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Abstract

We present a new iterative model order reduction method for large-scale linear time-
invariant dynamical systems, based on a combined singular value decomposition–
adaptive-order rational Arnoldi (SVD-AORA) approach. This method is an extension
of the SVD-rational Krylov method. It is based on two-sided projections: the SVD side
depends on the observability Gramian by the resolution of the Lyapunov equation, and
the Krylov side is generated by the adaptive-order rational Arnoldi based on moment
matching. The use of the SVD provides stability for the reduced system, and the use
of the AORA method provides numerical efficiency and a relative lower computation
complexity. The reduced model obtained is asymptotically stable and minimizes the
error (H2 and H∞) between the original and the reduced system. Two examples are
given to study the performance of the proposed approach.
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Keywords and phrases: model order reduction, AORA, SVD, Gramian, large scale,
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1. Introduction

Modelling is an important tool in the description and characterization of large-scale
systems. However, these high order models are difficult to manipulate, the resolution
of such models is indeed very demanding in computational resources, storage space,
and most importantly the central processing unit (CPU) time, especially when applying
a control strategy which becomes very difficult to determine.
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1.1. Model order reduction Model order reduction is a good way to overcome
the difficulties mentioned above, while the reduced model captures the main
characteristics of the original complex model. Hence, the use of model order
reduction techniques generates reduced-order systems that capture the essential
dynamic behaviour of the original systems (such as stability, passivity, balance), and
improves the performance during the numerical simulation procedure. Moreover, the
stability of the reduced system and the minimization of the absolute error between the
original and reduced systems are important criteria.

According to Antoulas and Serkan, these reduction methods can be divided into
two types. First, the Krylov based algorithm is numerically efficient [1, p. 370], [3]; it
is focused on an appropriate choice of original system moments which are attributed
to the reduced one. Some of these permit a reduced system to be generated around
one frequency (for example, Arnoldi [11, 18], Lanczos [1, p. 351] and [8]), around
a frequency range (Rational Arnoldi [12, 14], AORA [12], AOGRA [4], AORL [7]).
The complexity is O(n2r) for dense systems, and can be as low as O(nr2) for sparse
systems depending on the sparsity structure, and the storage requirement is O(nr). On
the other hand, the SVD based algorithms are based in the resolution of the Lyapunov
equation. We cite the balanced truncation [1, p. 234], the least squares and optimal
Hankel norm [1, p. 276]. The complexity of these methods is O(n3), and they are
expensive to implement in large-scale systems.

1.2. Problem description The model reduction problem we are interested in is the
stability of the reduced system which is not always guaranteed [1, 7, 12]. However,
Antoulas [1, p. 364] gives a Krylov based multiple restart algorithm which gives a
reduced stable system. The choice of the appropriate moments was also studied by
Druskin and Simoncini [5]. On the other hand, an SVD-rational algorithm generates
a stable reduced system but the original model is limited in the order (n < 200) due
to the complexity of the resolution of Lyapunov equation [1, 10], which requires
the determination of both Gramian matrices P and Q of controllability [1, p. 200]
and observability [9], respectively. A combined SVD-rational Krylov algorithm is
proposed by Serkan et al. [9, 16], which takes advantage of the two preceding
methods [1, p. 34], [10].

In this paper, we propose a new iterative SVD-AORA algorithm that combines the
advantages of the SVD and AORA algorithms. This new algorithm presents better
results than the SVD-Krylov algorithm.

The model reduction problem that we are addressing can be stated as follows.
We are given a linear dynamical system in state space form [1, p. 34], [13, 14, 17],

ζ =

E
dx(t)

dt
= Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(1.1)
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where E, A ∈ Rn×n with E as an identity matrix, B ∈ Rn, C ∈ Rn; for simplicity, we
take D = 0, and x(t) ∈ Rn is the state vector; u(t) ∈ R and y(t) ∈ R are called the input
and output vectors, respectively. We assume that u(t) is an impulse function. We also
assume that the full-order model is asymptotically stable (that is, all eigenvalues λi of
A have positive real parts (Real(λi(A)) > 0 for i = 1, . . . , n)) and is minimal, that is,
reachable and observable.

The transfer function f (s) (where s is a complex variable) of the original system is
obtained by applying the Laplace transform to equation (1.1) [14, 17]:

f (s) = CT (sE − A)−1B = CT X(s), (1.2)

where X(s) = (sE − A)−1B and Y(s) = CT X(s) are the state variables and the output,
respectively.

