence class of integers mod n divisible by $\phi(N)$, there is at most a finite number of positive integers not represented positively on N.

This completes the proof of Theorem 1. The Corollary follows from (i).
3. A characterization of ϕ. If N is a net of degree k, order n, we shall assume henceforth that the k classes of "parallel" lines have been numbered (arbitrarily, but once and for all) from 1 to k. Thus, if $1 \leqslant i \leqslant k$, an i-line of N is a line of class i. In terms of an arbitrary "centre" C (C a point of N) we introduce a coordinate system as follows: For $1 \leqslant i \leqslant k$, the n lines of class i are numbered from 1 to n, the i-line through C being assigned the number 1 . The i-line numbered x is designated by (i, x). We also introduce k point-functions I_{i}, the indicators, by defining $I_{i}(P)=x$ if (i, x) is the i-line through the point P.

If f is a single-valued function from the integer-range $1 \leqslant x \leqslant n$ to the integers, we shall designate by $f\left(^{*}\right)$ the sum $f(1)+f(2)+\ldots+f(n)$. In terms of these notations we may prove two theorems.

Theorem 2. Let N be a net of degree k, order n. Then a necessary and sufficient condition that the integer m be represented on N is that m be represented $\bmod n$ on N.

Theorem 3. Let N be a net of degree k, order n. Then $\phi(N)$ is the smallest positive integer s with the following property: If f_{1}, \ldots, f_{k} are single-valued functions from the integer-range $1 \leqslant x \leqslant n$ to the integers, such that

$$
\begin{equation*}
(i=1, \ldots, n) \tag{1}
\end{equation*}
$$

$$
\begin{align*}
f_{i}(1) & \equiv 0 \bmod n \\
\sum_{i=1}^{k} f_{i}\left(I_{i}(P)\right) & \equiv 0 \bmod n \tag{2}
\end{align*}
$$

for each point P of N, then

$$
s f_{1}\left({ }^{*}\right) \equiv 0 \bmod n
$$

Proof. If $a_{1}, \ldots, a_{k n}$ are the $k n$ lines and $P_{1}, \ldots, P_{n 2}$ are the n^{2} points of N, in arbitrary arrangements, define the line-point incidence matrix A of N by putting 1 or 0 in the u th row, v th column of A according as P_{v} does or does not lie on a_{u}. Also define U to be the column vector of order $k n$ with every element 1. Let X be a column vector of order n^{2} and let m be an arbitrary integer. Then m is represented on N if and only if

$$
\begin{equation*}
A X=m U \tag{3}
\end{equation*}
$$

for an integral X. In view of Theorem 1 (ii), (3) has a rational solution X with every component equal to m / n. If $r=\operatorname{rank} A$, there exist unimodular matrices T, Q (with rational integral components) such that

$$
T A Q=\left(\begin{array}{cc}
D_{r} & 0 \tag{4}\\
0 & 0
\end{array}\right), \quad D_{r}=\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{r}\right)
$$

where the positive integers e_{j} are the invariant divisors of A; thus $e_{j} \mid e_{j+1}$ for $j=1,2, \ldots, r-1$. Setting $T U=V, X=Q Y$, we see that (3) may be reduced to

$$
e_{j} y_{j}=m v_{j} \quad(j=1, \ldots, r)
$$

A necessary and sufficient condition that (3) have an integral solution X is that (5) yield integral values for y_{1}, \ldots, y_{r}. In particular, by the definition of $\phi(N)$, if

$$
\begin{equation*}
d_{j}=\left(e_{j}, v_{j}\right), e_{j}=h_{j} d_{j} \quad(j=1, \ldots, r) \tag{6}
\end{equation*}
$$

then $\phi(N)$ is the least common multiple

$$
\begin{equation*}
\phi(N)=\left[h_{1}, \ldots, h_{r}\right] . \tag{7}
\end{equation*}
$$

Next let u be any integer divisible by e_{r} (and hence by each e_{j}.) Clearly m is represented $\bmod u$ on N if and only if $A X=m U \bmod u$ for an integral X, or, equivalently, if and only if $e_{j} y_{j} \equiv m v_{j} \bmod u$ for integral $y_{j}(j=1, \ldots, r)$. Since $e_{j} \mid u$, the latter congruences imply $e_{j}\left|m v_{j}, h_{j}\right| m, \phi(N) \mid m$. However, if $\phi(N) \mid m, m$ is certainly represented on N. Thus Theorem 2 will be proved when we show that $e_{r} \mid n$.

For $i=1, \ldots, k$, let the row-vector R_{i} denote the sum of the n rows of A corresponding to the lines of class i. Since each point lies on exactly one i-line R_{i} has each component equal to 1 ; thus $R_{1}=R_{2}=\ldots=R_{k}$. Let B be the matrix of $1+k(n-1)$ rows obtained by deleting from A the rows corresponding to the 2 -line, 3 -line, ..., k-line through the centre C. Clearly, since $R_{i}=R_{1}, T^{\prime} A=\binom{B}{0}$ for a unimodular matrix T^{\prime}; hence B has the same rank and invariant divisors as A. There is therefore no loss of generality in assuming that, in (4), the first r rows of T have zeros in the columns matching with the $k-1$ rows of A omitted in B. With this understanding, let V_{j} be the j th row of $T(j=1, \ldots, r)$; by (4), since Q is unimodular, e_{j} is the greatest
common divisor of the components of $V_{j} A$. For any fixed j, let $g_{i}(x)$ denote the component of V_{j} in the column corresponding to the line (i, x) of N; thus $g_{i}(1)=0$ for $i>1$. In $V_{j} A$, the column corresponding to point the P has component

$$
\begin{equation*}
\sum_{i=1}^{k} g_{i}\left(I_{i}(P)\right) \equiv 0 \bmod e_{j} \tag{8}
\end{equation*}
$$

