
Forum of Mathematics, Sigma (2017), Vol. 5, e2, 82 pages
doi:10.1017/fms.2016.34 1

REDUCED POWERS OF SOUSLIN TREES

ARI MEIR BRODSKY1 and ASSAF RINOT2

1 Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel;
email: brodska@macs.biu.ac.il

2 Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel;
email: rinotas@math.biu.ac.il

Received 20 July 2015; accepted 11 December 2016

Abstract

We study the relationship between a κ-Souslin tree T and its reduced powers T θ/𝒰 .
Previous works addressed this problem from the viewpoint of a single power θ , whereas here,

tools are developed for controlling different powers simultaneously. As a sample corollary, we
obtain the consistency of an ℵ6-Souslin tree T and a sequence of uniform ultrafilters 〈𝒰n | n < 6〉
such that T ℵn/𝒰n is ℵ6-Aronszajn if and only if n < 6 is not a prime number.

This paper is the first application of the microscopic approach to Souslin-tree construction,
recently introduced by the authors. A major component here is devising a method for constructing
trees with a prescribed combination of freeness degree and ascent-path characteristics.

2010 Mathematics Subject Classification: 03E05 (primary); 03E65, 03E35, 05C05 (secondary)

1. Introduction

A tree is a partially ordered set (T, <T ) with the property that for every x ∈ T ,
the downward cone x↓ = {y ∈ T | y <T x} is well ordered by <T . The height of
x ∈ T , denoted ht(x), is the order-type of (x↓, <T ). Then, the αth level of (T, <T )

is the set Tα = {x ∈ T | ht(x) = α}. We also write T � X = {t ∈ T | ht(t)
∈ X}. A tree (T, <T ) is said to be χ -complete if any <T -increasing sequence
of elements from T , and of length < χ , has an upper bound in T . On the other
extreme, the tree (T, <T ) is said to be slim if |Tα|6max{|α|,ℵ0} for every ordinal
α. Throughout, let κ denote a regular uncountable cardinal. A tree (T, <T ) is a
κ-tree whenever {α | Tα 6= ∅} = κ , and |Tα| < κ for all α < κ .
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A subset B ⊆ T is a cofinal branch if (B, <T ) is linearly ordered and
{ht(t) | t ∈ B} = {ht(t) | t ∈ T }. A κ-Aronszajn tree is a κ-tree with no cofinal
branches. On the other extreme, there is the concept of a κ-Kurepa tree, which is
a κ-tree with at least κ+ many cofinal branches.

A κ-Aronszajn tree (T, <T ) is a κ-Souslin tree if it has no antichains of size κ .
Equivalently, if for every antichain A ⊆ T , the set {ht(x) | x ∈ A} has size < κ .
A λ+-tree (T, <T ) is said to be almost Souslin if for every antichain A ⊆ T , the
set {ht(x) | x ∈ A} ∩ Eλ+

cf(λ) is nonstationary. (Denote Eκ
χ = {α < κ | cf(α) = χ},

and similarly define Eκ
<χ , Eκ

>χ , and Eκ
>χ .)

Recall that an ultrafilter 𝒰 is said to be uniform if |X | = |Y | for all X, Y ∈ 𝒰 .
Given a κ-Souslin tree (T, <T ) and a set I , let

T I = { f : I → T | ht ◦ f is constant}
denote the collection of all level sequences indexed by I . For any uniform
ultrafilter 𝒰 over I , we then consider the reduced I -power tree Ť = T I/𝒰 , as
follows. The elements of Ť are equivalence classes [ f ]𝒰 for f ∈ T I , where
f =𝒰 g if and only if {i ∈ I | f (i) = g(i)} ∈ 𝒰 . The ordering <Ť of Ť is
defined by letting [ f ]𝒰 <Ť [g]𝒰 if and only if {i ∈ I | f (i) <T g(i)} ∈ 𝒰 .