The problem consists of approximating the reduced system matrices Ê and Â ∈ Rr×r,
the reduced input matrix B̂ ∈ Rr and the reduced output matrix Ĉ ∈ Rr, where r � n.
The state space description of the reduced model is as follows [1, p. 371], [14, 16, 17]:

ζ̂ =

Ê
dx̂(t)

dt
= Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx(t) + D̂u(t).

The transfer function of the reduced system is given by [14, 16, 17]

f̂ (s) = ĈT (sÊ − Â)−1B̂. (1.3)

This paper is organized as follows. In Section 2 the basic tools are given.
In Section 3, the iterative SVD-AORA method is presented with applications on
numerical examples. In Section 4 we give a comparison between the proposed method
and other method, and we conclude the paper in Section 5.

2. Basic tools

2.1. Krylov subspace Given a linear time-invariant system in the state space
form (1.1), we assume that u(t) is an impulse function [12, 14]. Let us define two
matrices, ψi = −(siE − A)−1E and ξi = (siE − A)−1B, where (siE − A) is assumed to be
nonsingular, and an expansion frequency si ∈ S with S as a set of the predetermined
expansion points. Applying the Taylor expansion of X(s) at expansion points si, we
obtain [1, p. 37], [12, 14]

X(s) =

∞∑
j=0

X j(si)(s − si)i,

where X j(si) = ψ
j
i ξi and Y j(si) = CT X j(si) are the jth-order system moment and

the jth-order output moment at si, respectively. We use the modified Gram–
Schmidt orthogonalization technique to generate the Krylov subspace Kr(ψ, ξ) =

span{ξi, ψiξi, . . . , ψ
j−1
i ξi} [6, 8, 12, 14, 15]. Let Vr ∈ R

n×r be the orthonormal basis
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generated from the successive Krylov subspaces. Our goal is to find the reduced system
of matrices Ê, Â, B̂ and Ĉ of order r � n, which can be defined by the congruence
transformation

Ê = VT
r EVr, Â = VT

r AVr, B̂ = VT
r B, Ĉ = CT Vr.

The modified Gram–Schmidt orthogonalization technique is numerically efficient
to generate the matching moments of each Krylov subspace.

2.2. Singular value decomposition We apply the SVD method to a rectangular
matrix of dimension (m, n) [1, 14, 16, 17]. There exist an orthogonal matrix Um of
dimension (m,m), an orthogonal matrixVn of dimension (n, n) and a diagonal matrix
Σ = diag(σ1, σ2, . . . , σp, σp+1, . . . , σn), where p is the maximum number of singular
values different from zero. Note that these values are all positive and σ1 ≥ σ2 ≥ · · · ≥

σp [1, p. 58], [14, 17].
The matrix A is written as A =UmΣVT

n [16].
Take a linear time-invariant system as in Equation (1.1), which is asymptotically

stable and minimal; therefore, matrix A is stable. The solutions of the following
Lyapunov equations allow the determination of gc and go:

Agc + gcAT + BBT = 0, AT go + goA + CCT = 0,

where gc and go ∈ R
n are the unique symmetric positive definite matrices, called

the controllability and the observability Gramians, respectively. These two matrices
are written in a factored form as gc = UUT and go = LLT , where U and L are
upper and lower triangular matrices, respectively. They are also called the Cholesky
factors [16] or the square roots of gc and go, respectively. By applying the singular
value decomposition on the matrix UT L, we obtain three matrices W,Y and χ [14],
from which we determine two projection matrices µ and θ, that are used in the
calculation of the reduced one:

µ = LYrχ
−1/2
r , θ = UWrχ

−1/2
r ,

where Yr andWr present the first r columns of Y andW, respectively, and χr contains
the r first Hankel singular values [1, 9] of χ.

The goal is to find the reduced system matrices Ê, Â, B̂ and Ĉ of order r � n, via
balanced truncation. They can be defined by the congruence transformation:

Ê = µT Eθ, Â = µT Aθ, B̂ = µT B, Ĉ = CTθ.

The SVD technique is much used in the average-scale systems.

2.3. H∞ of a dynamical system To evaluate the performance of the proposed
method, we need to determine the H∞ norm. In this section, we give an overview.