When $P=C,(8)$ reduces to $g_{1}(1) \equiv 0 \bmod e_{j}$; hence

$$
\begin{equation*}
g_{i}(1) \equiv 0 \bmod e_{j} \quad(i=1, \ldots, k) \tag{9}
\end{equation*}
$$

Selecting a fixed line (i, x) and summing the congruence (8) over the n points P of (i, x), we derive

$$
\begin{equation*}
\sum_{u \neq i} g_{u}\left({ }^{*}\right)+n g_{i}(x) \equiv 0 \bmod e_{j} . \tag{10}
\end{equation*}
$$

From (10), (9), $n g_{i}(x) \equiv n g_{i}(1) \equiv 0 \bmod e_{j} . \quad$ Thus, if $d=\left(n, e_{j}\right)$ and $e_{j}=d e^{\prime}$, we have $g_{i}(x) \equiv 0 \bmod e^{\prime}$ for all i, x. Since T is unimodular, the greatest common divisor of the components of V_{j} is 1 ; therefore $e^{\prime}=1$ and $e_{j} \mid n$. In particular $e_{r} \mid n$, proving Theorem 2.

In similar fashion, letting the g_{i} be arbitrary rational-valued functions such that $g_{i}(1)=0$ for $i>1$, and replacing the congruences (8) by equations, we may deduce that $g_{i}(x)=0$ for all i, x. This shows that the rows of B are linearly independent, so that

$$
\begin{equation*}
r=1+k(n-1) \tag{11}
\end{equation*}
$$

To prove Theorem 3, let V_{j} have (integer-valued) components $g_{i}(x)$, as above, and let $f_{i}(x)=n_{j} g_{i}(x)$ where $n=n_{j} e_{j}$. Then (9) and (8) become (1) and (2) respectively. On the other hand, $V_{j} U=v_{j}$, in the notation of (5), and hence

$$
\begin{equation*}
\sum_{i=1}^{k} f_{i}(*)=n_{j} v_{j} . \tag{12}
\end{equation*}
$$

Multiplying (5) by n_{j}, we get $n y_{j}=m \cdot n_{j} v_{j}$. Therefore m is represented on N if and only if $m . n_{j} v_{j} \equiv 0 \bmod n$ for $j=1, \ldots, r$. To replace (10) we have $\sum_{u \neq i} f_{u}\left({ }^{*}\right) \equiv 0 \bmod n$, whence, by (12), $n_{j} v_{j} \equiv f_{i}\left({ }^{*}\right)$ for $i=1, \ldots, k$. In particular, $n_{j} v_{j} \equiv f_{1}\left({ }^{*}\right) \bmod n$. Thus, by the definition of $s, s . n_{j} v_{j} \equiv s f_{1}\left({ }^{*}\right) \equiv 0$ $\bmod n$, for $j=1, \ldots, r$. Hence s is represented on $N, \phi(N) \mid s$.

We must prove the converse. Certainly $A X=\phi(N) U$ for an integral X. Let f_{1}, \ldots, f_{k} be integer-valued functions satisfying (1) and (2), and let V be the row-vector with $f_{i}(x)$ in the column corresponding to line (i, x). Then $V A$ has component $\sum_{i=1}^{k} f_{i}\left(I_{i}(P)\right)$ in the column corresponding to point P, while $V U=\sum_{i=1}^{k} f_{i}\left({ }^{*}\right)$. Thus the equation $V A X=\phi(N) V U$, together with the congruences (2), implies that

$$
\begin{equation*}
\phi(N) \sum_{i=1}^{k} f_{i}\left({ }^{*}\right) \equiv 0 \bmod n . \tag{13}
\end{equation*}
$$

By the same methods as before, we deduce from (1) and (2) that (13) is equivalent to $\phi(N) f_{1}\left({ }^{*}\right) \equiv 0 \bmod n$. Since s is the least positive integer such that $s f_{1}\left({ }^{*}\right) \equiv 0 \bmod n$ for all such functions $f_{i}, s \mid \phi(N)$. Therefore $\phi(N)=s$. This completes the proofs of Theorems 2, 3.
3. Direct products of nets. Let N_{1}, N_{2} be nets of orders n_{1}, n_{2} respectively, and of the same degree k. The direct product $N=N_{1} \times N_{2}$ is defined as follows: (i) The points of N are the ordered pairs $\left(P_{1}, P_{2}\right)$, with P_{j} a point of N_{j}.
(ii) For $i=1, \ldots, k$, the i-lines of N are the ordered pairs (a_{1}, a_{2}), with a_{j} an i-line of N_{j}. (iii) (P_{1}, P_{2}) lies on (a_{1}, a_{2}) in N if and only if P_{j} lies on a_{j} in N_{j} for $j=1,2$. It is easy to verify that N is a net of degree k, order $n_{1} n_{2}$. Making the obvious identifications one may establish the commutative and associative laws for direct products.