Suppose now that I = θ is an infinite cardinal such that λθ < κ for all λ < κ .
Then, T θ/𝒰 is again a κ-tree. How do the original κ-Souslin tree and its reduced
θ -power compare?

By an argument essentially due to Kurepa [Kur52], the reduced θ -power of a κ-
Souslin tree is never κ-Souslin. Can it at least remain almost Souslin? Aronszajn?

Devlin gave a consistent example of an ℵ2-Souslin tree whose reduced ω-power
is ℵ2-Aronszajn [Dev83], and another consistent example of an ℵ2-Souslin tree
whose reduced ω-power is ℵ2-Kurepa [Dev81]. In this paper, we give an example
of an ℵ2-Souslin tree whose reduced ω-power is almost Souslin, and another
example whose reduced ω-power is not almost Souslin. In fact, more is true, and
is better seen at the level of ℵ3:

THEOREM 1.1. Assume V = L. Then there exist trees T0, T1, T2, T3, and uniform
ultrafilters 𝒰0 over ω, 𝒰1 over ω1, such that:

T T ω/𝒰0 T ω1/𝒰1

T0 ℵ3-Souslin ℵ3-Aronszajn + almost Souslin ℵ3-Aronszajn + almost Souslin
T1 ℵ3-Souslin ℵ3-Kurepa + ¬ almost Souslin ℵ3-Kurepa + ¬ almost Souslin
T2 ℵ3-Souslin ℵ3-Aronszajn + almost Souslin ℵ3-Kurepa + ¬ almost Souslin
T3 ℵ3-Souslin ¬ℵ3-Aronszajn ℵ3-Aronszajn + almost Souslin

Let us introduce the concepts and tools that will be used in proving the theorems
of this paper.
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DEFINITION 1.2. Suppose that X ⊆ <κκ is a downward-closed family such that
(X,⊂) is a κ-tree, and ℱ is a collection of sets. An (ℱ , X)-ascent path through a
κ-tree (T, <T ) is a sequence Ef = 〈 fx | x ∈ X〉 such that for all x, y ∈ X :

(1) fx :
⋃

ℱ → Tdom(x) is a function;

(2) if x ⊂ y, then {i ∈⋃ℱ | fx(i) <T fy(i)} ∈ ℱ ;

(3) if x 6= y and dom(x) = dom(y), then {i ∈⋃ℱ | fx(i) 6= fy(i)} ∈ ℱ .

If (X,⊂) is isomorphic to (κ,∈) (for example, X = ⋃
α<κ

α1), then Ef is
simply said to be an ℱ -ascent path, and is identified with a sequence of the form
〈 fα | α < κ〉.

Denote ℱ bd
θ = {Z ⊆ θ | sup(θ \ Z) < θ}, and ℱθ = 𝒫(θ) \ {∅}. It is easy to

see that if (T, <T ) admits an (ℱ bd
θ , X)-ascent path, then the reduced θ -power tree

(by any uniform ultrafilter over θ ) contains a copy of the tree (X,⊂). Likewise, if
(T, <T ) admits no ℱθ -ascent path, then the reduced θ -power (using any uniform
ultrafilter) is Aronszajn.

We remark that the concept of an ascent path makes sense also in the absence of
GCH, that is, regardless of the associated power trees. It was discovered by Laver
while working on the problem of obtaining a model in which all ℵ2-Aronszajn
trees are special [LS81]. (Recall that a λ+-tree is said to be special if it may
be covered by λ-many antichains. Note that a special λ+-tree is never almost
Souslin.) By [SS88], if (T, <T ) is a special λ+-tree that admits an ℱ bd

θ -ascent
path, then cf(λ) = cf(θ). (The statement of [SS88, Lemma 3] is slightly weaker,
but its proof establishes the statement given here. For λ regular, an even stronger
statement holds true, and we refer the reader to [TTP12, Proposition 2.3].) This
provides an approach to construction of λ+-trees that are impossible to specialize
without changing cofinalities. In this paper, among other things, we shall construct
κ-Souslin trees with an ℱ -ascent path, where ℱ is ℱfin