Definition 2.1. In the general case, taking a stable system in the form of equation (1.1),
in which the eigenvalues of A have negative real parts, the equation of the H∞ norm of
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the stable system is as follows [1, p. 55], [9, 16]:

‖ζ‖2 = ‖S‖2−induced = ‖H‖H∞ = sup
w
σmax( f (iw))

where σmax is the maximum Hankel singular value of the dynamical system, w ∈
< and S is a convolution operator. From this, we treat a special case: take an
asymptotically stable dynamical system as in equation (1.1), then the H∞ norm is
defined as

‖ζ‖H∞ = sup ‖ f (iw)‖2.

2.4. Adaptive-order rational Arnoldi algorithm The adaptive-order rational
Arnoldi (AORA) algorithm is an improvement of the Arnoldi and rational Arnoldi
algorithms [4, 12]. The AORA algorithm gives a reduced model around a frequency
range with an automatic choice of matching moments. However, the expansion
frequency si and the number of matched moment ĵi must be given. no

Given a fixed set of expansion points S = [s1, s2, . . . , si] and the number of matched
moments r =

∑
ĵi, where r is the order of the reduced system, the method can

generate an orthonormal matrix Vr from the successive Krylov subspaces Kr satisfying
the orthogonality relation VT

r Vr = Er. The reduced-order model is defined by the
relationships

Ê = VT
r EVr, Â = VT

r AVr, B̂ = VT
r B, Ĉ = CT Vr.

The main steps of the AORA algorithm are the following.

Step 1. Initialize the first two vectors k(0)(si) and R(0)(si) of the Krylov sequence for
each expansion point si where i ∈ {1, 2, . . . , î}, knowing that k(0)(si) = R(0)(si) and the
normalization coefficient hΠ(si) = 1 for all si.

Step 2. Choose the expansion frequency si, knowing that si gives the greatest
difference between the jith-order moments of the original system Y(s) and the reduced
system Ŷ(s); the chosen expansion frequency is called si∗j .

Step 2.1. Select the expansion point si∗j and apply the Arnoldi algorithm around this
point. The new orthonormal vector v j is incorporated into the orthonormal matrix V j−1.
The normalization coefficient hΠ(si) is updated according to si∗j .

Step 2.2. Update the residue vector R( j)(si) and generate the Hessenberg matrix H,
using the modified Gram–Schmidt orthogonalization technique.

Step 3. Generate the real orthogonal matrix Vr using the reduced QR factorization, if
there exist any complex expansion points.

The details of the adaptive-order rational Arnoldi method can be found in
Algorithm 1 [12]:
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Algorithm 1: AORA (Inputs: E, A, B, C, D, S ; Output:Vr)
(1) Initialize;
for each si ∈ S do

k(0)(si) := (siE − A)−1B, R(0)(si) = k(0)(si) and hΠ(si) := 1
end
(2) Begin AORA iterations;
for j = 1, 2, . . . , r do

(2.1) Select the expansion frequency with the maximum output moment
error;

Choose si ∈ S as the i giving maxi(|hΠ(siCT R( j−1)(si)|)). Set si∗j as the
expansion frequency in the jth iteration;

(2.2) Generate the orthonormal vector at si∗j ;
h j, j−1(si∗j ) := ‖R( j−1)(si∗j )‖;
v j = ‖R( j−1)(si∗j )‖/h j, j−1(si∗j );
hΠ(si∗j ) := hΠ(si∗j )h j, j−1(si∗j );
(2.3) Update the residue R( j)(si) for the next iteration;
for each si ∈ S do

if (si == si∗j ) then
k( j)(si∗j ) := −(siE − A)−1Ev j;

else
k( j)(si∗j ) := k( j)(si) ;

end
R( j)(si) := k( j)(si);
for t = 1, 2, . . . , j do

ht, j(si) := vH
t R j(si), R( j)(si) := R( j)(si) − ht, j(si);

end
end

end
Vr = [v1, v2, . . . , vr];
(3) Generate real Vr for complex expansion points;
if there exists any si ∈ S such that si is not real number then