If N_{1} has a coordinate system centered about C_{1}, with indicators I_{i}, and N_{2} has a coordinate system centered about C_{2}, with indicators J_{i}, we introduce a natural coordinate system for $N=N_{1} \times N_{2}$ as follows: Take $C=\left(C_{1}, C_{2}\right)$ as centre. If a_{j} is the i-line $\left(i, x_{j}\right)$ of $N_{j}\left(j=1,2\right.$, denote by $\left(i ; x_{1}, x_{2}\right)$ the i-line $\left(a_{1}, a_{2}\right)$ of N. Define the indicators I_{i} of N by $I_{i}\left(P_{1}, P_{2}\right)=\left(x_{1}, x_{2}\right)$ where $\left(i ; x_{1}, x_{2}\right)$ is the i-line of N through $\left(P_{1}, P_{2}\right)$. Moreover, if $f\left(x_{1}, x_{2}\right)$ is a function from the integer-domain $1 \leqslant x_{1} \leqslant n_{1}, 1 \leqslant x_{2} \leqslant n_{2}$ to the integers, denote by $f\left({ }^{*}, x_{2}\right)$ the sum $f\left(1, x_{2}\right)+f\left(2, x_{2}\right)+\ldots+f\left(n_{1}, x_{2}\right)$. Similar meanings are assigned to $f\left(x_{1},{ }^{*}\right)$ and $f\left({ }^{*},{ }^{*}\right)$.

Theorem 4. Let N_{j} be a net of order n_{j} and degree k, for $j=1,2$, and let $N=N_{1} \times N_{2}$. Write

$$
\begin{equation*}
d=\left(n_{1}, n_{2}\right), \quad n_{1}=d q_{1}, \quad n_{2}=d q_{2} \tag{14}
\end{equation*}
$$

Then there exist positive integers a, b such that

$$
\begin{align*}
\left(q_{1}, \phi\left(N_{1}\right)\right) \cdot\left(q_{2}, \phi\left(N_{2}\right)\right) & =a \cdot \phi(N), \tag{15}\\
(d, k-1) \cdot \phi(N) & =b\left[\phi\left(N_{1}\right), \phi\left(N_{2}\right)\right], \tag{16}\\
a b & \mid(d, k-1) . \tag{17}
\end{align*}
$$

Corollary 1. If $\left(n_{1}, n_{2}, k-1\right)=1$, then $\phi\left(N_{1} \times N_{2}\right)=\phi\left(N_{1}\right) \phi\left(N_{2}\right)$.
Corollary 2. If $\left(q_{1} q_{2}, k-1\right)=1$, then $\phi\left(N_{1} \times N_{2}\right)=1$.
Corollary 3. For any finite net $N, \phi(N \times N)=1$.
Proof. In the present notation the content of Theorem 3 may be expressed as follows: $\phi(N)$ is the least positive integer such that, for integer-valued functions f_{i}, the congruences

$$
\begin{gather*}
f_{i}(1,1) \equiv 0 \bmod n_{1} n_{2} \tag{18}\\
\sum_{i=1}^{k} f_{i}\left(I_{i}\left(P_{1}\right), J_{i}\left(P_{2}\right)\right) \equiv 0 \bmod n_{1} n_{2} \tag{19}
\end{gather*}
$$

for all points (P_{1}, P_{2}) of N, imply

$$
\begin{equation*}
\phi(N) f_{1}\left({ }^{*}, *\right) \equiv 0 \bmod n_{1} n_{2} \tag{20}
\end{equation*}
$$

Keeping P_{1} fixed in (19), select a line (i, x_{2}) of N_{2} and sum over all points P_{2} of (i, x_{2}). Then

$$
\begin{equation*}
\sum_{j \neq i} f_{j}\left(I_{j}\left(P_{1}\right), *\right)+n_{2} f_{i}\left(I_{i}\left(P_{1}\right), x_{2}\right) \equiv 0 \bmod n_{1} n_{2} \tag{21}
\end{equation*}
$$

Since the sum in (21) is independent of x_{2}, we have

$$
n_{2} f_{i}\left(I_{i}\left(P_{1}\right), x_{2}\right) \equiv n_{2} f_{i}\left(I_{i}\left(P_{1}\right), 1\right) \bmod n_{1} n_{2}
$$

i.e.

$$
\begin{equation*}
f_{i}\left(x_{1}, x_{2}\right) \equiv f_{i}\left(x_{1}, 1\right) \bmod n_{1} \tag{22}
\end{equation*}
$$

for all i, x_{1}, x_{2} in their respective ranges. Similarly,

$$
\begin{equation*}
f_{i}\left(x_{1}, x_{2}\right) \equiv f\left(1, x_{2}\right) \bmod n_{2} \tag{23}
\end{equation*}
$$

Since d divides n_{1}, n_{2}, we deduce from (22), (23) and (18) that

$$
\begin{equation*}
f_{i}\left(x_{1}, x_{2}\right) \equiv 0 \quad \bmod d \tag{24}
\end{equation*}
$$

Returning to (21), choose any line (j, x_{1}) of N_{1}, with $j \neq i$, and sum over all points P_{1} of $\left(j, x_{1}\right)$. There results

$$
\begin{equation*}
\sum_{p \neq i, j} f_{p}(*, *)+n_{1} f_{j}\left(x_{1}, *\right)+n_{2} f_{i}\left({ }^{*}, x_{2}\right) \equiv 0 \bmod n_{1} n_{2} \tag{25}
\end{equation*}
$$

for all $i, j(i \neq j)$ and x_{1}, x_{2}. As in the proof of Theorem $3, f_{p}\left({ }^{*},{ }^{*}\right) \equiv f_{1}\left({ }^{*},{ }^{*}\right)$ $\bmod n_{1} n_{2}$. And since, by Theorem $1, \phi(N)$ divides $k-1,(k-1) f_{1}\left({ }^{*},{ }^{*}\right) \equiv 0$ $\bmod n_{1} n_{2}$. Therefore (25) is equivalent to

$$
\begin{equation*}
f_{1}\left({ }^{*},{ }^{*}\right) \equiv n_{1} f_{j}\left(x_{1}, *\right)+n_{2} f_{i}\left(*, x_{2}\right) \bmod n_{1} n_{2} \tag{26}
\end{equation*}
$$