θ = {Z ⊆ θ | |θ \ Z | < ℵ0}.
Such trees are even harder to specialize, since ℱfin

θ projects to ℱ bd
µ for all infinite

cardinals µ 6 θ , and so a model in which such a λ+-tree becomes special would
have to satisfy cf(λ) = cf(µ) for all infinite cardinals µ 6 θ . On a dual front,
Lücke [Luc17] proved that assuming λ<λ = λ, any λ+-tree with the property that
for all infinite θ < λ, the tree admits no ℱθ -ascent path, can be made special
via a cofinality-preserving notion of forcing. That is, the tree is specializable. A
systematic study of specializable, nearly special, and related classes of Souslin
trees will be carried out in a forthcoming paper.

Thus, we have an approach for introducing objects into the reduced θ -power
tree. Recalling Theorem 1.1, we shall also need an approach for preventing objects
from appearing there.
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DEFINITION 1.3. A κ-Souslin tree (T, <T ) is said to be χ -free if for every
nonzero τ < χ , any β < κ , and any sequence of distinct nodes 〈wi | i < τ 〉 ∈ τTβ ,
the derived tree

⊗
i<τ wi

↑ is again a κ-Souslin tree.

Here, the derived tree
⊗

i<τ wi
↑ stands for the tree (T̂ , <T̂ ), as follows:

• T̂ = { f ∈ T τ | ∀i < τ( f (i) is <T -compatible with wi)};
• f <T̂ g if and only if f (i) <T g(i) for all i < τ .

An ℵ0-free Souslin tree is simply called free. By Lemma 2.14 below, if
(T, <T ) is a θ+-free Souslin tree, then for an appropriate uniform ultrafilter 𝒰
over θ , T θ/𝒰 is Aronszajn and almost Souslin. This gives a promising approach
for pulling the other side of the blanket with respect to the reduced θ -power, but
raises the very problem of constructing free Souslin trees.

Jensen constructed a free ℵ1-Souslin tree from ♦(ω1) (see [DJ74, Theorem
V.1]). The argument generalizes to show that whenever λ<λ = λ, ♦(Eλ+

λ ) entails
the existence of a λ-complete λ-free λ+-Souslin tree. The λ-completeness of this
tree is not a bonus but a necessity, and indeed the consistency of existence of a
free λ+-Souslin tree for λ singular was unknown. (The level α ∈ Eλ+

λ of Jensen’s
tree is derived from a generic over some poset that lives in a model of size λ. The
freeness comes from genericity. The very existence of a generic comes from the
λ-completeness of the tree.)

Motivated by the above, in this paper, an alternative construction of a free κ-
Souslin tree is given, covering the case that κ is a successor of a singular cardinal
(as well as inaccessible). To exemplify:

THEOREM 1.4. Suppose that λ is a singular cardinal. Let χ denote the least
cardinal to satisfy λχ > λ.

If �λ + CHλ holds, then there exists a (slim!) χ -free λ+-Souslin tree.

Remark. Here, CHλ stands for the assertion that 2λ = λ+. The choice of χ is
sharp, as by Lemma A.7 below, the existence of a χ -free λ+-Souslin tree entails
that λ<χ = λ .