Vreal := real(Vr), Vimag = imag(Vr), [Vr, rr] = qr([VrealVimag]);
end

2.5. SVD-rational Krylov algorithm While the AORA algorithm does not always
guarantee stability of the reduced system, the SVD-rational Krylov algorithm gives
a reduced model with guaranteed stability [1, p. 372], [9]. This is possible with the
resolution of the Lyapunov equation in the SVD part of the algorithm. Hence, the
SVD-rational Krylov algorithm [9] combines the advantages of the rational Krylov
based method and the singular value decomposition based method, and the use of
SVD provides stability for the reduced system. This method can yield two matrices.
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The first matrix Vr is generated by the rational Krylov technique, and it depends on
the observability Gramian. The second matrix Zr is generated by the singular value
decomposition technique. The two matrices Zr and Vr satisfy the orthogonality relation
ZT

r Vr = Er. The reduced-order model is defined by the relationships

Ê = ZT
r EVr, Â = ZT

r AVr, B̂ = ZT
r B, Ĉ = CT Vr.

The main steps of the SVD-rational Krylov algorithm are the following.

Step 1. Given an expansion frequency range, the number of frequencies must be equal
to the order of reduced system. The initial choice of these points is arbitrary.

Step 2. Use the basis rational Krylov method to construct the orthonormal basis Vr.

Step 3. Calculate the Gramian matrix of observability go.

Step 4. Construct the second projection matrix Zr using the Gramian matrix and the
first projection matrix Vr.

Step 5. Calculate the new range of expansion frequency and recalculate the two new
projection matrices Vr and Zr

Step 5.1. Compute the reduced state matrix Â.

Step 5.2. Determine the eigenvalues of the matrix Â.

Step 5.3. Recalculate the two projection matrices Vr and Zr.
The different steps of the SVD-rational Krylov method can be found in Algorithm
2 [1]:

Algorithm 2: SVD-rational Krylov (Inputs: E, A, B, C, S ; Outputs: Vr, Zr)

(1) Initialization of frequency expansion;
si for i = 1, 2, . . . , r;

(2) Construction of the matrix Vr by the rational Krylov based method, knowing
that
Ran(Vr) = vect{(s1E − A)−1B, . . . , (srE − A)−1B}, with VT

r Vr = Er;
(3) Calculate the Gramian matrix of observabilty;

go =
∫ ∞

0 etAT
CTCetAdt;

(4) Construction of the matrix Zr;
Zr = g0Vr(VT

r g0Vr)−1;
(5) Calculate the new expansion points;

(a) Â = ZT
r AVr;

(b) si = −λ(Â) for i = 1, . . . , r;
(c) recalculate the matrix Vr by the AORA method, knowing that
Ran(Vr) = vect{(siEn − A)−1B, (siEn − A)−1E ∗ (siEn − A)−1B, . . . , (siEn −

A) j−1E ∗ (siEn − A)−1B}, with VT
r Vr = Er;

(d) Zr = g0Vr(VT
r g0Vr)−1;

(6) Parameters of reduced model;
Ê = ZT

r EVr, Â = ZT
r AVr, B̂ = ZT

r B, Ĉ = CT Vr.
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3. Iterative SVD-AORA

3.1. Presentation Rather than choosing a matching moment in the reduced model
of the SVD-rational Krylov algorithm, the use of an AORA algorithm allows an
automatic choice of matching moments, which gives better results than the rational
Krylov algorithm. This method preserves the stability of the reduced model and
minimizes the error [6, 12]. The minimization of error is due to the use of an AORA
algorithm to generate the first subspace Vr, and the preservation of stability is obtained
by the use of a method based on singular value decomposition to generate the second
subspace Zr.

3.1.1 Generating the subspace Vr. Initially setting the expansion points S =

[s1, s2, . . . , sr] for i = 1, . . . , r arbitrarily or experimentally such that VT
r Vr = Er, we

try several times to find the best point by only using the AORA algorithm, before
iteratively applying the SVD-AORA algorithm.

The basic concept of the AORA method [12] is to select an expansion point si∗j
among all expansion points S in the (r + 1)th iteration such that

Y ( ĵi∗r+1
)(si∗r+1

) = Ŷ
( ĵi∗r+1

)

r+1 (si∗r+1
) or E

( ĵi∗r+1
)

r+1 (si∗r+1
) = 0.