Since $k \geqslant 3$, and since in (26) the only restriction is $i \neq j$, (26) is equivalent to

$$
\begin{equation*}
f_{1}\left({ }^{*}, *\right) \equiv n_{1} f_{1}\left(x_{1}, *\right)+n_{2} f_{1}\left({ }^{*}, x_{2}\right) \bmod n_{1} n_{2} \tag{27}
\end{equation*}
$$

Define t_{1}, t_{2} as the least positive integers such that

$$
\begin{equation*}
t_{1} n_{2} f_{1}\left(*, x_{2}\right) \equiv 0, \quad t_{2} n_{1} f_{1}\left(x_{1}, *\right) \equiv 0 \quad \bmod n_{1} n_{2} \tag{28}
\end{equation*}
$$

for all f_{i} satisfying (18), (19). By (27), $t_{1} t_{2} f_{1}\left({ }^{*},{ }^{*}\right) \equiv 0 \bmod n_{1} n_{2}$. Hence, by the property (20) of $\phi(N)$,

$$
\begin{equation*}
\phi(N) \mid t_{1} t_{2} \tag{29}
\end{equation*}
$$

Since $q_{1} d=n_{1},(24)$ implies $q_{1} n_{2} f_{1}\left({ }^{*}, x_{2}\right) \equiv 0 \bmod n_{1} n_{2} . \quad$ Thus $t_{1} \mid q_{1}$. Similarly,

$$
\begin{equation*}
t_{j} \mid q_{j} \tag{30}
\end{equation*}
$$

$$
(j=1,2)
$$

Since the q_{j} are relatively prime, so are the t_{j}. Next choose any fixed value
for x_{2} and define functions $F_{i}\left(x_{1}\right)=f_{i}\left(x_{1}, x_{2}\right)$. From (22), $F_{i}\left(x_{1}\right) \equiv f_{i}\left(x_{1}, 1\right)$ $\bmod n_{1} . \quad$ Thus, from (18), $F_{i}(1) \equiv 0 \bmod n_{1}$. Moreover, by (19),

$$
\sum_{i=1}^{k} F_{i}\left(I_{i}\left(P_{1}\right)\right) \equiv \sum_{i=1}^{k} f_{i}\left(I_{i}\left(P_{1}\right), \quad J_{i}\left(C_{2}\right)\right) \equiv 0 \bmod n_{1}
$$

Therefore, by Theorem $3,0 \equiv \phi\left(N_{1}\right) F_{1}\left({ }^{*}\right) \equiv \phi\left(N_{1}\right) f_{1}\left({ }^{*}, x_{2}\right) \bmod n_{1}$, and so $\phi\left(N_{1}\right) n_{2} f_{1}\left({ }^{*}, x_{2}\right) \equiv 0 \bmod n_{1} n_{2}$. Hence (and similarly)

$$
t_{j} \mid \phi\left(N_{j}\right) \quad(j=1,2)
$$

By (30), (31), t_{j} divides the greatest common divisor of q_{j} and $\phi\left(N_{j}\right)$. Hence (29) implies (15) for some positive integer a.

To obtain (16), let $g_{i}\left(x_{1}\right)$ be any set of integer-valued functions satisfying equations analogous to (1), (2) for N_{1}, and set $f_{i}\left(x_{1}, x_{2}\right)=n_{2} g_{i}\left(x_{1}\right)$. Then the f_{i} will satisfy (18), (19). Therefore $\left.\phi(N) f_{1}\left({ }^{*},{ }^{*}\right)=\phi(N)\left(n_{2}\right)^{2} g_{1}{ }^{*}\right) \equiv 0 \bmod$ $n_{1} n_{2}, \phi(N) n_{2} g_{1}\left(^{*}\right) \equiv 0 \bmod n_{1}, \phi\left(N_{1}\right) \mid \phi(N) n_{2} . \quad$ Since $\phi\left(N_{1}\right) \mid\left(n_{1}, k-1\right)$ and since $\left(n_{1}, n_{2}\right)=d$, we may improve the last statement to $\phi\left(N_{1}\right) \mid(d, k-1) \phi(N)$. Similarly for $\phi\left(N_{2}\right)$. Hence the least common multiple [$\left.\phi\left(N_{1}\right), \phi\left(N_{2}\right)\right]$ divides $(d, k-1) \phi(N)$, proving (16) for some positive integer b.

Eliminating $\phi(N)$ from (15), (16), we derive $a b\left[\phi\left(N_{1}\right), \phi\left(N_{2}\right)\right]=(d, k-1)$ $\left(q_{1}, \phi\left(N_{1}\right)\right)\left(q_{2}, \phi\left(N_{2}\right)\right)$. Since the integers $\left(q_{j}, \phi\left(N_{j}\right)\right)$ are relatively prime divisors of [$\phi\left(N_{1}\right), \phi\left(N_{2}\right)$], we have (17). This completes the proof of Theorem 4. In the case of Corollary $1, a=b=1$, by (17), and then $\phi(N)=\phi\left(N_{1}\right)$ $\phi\left(N_{2}\right)$ by (16) and the fact that $\left(\phi\left(N_{1}\right), \phi\left(N_{2}\right)\right)$ is a divisor of $\left(n_{1}, n_{2}, k-1\right)=1$.

In the case of Corollary 2, the left-hand side of (15) is 1 , since, for example, $\left(q_{1}, \phi\left(N_{1}\right)\right.$) divides $\left(q_{1}, k-1\right)=1$. Thus $\phi(N)=1$. And Corollary 3 corresponds to the special case $q_{1}=1=q_{2}$ of Corollary 2.