A reader who is familiar with previous constructions of κ-Souslin trees
with an ascent path (due to Baumgartner, Cummings, Devlin, and Laver) is
probably wondering how it is possible to construct the κ-tree without taking into
consideration whether κ is inaccessible, or successor of regular, or a successor of
singular of countable cofinality, or of uncountable cofinality. The answer is that
all constructions in this paper will go through the parameterized proxy principle
P(κ, µ,ℛ, θ,𝒮, ν, σ, ℰ) from [BR15, BR17]. This allows a uniform construction
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that is indifferent to the identity of κ , and was one of the motivations for the
introduction of this principle. For the purpose of this paper, we shall only be
concerned with the special case µ = ν = 2, σ = ω, and ℰ = 𝒫(κ) × 𝒫(κ), and
hence we choose to define only this simpler instance, which we denote by
P14(κ,ℛ, θ,𝒮). For a complete account, the reader is referred to [BR15]
and [BR17]. (The notation P14 comes from the fact that P14(κ, ·, ·, ·) ≡
P(κ, 2, ·, ·, ·, 2, ω, (𝒫(κ))2), and 14 is the decimal interpretation of the flip
of the binary string 0111000. Note that the choice of µ = 2 is justified by a
recent result of Shani [Sha16] and independently Lambie-Hanson [LH17] which
implies that none of the results obtained in this paper follow from µ = 3.)

Before giving the definition of the proxy principle, let us agree to denote for
a set of ordinals D, acc(D) = {α ∈ D | sup(D ∩ α) = α > 0}, nacc(D) =
D \ acc(D), and succω(D) = {δ ∈ D | 0 < otp(D ∩ δ) < ω}.

DEFINITION 1.5 (Proxy principle). Suppose that:

• κ is a regular uncountable cardinal;

• ℛ is a binary relation over [κ]<κ ;
• θ is a cardinal such that 1 6 θ 6 κ; and

• 𝒮 is a nonempty collection of stationary subsets of κ .

The principle P−14(κ,ℛ, θ,𝒮) asserts the existence of a sequence 〈Cα | α < κ〉
such that:

• for every limit ordinal α < κ , Cα is a club subset of α;

• for every ordinal α < κ , if ᾱ ∈ acc(Cα), then Cᾱ ℛ Cα;

• for every sequence 〈Ai | i < θ〉 of cofinal subsets of κ , and every S ∈ 𝒮 , there
exist stationarily many α ∈ S such that for every i < min{α, θ}, we have

sup{β ∈ Cα | succω(Cα \ β) ⊆ Ai} = α.

As for the relation ℛ, in this paper, we shall only be concerned with the
relations v, νv, vν , where:

• D v C if and only if there exists some ordinal β such that D = C ∩ β, that is,
C end-extends D;

• D νv C if and only if ((D v C) or (cf(sup(D)) < ν));

• D vν C if and only if ((D v C) or (otp(C) < ν and nacc(C) consists only of
successor ordinals)).
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It is easy to see that P−14(κ,v, θ,𝒮)⇒ P−14(κ, νv, θ,𝒮)⇒ P−14(κ, λv, θ,𝒮) for
all ν < λ < κ . Likewise, P−14(κ,v, θ,𝒮)⇒ P−14(κ,vν, θ,𝒮)⇒ P−14(κ,vλ, θ,𝒮)
for all ν < λ < κ . For notational simplicity, the strong principle P−14(κ,v, κ, {S}),
where κ = sup(S), is sometimes denoted by �(S) (for example, [BR15,
Section 1] and [RS17, Section 4]).

DEFINITION 1.6. P14(κ,ℛ, θ,𝒮) asserts that both P−14(κ,ℛ, θ,𝒮) and ♦(κ)
hold.

The consistency of the preceding principle is extensively studied in [BR15,
BR17]. We mention two extremes from [BR15]. If V = L , then

P14(κ,v, κ, {Eκ
>χ | χ < κ & ∀λ < κ(λ<χ < κ)})

holds for every regular uncountable cardinal κ that is not weakly compact.
Assuming the existence of a supercompact cardinal, it is consistent that for some
infinite cardinals ν < λ, P14(λ

+,vν, λ+, {λ+}) holds while �∗λ fails, and the same
is true replacing vν with λv.

So far, we have described a strategy for constructing κ-Souslin trees whose θ0-
power contains a prescribed tree, and another strategy for constructing κ-Souslin
trees whose θ1-power omits prescribed objects. Could these strategies live side
by side? The answer is clearly negative if θ0 = θ1. But even if θ0 6= θ1, there
are further obstructions. These obstructions lead us to introducing the following
concept.