From the new expansion point si∗r+1
and the new orthonormal vector vr+1, the new

transfer function error in the (r + 1)th iteration can be expressed as [1, p. 392], [9, 12]

Er+1(s) = Y(s) − Ŷr+1(s)

= E
ĵi∗r+1
r+1 (si∗r+1

)(s − si∗r+1
) ĵi∗r+1

+ E
( ĵi∗r+1

+1)

r+1 (si∗r+1
)(s − si∗r+1

)( ĵi∗r+1
+1)

+ O((s − si∗r+1
)( ĵi∗r+1

+2))

= 0.(s − si∗r+1
) ĵi∗r+1 + E

( ĵi∗r+1
+1)

r+1 (si∗r+1
)(s − si∗r+1

)( ĵi∗r+1
+1)

+ O((s − si∗r+1
)( ĵi∗r+1

+2)).

The selection of the expansion point si∗r+1
is based on the criterion

max
si∈S
|Y ĵi (si) − Ŷ ĵi (si)| = max

si∈S
|hπ(si)CT R( j−1)(si)|,

where hπ is the normalization coefficient, and R is the residue vector [12]. Theorems
3.1 and 3.2 summarize this result.

Theorem 3.1. Assume that an asymptotically stable linear system in the form of
equation (1.1) fixes the expansion point si for j = 0, 1, . . . , r and i = 1, . . . , r, and
let ψi = −(siE − A)−1E and ξi = (siE − A)−1B. Then after r steps, the adaptive-order
rational Arnoldi can iteratively generate an orthonormal basis Vr ∈ R

n×r from the
successive Krylov subspaces Kr(ψ, ξ) = span{ξi, ψiξi, . . . , ψ

j−1
i ξi} = span{v1, v2, . . . , vr}.

Since X( j)(si) ∈ colspan{Vr} for j = 0, 1, . . . , r and i = 1, . . . , r, we have

X( j)(si) = VrX̂( j)
r (si) and Y ( j)(si) = Ŷ ( j)

r (si).
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Proof. Let Vr be the orthonormal basis generated by using the adaptive-order rational
Arnoldi [12] with r iteration and S expansion points, such that the expansion points
are arbitrarily fixed in the first iteration of Algorithm 3. To demonstrate this theorem,
we consider two cases.

First. if s∗ir+1
< {si∗1 , . . . , si∗r } and sir+1 ∈ {si∗1 , . . . , si∗r }, then from the AORA algorithm

it is known that [12]

k j = (s∗ir+1
E − A)−1B − Vr[h

i∗r+1
1,r , . . . , h

i∗r+1
r,r ]T = hr+1,rVr+1,

which can be rewritten as

Vr+1[hi∗r+1
1,r , . . . , h

i∗r+1
r,r ]T = (si∗r+1

E − A)−1B

= (si∗r+1
E − A)−1(si∗1 E − A)k0

= hi∗r+1
1,0 (si∗r+1

E − A)−1(si∗1 E − A)Vr+1e1, (3.1)

where e1 is the first column of the identity matrix. Now, multiplying both sides of
equation (3.1) by (si∗r+1

E − A) and rearranging each term, we obtain

(si∗r+1
E − A)Vr+1[hi∗r+1

1,r , . . . , h
i∗r+1
r,r ]T = (si∗r+1

E − A)hi∗r+1
1,0 (si∗r+1

E − A)−1(si∗1 E − A)Vr+1e1

= (si∗r+1
E − A)Vr[h

i∗r+1
1,r , . . . , h

i∗r+1
r,r ]T hi∗r+1

1,0 (si∗1 E − A)Vr+1e1

− AVr+1([hi∗r+1
1,r , . . . , h

i∗r+1
r,r ] − h1,0e1)

= EVr+1(si∗1 hi∗r+1
1,0 e1 − si∗r+1

[hi∗r+1
1,r , . . . , h

i∗r+1
r,r ]T ). (3.2)

Adding siEVr+1([hi∗r+1
1,r , . . . , h

i∗r+1
r+1,r]

T − hi∗r+1
1,0 e1) to both sides of equation (3.2) yields

siEVr+1([hi∗r+1
1,r , . . . , h

i∗r+1
r+1,r]

T − hi∗r+1
1,0 e1) − AVr+1([hi∗r+1

1,r , . . . , h
i∗r+1
r,r ] − h1,0e1)

= siEVr+1([hi∗r+1
1,r , . . . , h

i∗r+1
r+1,r]

T − hi∗r+1
1,0 e1) + EVr+1(si∗1 hi∗r+1

1,0 e1 − si∗r+1
[hi∗r+1

1,r , . . . , h
i∗r+1
r,r ]T ),

and after rearranging, we obtain

(siE − A)Vr+1([hi∗r+1
1,r , . . . , h

i∗r+1
r+1,r]