Theorem 5. Let $n>1$ be a positive integer with factorization $n=\Pi p(i)^{m(i)}$ where the $p(i)$ are distinct primes and the $m(i)$ are positive integers. Let $r=\min$ $\left(p(1)^{m(1)}, p(2)^{m(2)}, \ldots.\right)$. Then there exists a net N of order n, degree $r+1$, such that $\phi(N)=r>1$. In particular, no line can be adjoined to N.

Corollary. If k is any integer such that $3 \leqslant k \leqslant r+1$, there exists a net N of order n, degree k.

Proof. For any prime p and positive integer m, let $\mathrm{E}(p, m)$ be an affine plane of order p^{m} (and degree $p^{m}+1$.) Such a plane exists, for example, the plane obtained by using coordinates (in the familiar manner of elementary plane geometry) from the field $\mathrm{GF}\left(p^{m}\right)$. For each i, we may define a net N_{i} of degree $r+1$, order $p(i)^{m(i)}$ from an $\mathrm{E}(p(i), m(i))$ by deleting some $\left(p(i)^{m(i)}+1\right)-(r+1)$ classes of lines. Set $N=N_{1} \times N_{2} \times \ldots$. By an obvious extension of Corollary 1 to Theorem $4, \phi(N)=\phi\left(N_{1}\right) \phi\left(N_{2}\right) \ldots$. For exactly one i, $N_{i}=\mathrm{E}(p(i), m(i))$ and $\phi\left(N_{i}\right)=p(i)^{m(i)}=r$. For all other i, lines can be adjoined to N_{i}, so $\phi\left(N_{i}\right)=1$. Therefore $\phi(N)=r>1$. As for the Corollary we need merely delete some $r+1-k$ classes of lines from N.
4. Homomorphic nets. Let N, N^{\prime} be nets of the same degree k. A homomorphism θ of N upon N^{\prime} is a single-valued, exhaustive mapping of N upon N^{\prime} which maps points upon points, i-lines upon i-lines (for $i=1, \ldots, k$) and preserves incidence. The requirement that i-lines be mapped upon i-lines may seem artificial. The obvious generalization, however, is no more necessary than the little used concept of "anti-homomorphism" in group theory, and adds complications to the proofs. (See Bates [1] for a similar restriction in regard to 3 -nets.)

A homomorphism θ of N upon N^{\prime} is called an isomorphism if it is one-to-one, and a zero homomorphism if N^{\prime} has order one. A net N is simple if its only homomorphisms upon nets are isomorphisms and zero homomorphisms.

Lemma 1. Let N, N^{\prime} be nets of respective orders n, n^{\prime} and of the same degree k. Let θ be a homomorphism of N upon N^{\prime}. For each point P^{\prime} of N^{\prime}, let $M\left(P^{\prime}\right)$ be the subset of N consisting of all points P of N such that $P \theta=P^{\prime}$ and of all lines a of N such that at passes through P^{\prime}. Then $n=m n^{\prime}$ for a positive integer m, and each $M\left(P^{\prime}\right)$ is a subnet of N, of order m, degree k.

Corollary. Every finite affine plane is a simple net.
Proof. Consider one of the sets $M=M\left(P^{\prime}\right)$. Then M contains lines of each of the k classes in N, since the k lines through P^{\prime} are images under θ. If a, b are lines of distinct classes in N, such that $a \theta, b \theta$ pass through P^{\prime}, the intersection point $P=a . b$ satisfies $P \theta=P^{\prime}$, and hence is in M. If Q is in M, each of the k lines through Q is in M. Hence M is a net of degree k and of some order m. In particular, for each i, M has exactly $m i$-lines, and these are precisely the i-lines of N which map into the i-lines through P^{\prime}. If Q^{\prime} is a point of N^{\prime}, distinct from P^{\prime}, the i-line through P^{\prime} and the j-line through $Q^{\prime}(j \neq i)$ must meet in a point R^{\prime} of N^{\prime}. Then $M\left(R^{\prime}\right), M\left(P^{\prime}\right)$ have the same i-lines, hence the same order m; and $M\left(Q^{\prime}\right), M\left(R^{\prime}\right)$ have the same j-lines, hence the same order m. Therefore each of the $\left(n^{\prime}\right)^{2}$ subnets $M\left(P^{\prime}\right)$ has order m, showing that $\left(n^{\prime}\right)^{2} m^{2}=n^{2}$ or $n=m n^{\prime}$.

As for the Corollary, if the net N has order $n=k-1$, then $k-1=m n^{\prime}$. But either $n^{\prime}=1$ or $n^{\prime} \geqslant k-1$; and the second alternative gives $n^{\prime}=k-1$, $m=1$. Hence every homomorphism of N upon a net is either a zero homomorphism or an isomorphism. Thus N is simple. This Corollary offers a partial explanation of the lack of success in attempting to define homomorphisms of projective planes (Marshall Hall [1]).

With the notation of Lemma 1, define D to be the greatest common divisor of all the integers $\phi\left(P^{\prime}\right)=\phi\left(M\left(P^{\prime}\right)\right)$. Also write

$$
\begin{equation*}
d=\left(m, n^{\prime}\right), \quad m=d u, \quad n^{\prime}=d v \tag{32}
\end{equation*}
$$

Theorem 6. Let N be a net of degree k, order $n=m n^{\prime}$, possessing a proper homomorphism θ upon a net N^{\prime} of order n^{\prime}. (Thus $m, n^{\prime} \geqslant k-1$.) Then

$$
\begin{equation*}
\phi(N)\left|\left[\phi\left(N^{\prime}\right),(u, D)\right], \quad \phi\left(N^{\prime}\right)\right|(d, k-1) \phi(N) \tag{33}
\end{equation*}
$$

Proof. If $\phi(N)$ is represented on N by the point function $f(P)$, define $g\left(P^{\prime}\right)=\sum f(P)$ where the sum is taken over the m^{2} points P such that $P \theta=P^{\prime}$. Then it is easy to see that g represents $m \phi(N)$ on N^{\prime}. Hence $\phi\left(N^{\prime}\right) \mid m \phi(N)$. By (32) and the fact that $\phi\left(N^{\prime}\right) \mid\left(n^{\prime}, k-1\right)$, we deduce the second relation of (33). If a, b, c are integers, one readily verifies the identity ($[a, b],[a, c]$) $=[a,(b, c)]$. Thus the relation

$$
\begin{equation*}
\phi(N) \mid\left[\phi\left(N^{\prime}\right),\left(u, \phi\left(C^{\prime}\right)\right)\right], \tag{34}
\end{equation*}
$$

holding for every point C^{\prime} of N^{\prime}, implies the first relation of (33). We complete the proof by establishing (34).