DEFINITION 1.7. We say that a κ-tree X ⊆ <κκ is P−14(κ,ℛ, θ,𝒮)-respecting if
there exists a subset § ⊆ κ and a sequence of mappings 〈bα : (X �Cα)→ ακ∪{∅} |
α < κ〉 such that:

(1) Xα ⊆ Im(bα) for every α ∈ §;

(2) 〈Cα | α < κ〉 witnesses P−14(κ,ℛ, θ, {S ∩ § | S ∈ 𝒮});
(3) if Cᾱ v Cα and x ∈ X � Cᾱ, then bᾱ(x) = bα(x) � ᾱ.

It is not hard to show that P14(κ,v, 1, {κ}) entails the existence of a κ-Souslin
tree that is P−14(κ,v, 1, {κ})-respecting, and with witnessing mappings bα having
the property that bα(x) is always compatible with x (cf. the end of Section 3, or
just [BR15, Section 2]).

Clearly, if (X, <X ) is isomorphic to (κ,∈), then it is P−14(κ, . . . )-respecting
(provided that P−14(κ, . . . ) holds). What is unclear is whether trees that are not built
in a bottom-up fashion can be P−14-respecting. In [RS17], Rinot and Schindler gave
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consistent examples of P−14-respecting trees whose natural description is indeed
top-down. This includes Kurepa trees, and the special tree 𝒯 (ρ0) from [Tod87],
which fully encodes the process of walking down from one ordinal to another.

Therefore, we feel that one of the most interesting theorems of this paper is the
following.

THEOREM 1.8. Suppose that θ < κ are regular infinite cardinals, and

• η is an infinite cardinal satisfying λ<η < κ for all λ < κ;

• X ⊆ <κκ is a downward-closed κ-tree that is P−14(κ,vθ , κ, {Eκ
>η})-respecting;

• χ = min{η, θ};

• ♦(κ) holds.

Then there exists a χ -free η-complete κ-Souslin tree that admits an (ℱ bd
θ , X)-

ascent path.

Using the above theorem, we infer, for instance, that assuming V = L , there
exists an ℵ0-free ℵ1-complete ℵ2-Souslin tree whose reduced ω-power tree (by
any uniform ultrafilter) is ℵ2-Kurepa. It turns out that this is sharp, as the results
of Section 2 entail that such a tree cannot be ℵ1-free.

Previously, Cummings [Cum97] gave a consistent construction of an ℵ1-
complete ℵ2-Souslin tree with an ℱ bd

ℵ0
-ascent path. Roughly speaking, the idea

was to construct the levels of the tree Tα together with the portion of the ascent
path fα : ω → Tα by recursion over α < κ , making sure that any t ∈ Tα for
α ∈ Eℵ2

ℵ1
extends some node from a guessed antichain in

⋃
β<α Tβ . Now, as here

we want the tree to be moreover ℵ0-free, we must construct the nodes of Tα in
such a way that an analogous statement holds for a sequence of nodes from Tα,
rather than just a single node. This requires the construction of branches through⋃

β<α Tβ to be aware of all other branches that are expected to be constructed and
put inside Tα, including those that are there to insure the extensibility of the ascent
path.

In fact, there is one more obstruction: To make the corresponding reduced
ω-power an ℵ2-Kurepa tree, instead of constructing a single ascent path, we
shall need to construct ℵ3 many (genuinely distinct) ℱ bd

ℵ0
-ascent paths. The latter

makes the previous task (of anticipating future branches) even more challenging,
and is resolved by assuming that the tree to-be-embedded is P−14-respecting. The
existence of a P−14(ℵ2,v,ℵ2, {Eℵ2

ℵ1
})-respecting ℵ2-Kurepa tree was shown to

follow from V = L by Rinot and Schindler in [RS17].

https://doi.org/10.1017/fms.2016.34 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.34


A. M. Brodsky and A. Rinot 8

1.1. Organization of this paper. In Section 2, we provide the necessary
notions and preliminaries concerning trees that are needed to understand the
results of this paper. In Section 3, we discuss the so-called microscopic approach
to Souslin-tree construction that was developed in [BR15, BR17] and serves as
the framework for the tree constructions in this paper. The reader is not expected
to be familiar with [BR15, BR17]; the relevant results from those papers will be
stated where needed.