T − hi∗r+1
1,0 e1)

= EVr+1((si∗1 ) − si)h
i∗r+1
1,0 e1 + (si − si∗r+1

)[hi∗r+1
1,r , . . . , h

i∗r+1
r+1,r]

T ). (3.3)

We assume that
fr = [hi∗r+1

1,r , . . . , h
i∗r+1
r+1,r]

T − hi∗r+1
1,0 e1 (3.4)

and
gr = (si∗1 ) − si)h

i∗r+1
1,0 e1 + (si − si∗r+1

)[hi∗r+1
1,r , . . . , h

i∗r+1
r+1,r]

T , (3.5)

where fr and gr are the rth columns of the Hessenberg matrices [12] Fr and Gr,
respectively.

Next, if s∗ir+1
∈ {si∗1 , . . . , si∗r } and sir+1 ∈ {si∗1 , . . . , si∗r }, then we obtain

Vr+1[hi∗r+1
1,r , . . . , h

i∗r+1
r+1,r]

T = −(siE − A)−1Vr+1(ek) (3.6)
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and
(siE − A)Vr+1[hi∗r+1

1,r , . . . , h
i∗r+1
r+1,r]

T = EVr+1(−er), (3.7)

where
fr = [hi∗r+1

1,r , . . . , h
i∗r+1
r+1,r] (3.8)

and
gr = −er. (3.9)

Combining equations (3.3)–(3.9) for all r steps of AORA algorithm process yields

(siE − A)Vr+1 fr = EVr+1gr,

(siE − A)Vr+1 fr = EVr+1gr,

−(siE − A)EVr = Vr(−Fr,rG−1
r,r ),

where Fr,r and Gr,r present two Hessenberg matrices. For j = 0,1, . . . , r and i = 1, . . . , r,
we know that X( j)(si∗) ∈ Vr; then X( j)(si∗) = VrVT

r X( j)(si∗). By using the recursion
formula we obtain

X( j)(s∗i ) = (−(si∗E − A)−1E)− jVrVT
r X(0)(si∗)

= Vr(−Fr,rG−1
r,r ) jVT

r X(0)(si∗).

Then

X̂( j)
r (si∗) = VT

r X( j)(s∗i )

= Vr(−Fr,rG−1
r,r ) jVT

r X(0)(si∗),

which is equivalent to proving that

X̂(0)
r (si∗) = VT

r X(0)(si∗) and − (si∗ Ê − Â)−1Ê = −Fr,rG−1
r,r .

In this case,

(si∗E − A)−1b = VrVT
r (si∗E − A)−1B,

VT
r B = VT

r (si∗E − A)VrVT
r (si∗E − A)−1B,

(si∗VT
r EVr − VT

T AVr)−1VT
r = VT

r (si∗E − A)−1B.

Moreover,

−(si∗E − A)−1EVr = Vr(−Fr,rG−1
r,r ).

Therefore, Y j(si∗) = CX( j)(s∗i ) = CVrX̂( j)(si∗) = ĈX̂( j)
r (si). �

Theorem 3.2 (Maximum output moment errors). We assume that both output moments
of the original system and those of the reduced-order system are matched, so that
Y ( j)(si) = Ŷ ( j)

r (si) for j = 0, 1, . . . , ĵi and i = 1, . . . , r. Select the expansion point si ∈ S
in the ( j + 1)th iteration, using the AORA algorithm; then si yields the greatest error
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between the jith output moments of the original system and the reduced one (that is,
Y ( ĵi)(si) and Ŷ ( ĵi)

r (si), respectively), which is given as

|E
( ĵi)
r (si)| = max

si∈S
|Y ĵi (si) − Ŷ ĵi (si)| = max

si∈S
|hπ(si)CT k(r)(si)|,

where hπ(si) =
∏

j ‖R( j−1)(si)‖ is the normalization coefficient, and r =
∑î

i=1 ĵi.