Let θ^{\prime} be any one-to-one mapping of the points of N^{\prime} into the points of N, such that $P^{\prime} \theta^{\prime} \theta=P^{\prime}$. Thus $P^{\prime} \theta^{\prime}$ is in $M\left(P^{\prime}\right)$ for each P^{\prime} of N^{\prime}. Choose any point C^{\prime} as centre in N^{\prime} and take $C=C^{\prime} \theta^{\prime}$ as centre in N. Let I_{i}, J_{i} be the indicator functions for N, N^{\prime} respectively. As an additional notation, define

$$
\begin{equation*}
I_{i}\left(P^{\prime}\right)=I_{i}\left(P^{\prime} \theta^{\prime}\right), \quad \quad P^{\prime} \text { in } N^{\prime} \tag{35}
\end{equation*}
$$

If $f(x)$ is a function from the integer-range $1 \leqslant x \leqslant n$ to the integers, define $f\left({ }^{*}\right)$ as before. Also define

$$
\begin{equation*}
f\left(i, P^{\prime}\right)=\sum^{\prime} f(x) \tag{36}
\end{equation*}
$$

where the sum in (36) is taken over all x such that (i, x) is a line of $M\left(P^{\prime}\right)$. Now let f_{i} be functions satisfying (1), (2) of Theorem 3. For any point P^{\prime} of N^{\prime}, and any line ($\left.i, x\right)$ of $M\left(P^{\prime}\right)$, sum (2) over all points P common to (i, x) and $M\left(P^{\prime}\right)$. Thus

$$
\begin{equation*}
\sum_{j \neq i} f_{j}\left(j, P^{\prime}\right)+m f_{i}(x) \equiv 0 \bmod n \tag{37}
\end{equation*}
$$

Since the second term of (37) is independent of the choice of (i, x) in $M\left(P^{\prime}\right)$,

$$
\begin{equation*}
f_{i}(x) \equiv f_{i}\left(I_{i}\left(P^{\prime}\right)\right) \bmod n^{\prime}, \quad(i, x) \text { in } M\left(P^{\prime}\right) \tag{38}
\end{equation*}
$$

By (38), $f_{i}(x)$ is determined mod n^{\prime} by the line $\left(i, x^{\prime}\right)=(i, x) \theta$ of N^{\prime}. Thus $\left(\bmod n^{\prime}\right)$ we may define a set of integer-valued functions $F_{i}\left(x^{\prime}\right)$, on the range $1 \leqslant x^{\prime} \leqslant n^{\prime}$, by

$$
\begin{equation*}
F_{i}\left(x^{\prime}\right) \equiv f_{i}(x) \bmod n^{\prime} \quad . \text { if }(i, x) \theta=\left(i, x^{\prime}\right) \tag{39}
\end{equation*}
$$

Clearly the F_{i} satisfy the conditions corresponding to (1), (2) for N^{\prime}. Therefore, by Theorem 3,

$$
\begin{equation*}
\phi\left(N^{\prime}\right) F_{1}\left(^{*}\right) \equiv 0 \bmod n^{\prime} \tag{40}
\end{equation*}
$$

Next pick $j \neq i$ and consider the line $(j, 1)$ of N^{\prime}. By (39), (38),

$$
\begin{equation*}
F_{i}\left({ }^{*}\right) \equiv \sum^{\prime} f_{i}\left(I_{i}\left(P^{\prime}\right)\right) \bmod n^{\prime} \tag{41}
\end{equation*}
$$

where the sum in (41) is over the points P^{\prime} of $(j, 1)$. Moreover $f_{j}\left(j, P^{\prime}\right)$ $=f_{j}\left(j, C^{\prime}\right)$ for P^{\prime} on ($\left.j, 1\right)$, since, for each P^{\prime} of $(j, 1)$, the j-lines of $M\left(P^{\prime}\right)$ are
those lines (j, x) such that $(j, x) \theta=(j, 1)$. Hence, if in (37) we sum over all points P^{\prime} of $(j, 1)$, there results

$$
\begin{equation*}
\sum_{\phi \neq i, j} f_{p}\left({ }^{*}\right)+n^{\prime} f_{j}\left(j, C^{\prime}\right)+m F_{i}\left({ }^{*}\right) \equiv 0 \bmod n \tag{42}
\end{equation*}
$$

As in the proof of Theorem 5, (42) is equivalent to

$$
\begin{equation*}
f_{1}\left({ }^{*}\right) \equiv n^{\prime} f_{1}\left(1, C^{\prime}\right)+m F_{1}\left({ }^{*}\right) \bmod n \tag{43}
\end{equation*}
$$