Sections 4–6 contain the heart of the paper: the theorems involving the
construction of Souslin trees with various properties. This material is organized
as a sequence of theorems of increasing complexity. We start with Theorem 4.1,
which is merely a rendition of a well-known construction from [Dev83].
Nevertheless, the proof of Theorem 4.1 will be given in great detail, as we
shall return to components of this construction repeatedly throughout the whole
paper. Moreover, the breakdown is such that each new theorem builds on ideas
already established in the previous theorems in this sequence, and adds one or
more new ideas in order to obtain a stronger result. Therefore, when proceeding
through any proof in these sections, the reader is expected to accept the techniques
used in the preceding proofs.

The next table exemplifies various types of κ-Souslin trees with an (ℱ , X)-
ascent path constructed in this paper. As one can see, the third parameter used
in P14(κ, . . . ) increases in value from 1 in Section 4 (where we construct trees
with countable ascent paths), to an infinite cardinal θ < κ in Section 5 (where
we construct trees with ascent paths of width θ ), to κ in Section 6 (where we
construct free trees).

Theorem 2nd 3rd 4th Growth ℱ (X,⊂) is Freeness degree
4.2 v 1 {κ} Slim ℱfin

ℵ0
slim None

4.3 v 1 {Eκ
>χ } χ -complete ℱfin

ℵ0
arbitrary None

5.1 v θ {κ} Slim ℱfin
θ slim None

5.3 vcf(θ) θ {Eκ
>χ } χ -complete ℱ bd

θ arbitrary None
6.1 v κ {Eκ

>χ } Slim ℱfin
θ
∼= (κ,∈) (χ, θ+)

6.2 v κ {Eκ
>χ } Slim — — χ

6.3 vcf(θ) κ {Eκ
>χ } χ -complete ℱ bd

θ respecting χ

6.4 vcf(θ) κ {Eκ
>χ } χ -complete ℱ bd

θ
∼= (κ,∈) cf(θ) and (χ, θ+)

6.7 χv κ {Eκ
>χ } χ -complete — — χ

Remark. The two-cardinal version of freeness may be found in Definition 2.12.

The paper is concluded with an Appendix, where we inspect a natural process
that produces, for any given κ-tree, a corresponding downward-closed subtree
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of <κ2 sharing many properties of the original one. This allows us to focus
on binary Hausdorff trees when proving various theorems, without losing any
generality.

1.2. Sample corollaries. To give an idea of the flavour of consequences
the results of this paper entail, we state here a few sample corollaries. While
the constructions of κ-Souslin trees in this paper apply to arbitrary regular
uncountable cardinals κ , in the following list, we shall concentrate only on λ+-
Souslin trees, mostly because we are unaware of a reasonable definition of an
almost Souslin κ-tree for inaccessible κ (let alone Mahlo).

All undefined terms may be found in Sections 2 and 3 below.

COROLLARY 1.9. Suppose �λ + CHλ + λ<λ = λ holds for a given regular
uncountable cardinal λ.

Then after forcing to add a single Cohen subset to λ, there exists a λ-complete
λ+-Souslin tree with an ℱfin

λ -ascent path.

Proof. By [BR15], after forcing to add a single Cohen subset to an uncountable
cardinal λ = λ<λ over a model of �λ + CHλ, P14(λ

+,v, λ+, {Eλ+
λ }) holds. Since

λ = λ<λ remains true in the extension, the conclusion follows from Theorem 5.3
below with (ν, θ, χ, κ) = (ℵ0, λ, λ, λ

+) and U =⋃α<λ+
α1.