Proof. The proof was given by Lee et al. [12]. �

3.1.2 Generating the subspace Zr. We must calculate the Gramian matrix of
observability from resolution of the following linear Lyapunov equation:

AT go + goA + CTC = 0. (3.10)

This equation admits unique symmetric solutions if and only if λi(A) + λ̄ j(A) , 0
for all i, j [9], where λi(A) and λ̄ j(A) are the eigenvalues and conjugate eigenvalues
of A, respectively. We use the solution of the large Lyapunov equation to obtain a
good low-rank approximation. The Gramian matrix go is the solution to equation
(3.10). This matrix (go) and the subspace Vr are used to generate the subspace Zr,
which is defined as Zr = goVr(VT

r goVr)−1 with ZT
r Vr = Er. Then ‖ f (iw) − fr(iw)‖H∞ is

minimized. Theorem 3.3 summarizes this result.

Theorem 3.3. We take an asymptotically stable system ζ with transfer function f (s) as
in equation (1.2), and assume that the Vr and Zr are two projection matrices obtained
by the SVD-AORA process. Let ζ̂ be a reduced system generated by the congruence
transformation with transfer function fr(s) as in equation (1.3), knowing that the
system has fixed and stable reduced eigenvalues {λ1, . . . , λr}. Then ‖ f (iw) − fr(iw)‖H∞
is minimized if and only if

f (s) = fr(s) for s = −λ1,−λ2 . . . ,−λr.

Proof. The proof has been given by Gugercin [9] and Lee et al. [12]. �

The following are the main steps of the proposed Algorithm 3.

Step 1. Set the expansion point in an arbitrary manner.

Step 2. Compute the Vr base with AORA knowing that the orthogonality condition
is satisfied (that is, VT

r Vr = Er). All vectors of the orthonormal basis Vr ∈ R
n×r are

generated iteratively by the use of the Arnoldi algorithm around a single frequency,
which is selected by the maximum error criterion. An upper Hessemberg matrix
Hr ∈ Rr∗r is generated, which satisfies

ψVr = VrHr + hr+1,rvr+1eT
r and v1 = ξ/‖ξ‖.

Step 3. Calculate the Gramian matrix of observability go.

Step 4. Calculate the second projection matrix Zr, using the Gramian matrix go and
the projection matrix Vr.
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Step 5. Calculate the reduced state matrix Â and the corresponding eigenvalues. Using
these eigenvalues as points of expansion to recalculate the base Vr, apply the AORA
method again. Repeat until a stopping criterion in the expansion frequency is satisfied.
The stopping criterion is a tolerance value already set. It is the relative change between
two successive expansion points. Calculate again the Zr matrix with respect to new
base Vr, the same Gramian matrix of observability calculated in the third step with the
satisfying orthogonality condition ZT

r Vr = Er.

Step 6. The reduced-order model is defined as

Ê = ZT
r EVr, Â = ZT

r AVr, B̂ = ZT
r B, Ĉ = CT Vr.

The iterative SVD-AORA method is illustrated in Algorithm 3.

Algorithm 3: Iterative SVD-AORA (Inputs: E, A, B,C, S , tol; Outputs: Vr, Zr)
(1) Initialization of the frequency expansion;

si for i = j = 1, 2, . . . , r;
(2) Construction of the matrix Vr by the AORA method knowing that;

Ran(Vr) = vect{(siE − A)−1B, (siE − A)−1E ∗ (siE − A)−1B, . . . , (siE −
A) j−1E ∗ (siE − A)−1B}, with VT

r Vr = Er;
(3) Calculate the Gramian matrix of observability;

go =
∫ ∞

0 etAT
CTCetAdt;

(4) Construction of Zr;
Zr = goVr(VT

r goVr)−1;
(5) Compute the final Vr and Zr matrices:
while the relative changes in si : ((si+1 − si)/si) ≥ tol do

(a) Â = VT
r AVr;

(b) si = −λ(Â) for i = 1, . . . , r;
(c) Construction the matrix Vr by the AORA method knowing that:
Ran(Vr = vect{(siE − A)−1B, (siE − A)−1E ∗ (siE − A)−1B, . . . , (siE −

A) j−1E ∗ (siE − A)−1B}), with VT
r Vr = Er;

(d): Zr = goVr(VT
r goVr)−1;

end
(6) The reduced system parameters can be defined by the congruence

transformation: Ê = ZT
r EVr, Â = ZT

r AVr, B̂ = ZT
r B, Ĉ = CT Vr.