If t is the least positive integer such that

$$
\begin{equation*}
\operatorname{tn}^{\prime} f_{1}\left(1, C^{\prime}\right) \equiv 0 \bmod n \tag{44}
\end{equation*}
$$

for all functions f_{i} satisfying (1), (2), then (40), (43) imply $\left[\phi\left(N^{\prime}\right), t\right] f_{1}\left({ }^{*}\right) \equiv 0$ $\bmod n$. Hence

$$
\begin{equation*}
\phi(N) \mid\left[\phi\left(N^{\prime}\right), t\right] . \tag{45}
\end{equation*}
$$

Since C is the centre for $M\left(C^{\prime}\right)$ as well as for N, and since $m \mid n$, the f_{i} satisfy conditions analogous to (1), (2) for the net $M\left(C^{\prime}\right)$. And since $f_{1}\left(1, C^{\prime}\right)$ denotes for $M\left(C^{\prime}\right)$ the sum analogous to $f_{1}\left({ }^{*}\right)$ for $N, \phi\left(C^{\prime}\right) f_{1}\left(1, C^{\prime}\right) \equiv 0 \bmod m$. Inasmuch as $n=m n^{\prime}$, this and (44) imply $t \mid \phi\left(C^{\prime}\right)$. Again, from (38), if ($1, x$) is in $M\left(C^{\prime}\right), f_{1}(x) \equiv f_{1}\left(I_{1}\left(C^{\prime}\right)\right) \equiv f_{1}(1) \equiv 0 \bmod n^{\prime}$ and therefore $f_{1}\left(1, C^{\prime}\right) \equiv 0$ $\bmod n^{\prime}$. Moreover, $u n^{\prime} \cdot n^{\prime}=n v$, by (32), so that $u n^{\prime} f\left(1, C^{\prime}\right) \equiv 0 \bmod n$. Hence $t \mid u$. Therefore

$$
\begin{equation*}
t \mid\left(u, \phi\left(C^{\prime}\right)\right) \tag{46}
\end{equation*}
$$

And (45), (46) combine to give (34). This completes the proof of Theorem 6.
5. Explicit evaluation of ϕ for nets of degree 3. A set G together with an operation (.) is called a loop provided: (i) if a, b are in $G, a . b$ is a uniquely determined element of G; (ii) if a, b are in G there exists a unique x in G such that $x . a=b$ and a unique y in G such that $a . y=b$; (iii) there exists a (unique) element 1 of G such that $a .1=1 . a=a$ for every a in G. A loop is a group if and only if it obeys the associative law (a.b).c=a. (b.c). The concepts of homomorphism, normal subloop and quotient loop are quite similar to the corresponding concepts in group theory (Albert [1], Baer [2], Bruck [1]). For our purposes the essential facts are these: If the loop G of order n possesses a homomorphism θ upon a loop G^{\prime} of order n^{\prime}, then the kernel H of θ is a normal subloop of G and G / H is isomorphic to G^{\prime}. Moreover H has order m where $n=m n^{\prime}$, and each element of G^{\prime} is the image under θ of precisely m distinct elements of G. Finally, there is a one-to-one correspondence between the normal subloops of G and the homomorphisms of G upon loops.

From a loop G of order n, we form a net $N=N(G)$ of order n, degree 3, as follows: The points of N are the n^{2} ordered pairs (x, y) of elements of G. Each a of G determines: (i) a 1 -line $x=a$ whose points are the n points (a, y); (ii) a 2-line $y=a$ whose points are the n points (x, a); (iii) a 3-line $x . y=a$
whose points are the n points (x, y) with $x . y=a$. As shown in Bates [1], every net of order n, degree 3 may be so defined in terms of a suitable loop G of order n. We define $\phi(G)=\phi(N(G))$.

Theorem 7. Let G be a finite loop of order n. If G contains a normal subloop H of odd order such that the quotient loop G / H is a cyclic group of even order, then $\phi(G)=2$. In all other cases, $\phi(G)=1$.

Corollary 1. Necessary and sufficient conditions that $\phi(G)=2$ are that $n=m .2^{t}$ for m odd, $t \geqslant 1$, that G contain a normal subloop K of order m, and that G / K be the cyclic group of order 2^{t}.

Corollary 2. If $n=4 m+2$, then $\phi(G)=2$ if and only if G contains a subloop of order $2 m+1$.

Corollary 3. If G is a group of order $n=4 m+2$, then $\phi(G)=2$.
Proof. Take $C=(1,1)$ as the centre of the net $N(G)$ and define indicators $I_{i}(i=1,2,3)$ so that if $P=(x, y)$ then $I_{1}(P)=x, I_{2}(P)=y, I_{3}(P)=x . y$. Conditions (1), (2) of Theorem 3 become

$$
\begin{array}{r}
f_{1}(1) \equiv f_{2}(1) \equiv f_{3}(1) \equiv 0 \bmod n \\
f_{1}(x)+f_{2}(y)+f_{3}(x \cdot y) \equiv 0 \bmod n \tag{48}
\end{array}
$$

for all x, y of G. Setting, in turn, $x=1$ and $y=1$ in (48), we find, by (47), that $-f_{3}(x) \equiv f_{1}(x) \equiv f_{2}(x) \equiv f(x)$, say, $\bmod n$ so that (47), (48) can be replaced by

$$
\begin{equation*}
f(x \cdot y) \equiv f(x)+f(y) \bmod n \tag{49}
\end{equation*}
$$

for all x, y of G. In view of (49), the mapping $x \rightarrow f(x)$ is a homoorphism of G upon some subgroup Z of the additive group of the integers $\bmod n$. Thus Z is a cyclic group.