By [BMR70], every ℵ1-Aronszajn tree is specializable. The next example is of
a λ+-Souslin tree that cannot be specialized without reducing it to the scenario of
[BMR70].

COROLLARY 1.10. Suppose �λ + CHλ holds for a given singular cardinal λ of
countable cofinality.

Then there exists a λ+-Souslin tree (T, <T ) satisfying the following. If W is
an ZFC extension of the universe in which (T, <T ) is a special |λ|+-tree, then
W |H |λ| = ℵ0.

Proof. By [BR15], for every singular cardinal λ, �λ + CHλ entails P14(λ
+,v,

λ, {λ+}). Then, by Corollary 5.2 below with (θ, κ) = (λ, λ+), there exists a λ+-
Souslin tree (T, <T ) with an ℱfin

λ -ascent path.
Towards a contradiction, suppose that W is an ZFC extension of our universe

V , satisfying:

(i) W |H (T, <T ) is a special |λ|+-tree;

(ii) W |H |λ| > ℵ0.
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By (i), λ+ was not collapsed. By (ii), pick a cardinal µ 6 λ in V such that
W |H µ = ℵ1. Since ℱfin

|λ| projects to ℱ bd
µ , we know that

(iii) W |H (T, <T ) admits an ℱ bd
µ -ascent path.

By (i), (iii) and [SS88], then, we must have W |H cf(µ) = cf(|λ|). As λ+ was not
collapsed, and V |H �λ, we get from [She82, p. 440] that W |H cf(|λ|) = cf(λ).
But V |H cf(λ) = ℵ0, and so

W |H ℵ1 = cf(µ) = cf(|λ|) = cf(λ) = ℵ0.

This is a contradiction.

Proof of Theorem 1.4. By [BR15], for every singular cardinal λ, �λ + CHλ

entails P14(λ
+,v, λ+, {Eλ+

cf(λ)}). Since cf(λ) > χ , the conclusion follows from
Theorem 6.2 below with (χ, κ) = (χ, λ+).

The following four corollaries provide, respectively, the trees T0, . . . , T3 and
ultrafilters 𝒰0,𝒰1, whose existence is asserted by Theorem 1.1.

COROLLARY 1.11. Suppose ♦(Eλ+
λ ) + GCH holds for a given regular

uncountable cardinal λ.
Then there exists a λ-complete λ+-Souslin tree (T, <T ), satisfying the following.

For every infiniteµ < λ, there exists a uniform ultrafilter𝒰 overµ such that T µ/𝒰
is λ+-Aronszajn and almost Souslin.

Proof. By [BR15], for λ uncountable, ♦(Eλ+
λ ) entails P14(λ

+, λv, λ+, {Eλ+
λ }).

Then by Theorem 6.7 below with (χ, κ) = (λ, λ+), using the fact that λ<λ = λ,
we obtain a normal, Hausdorff, λ-complete, λ-free, λ+-Souslin tree, (T, <T ). (All
trees constructed in this paper are normal and Hausdorff; cf. the beginning of
Section 3.) Now, given an infinite µ < λ, we utilize GCH to pick a selective
ultrafilter 𝒰 over µ. Then, by Lemmas 2.13 and 2.14 below, T µ/𝒰 is λ+-
Aronszajn and almost Souslin.

We remark that assuming ♦ λ (a strong combination of the principles �λ and
♦(λ+), see [Rin15b]), one can construct a slim λ+-Souslin tree whose reduced
µ-power by any uniform ultrafilter over any cardinal µ such that λµ = λ is λ+-
Aronszajn and almost Souslin. The construction requires additional ideas, which
we feel are out of the scope of this already-lengthy paper.
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COROLLARY 1.12. Suppose �λ + ♦∗(λ+) + λθ = λ holds for given infinite
cardinals cf(θ) = θ < λ.