3.2. Application To evaluate the proposed Algorithm 3, we take two SISO models
of order 1006 (full order model (FOM) 1006) and 348 (Clamped beam 348) [2, 3],
present the largest singular values of the frequency response of the original system and
the reduced one, and give the absolute error and the pole distribution of the reduced
system.

https://doi.org/10.1017/S1446181117000049 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000049


[13] An iterative model order reduction method for large-scale dynamical systems 127

Figure 1. Largest singular value of the frequency response of the original system of (exact) order 1006 and
the reduced one (SVD-AORA) of order 12 to a frequency range with the iterative SVD-AORA method
(colour available online).

Figure 2. Absolute error between the original system of order 1006 and the reduced one of order 12 with
the iterative SVD-AORA method.

Example 3.4 (FOM model). Figure 1 shows the largest singular value of the frequency
response of the original system of order 1006 and the reduced one of order 12; we
see a good correlation between the two systems over the entire frequency range of the
original system. Figure 2 shows the variation of the absolute error between the original
system and the reduced one. Figure 3 depicts the pole distribution of the reduced
system in the complex plane. We note that all poles have negative real parts. This
shows the stability of the reduced system.
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Figure 3. Pole distribution of FOM reduced system (order 12) with the iterative SVD-AORA method.

Figure 4. Largest singular value of the frequency response of the original system of (exact) order 348 and
the reduced one (SVD-AORA) of order 22 to a frequency range with the iterative SVD-AORA method
(colour available online).

Example 3.5 (Clamped Beam model). Figure 4 shows the largest singular value of the
frequency response of the original system of order 348 and the reduced one of order 22;
we see a good correlation between the two systems over the entire frequency range of
the original system. The variation of the absolute error between the original system
and the reduced one is presented in the Figure 5. Figure 6 shows the pole distribution
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Figure 5. Absolute error between original system of order 348 and the reduced one of order 22 with
iterative SVD-AORA method.

Figure 6. Pole distribution of Clamped Beam reduced system (order 22) with iterative SVD-AORA
method.

of the reduced system in the complex plane. We note that all poles have negative real
parts. This explains the stability of the reduced system.

4. Comparison with AORA and SVD-rational Krylov algorithms

A comparison is given in Figures 7 and 9 of three reduced models obtained by the
AORA (Algorithm 1), SVD-rational Krylov (Algorithm 2) and iterative SVD-AORA
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Figure 7. Largest singular value of the frequency response of the original system whose (exact) order is
1006 and the three reduced systems whose order is 12, with three methods (colour available online).

Figure 8. Absolute error systems of FOM model (colour available online).

(Algorithm 3) methods for the FOM and Clamped Beam models, respectively. Table 1
presents the H∞-norms of the error systems and the CPU time for each method. We see
from the table that the iterative SVD-AORA has the lowest H∞-error for both models.
However, in terms of computation time, the proposed method is outperformed by the
competitive methods.

We observe that the best result is obtained by the iterative SVD-AORA method. We
also note the previous difference in performance between the three methods from the
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Figure 9. Largest singular value of the frequency response of the original system whose (exact) order is
348 and the three reduced systems whose order is 22, with three methods (colour available online).

Table 1. H∞ norms of the errors systems and the CPU-time for each method.

Models FOM Clamped beam

Methods CPU-time H∞-error CPU-Time H∞-error
AORA 1.311 × 102 1.810 × 10−3 70.95 0.0686
SVD-rational Krylov 3.874 × 102 1.877 × 10−4 1.231 × 102 5.970 × 10−4

Iterative SVD-AORA 5.114 × 102 6.705 × 10−6 1.410 × 102 4.934 × 10−5

correspondence between the original system and the reduced one in Figures 8 and 10
with the absolute error variation; the best results are obtained by the iterative SVD-
AORA method.

5. Conclusion

We have proposed a new iterative SVD-AORA model reduction method for large-
scale systems, which takes advantages of both SVD and AORA methods. First, the
stability of the reduced system is guaranteed by the use of the Lyapunov equation,
which determines the Gramian observability matrix. Secondly, the application of the
AORA method to generate an orthonormal basis is based on the criterion of maximum
error. We conclude that this method is very efficient in the generation of orthonormal
bases and highly capable in the numerical calculation. It combines the two methods to
guarantee the digital stability and the efficiency of the algorithm. It also guarantees the
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Figure 10. Absolute error systems of Clamped beam model (colour available online).

stability of the reduced system, and minimizes the relative error between the original
system and the reduced one.
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