Conversely, if G is homomorphic to a cyclic group Z of order n^{\prime}, we may assume without loss of generality that Z is a subgroup of the additive group of integers $\bmod n$ and that the homomorphism is given by (49). Also $n=m n^{\prime}$ where m is the order of the kernel, and exactly m elements of G map upon each element of Z. If t is the sum of the elements of Z it is easily verified (compare Paige [1]) that t is the unit 0 if n^{\prime} is odd and the unique element of order two if n^{\prime} is even. In any case, by Theorem $3, \phi(G)$ is the least positive integer s such that

$$
\begin{equation*}
s f\left({ }^{*}\right) \equiv s m t \equiv 0 \bmod n \tag{50}
\end{equation*}
$$

for all integer-valued f satisfying (49). Clearly $\phi(G) \mid 2$.
If n^{\prime} is even, t has order two. If also m is odd, (50) implies that $2 \mid \phi(G)$. Therefore $\phi(G)=2$, proving the first statement of Theorem 7 .

Next suppose that G is such that there exists no f for which m is odd and n^{\prime}
is even. If m is odd, n^{\prime} is odd and $t \equiv 0$, so that $f\left({ }^{*}\right) \equiv 0 \bmod n$. If m is even, $f\left(^{*}\right) \equiv m t \equiv 0$, since $2 t \equiv 0 \bmod n$. Therefore $\phi(G)=1$. This completes the proof of Theorem 7. The Corollaries are immediate consequences of known facts about loops and groups.

BIBLIOGRAPHY

A. A. Albert
[1] Quasigroups I, Trans. Amer. Soc., vol. 54 (1943), 502-519; Quasigroups II, loc. cit., vol. 55 (1944), 401-419.
Reinhold Baer
[1] Nets and groups, Trans. Amer. Math. Soc., vol. 46 (1939), 110-141; Nets and groups. II, loc. cit., vol. 47 (1940), 435-439.
[2] The homomor phism theorems for loops, Amer. J. Math., vol. 67 (1945), 450-460.
P. T. Bateman
[1] A remark on infinite groups, Amer. Math. Monthly, vol. 57 (1950), 623-624.
Grace E. Bates
[1] Free loops and nets and their generalizations, Amer. J. Math., vol. 69 (1947), 499-550. G. Bol
[1] Geweben und Gruppen, Math. Ann., vol. 114 (1937), 414-431.
R. C. Bose
[1] On the application of the properties of Galois fields to the problem of construction of hyper-Graeco-latin squares, Sankya, Indian Journal of Statistics, vol. 3 (1938), 323-338.
R. C. Bose and K. R. Nair
[1] On complete sets of latin squares, Sankya, vol. 5 (1942), 361-382.
R. H. Bruck
[1] Contributions to the theory of loops, Trans. Amer. Math. Soc., vol. 60 (1946), 245-354.
R. H. Bruck and H. J. Ryser
[1] The non-existence of certain finite projective planes, Can. J. Math., vol. 1 (1949), 88-93.
L. Euler
[1] Recherches sur une nowvelle espèce de quarrés magiques, Collected works, series prima, vol. 7, 291-392.
R. A. Fisher and F. Yates
[1] The 6×6 latin squares, Proc. Camb. Phil. Soc., vol. 30 (1934), 492-507.
[2] Statistical tables for agricultural, biological and medical research (Edinburgh, 1943.)
Marshall Hall
[1] Projective planes, Trans. Amer. Math. Soc., vol. 54 (1943), 29-77.
M. G. Kendall
[1] Who discovered the latin square?, American Statistician, vol. 2 (1948), 13.
F. W. Levi
[1] Finite geometrical systems (University of Calcutta, 1942.)
C. C. MacDuffee
[1] The theory of matrices (New York, 1946.)
H. F. MacNeish
[1] Euler squares, Ann. of Math., vol. 23 (1921-2), 221-227.
H. B. Mann
[1] The construction of orthogonal squares, Ann. of Math. Statistics, vol. 13 (1942), 418-423.
[2] On orthogonal latin squares, Bull. Amer. Math. Soc., vol. 50 (1944), 249-257.
[3] Analysis and design of experiments (New York, 1949.)
H. W. Norton
[1] The 7×7 squares, Ann. Eugen., vol. 9 (1939), 269-307.

L. J. Paige

[1] A note on finite abelian groups, Bull. Amer. Math. Soc., vol. 53 (1947), 590-593.
[2] Neofields, Duke Math. J., vol. 16 (1949), 39-60.
Albert Sade
[1] Enumération des carrés latins. Application au 7^{e} ordre. Conjecture pour les ordres supérieurs. (Published by the author, Marseille, 1948.)
W. L. Stevens
[1] The completely orthogonalized latin square, Ann. Eugen., vol. 9 (1939), 82-93.
G. Tarry
[1] Le problème de 36 officiers, Compte Rendu de l'Association Française pour l'Avancement de Science Naturel, vol. 1 (1900), 122-123; vol. 2 (1901), 170-203.

University of Wisconsin

Vol. II, No. 2: Errata

WATER WAVES OVER A CHANNEL OF FINITE DEPTH

Albert E. Heins

p. 216: Instead of $L_{+}(w)$, read $1 / L_{+}(w)$. Also, for $\exp [\chi(w)]$ in this expression read $\exp [-\chi(w)]$.
p. 221: Multiply $\left|L_{+}(\pm \kappa)\right|^{2}$ by b.

Multiply $\left|L_{+}\left(\pm \kappa^{\prime}\right)\right|^{2}$ by $b \rho_{0}$.
Divide the expression for $\left|\frac{L_{+}(\pm \kappa)}{L_{+}\left(\pm \kappa^{\prime}\right)}\right|^{2}$ by $\rho_{0}{ }^{2}$.
In the formulas for t_{1} and $t_{2}, \kappa \rho_{0} / 2$ and $2 \kappa^{\prime} / \rho_{0}$ should be replaced by 2κ and $2 \kappa^{\prime}$, respectively.

[^0]: Received October 8, 1949.