Then there exists a λ+-Souslin tree whose reduced µ-power (by any uniform
ultrafilter) is λ+-Kurepa and not almost Souslin, for all infinite µ 6 θ .

Proof. By [Rin11], ♦∗(λ+) together with λℵ0 = λ entails ♦+(λ+), which in turn
entails the existence of a λ+-Kurepa tree, (K ,⊂), where K ⊆ <λ+2 is downward-
closed. By [Jen72], �λ entails the existence of a special λ+-Aronszajn tree
(X,⊂), where X ⊆ <λ+(λ+ \ 2) is downward-closed. By [BR15], �λ + ♦(λ+)
entails P14(λ

+,v, θ, {Eλ+
>θ }). Now, appealing to Theorem 5.3 below, with (ν, θ,

χ, κ) = (ℵ0, θ, θ, λ
+) and U = K ] X , we obtain a θ -complete λ+-Souslin tree

(T, <T ) with an (ℱfin
θ ,U )-ascent path. In particular, for every infinite cardinal

µ 6 θ , since ℱfin
θ projects to ℱ bd

µ , the reduced µ-power of T (by any uniform
ultrafilter) would contain a copy of (U,⊂), hence, is λ+-Kurepa and not almost
Souslin.

COROLLARY 1.13. If ♦+λ + GCH holds, then for every regular cardinal
θ < cf(λ), there exists a λ+-Souslin tree (T, <T ), satisfying the following.

• If ℵ0 6 µ < θ , then there exists a uniform ultrafilter 𝒰 over µ for which T µ/𝒰
is λ+-Aronszajn and almost Souslin;

• T θ/𝒰 is λ+-Kurepa and not almost Souslin for every uniform ultrafilter 𝒰
over θ .

Remark. The principle ♦+λ stands for a certain strong combination of the
principles �λ and ♦+(λ+). It was introduced in [RS17], where it was proven
to hold in L for every infinite cardinal λ.

Proof of Corollary 1.13. By [RS17], ♦+λ entails a P−14(λ
+,v, λ+, {Eλ+

cf(λ)})-
respecting downward-closed tree U ⊆ <λ+λ that is the disjoint union of a
λ+-Kurepa tree and a special λ+-Aronszajn tree. In particular, (U,⊂) is
λ+-Kurepa and not almost Souslin. By Theorem 6.3 below with (χ, ν, θ, η, κ) =
(θ, θ, θ, cf(λ), λ+), then, there exists a normal, Hausdorff, θ -free, cf(λ)-complete,
λ+-Souslin tree (T, <T ) that admits an injective (ℱ bd

θ ,U )-ascent path. In
particular, for any uniform ultrafilter 𝒰 over θ , T θ/𝒰 contains a copy of (U,⊂)
and hence is λ+-Kurepa and not almost Souslin.

Finally, given an infinite µ < θ , we utilize GCH to pick a selective ultrafilter
𝒰 over µ. Then, by Lemmas 2.13 and 2.14 below, T µ/𝒰 is λ+-Aronszajn and
almost Souslin.
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COROLLARY 1.14. If ♦ λ+GCH holds, then for every infinite cardinal θ < cf(λ),
there exists a λ+-Souslin tree (T, <T ), satisfying the following for every infinite
cardinal µ:

• if ℵ0 6 µ 6 θ , then T µ/𝒰 is not λ+-Aronszajn for every uniform ultrafilter 𝒰
over µ;

• if θ < µ < cf(λ), then there exists a uniform ultrafilter 𝒰 over µ such that
T µ/𝒰 is λ+-Aronszajn and almost Souslin.

Proof. By [BR15], ♦ λ entails P14(λ
+,v, λ+, {Eλ+

cf(λ)}).
I If θ+ = cf(λ), then by Corollary 5.2 below with κ = λ+, there exists a λ+-

Souslin tree with an ℱfin
θ -ascent path. As ℱfin

θ projects to ℱ bd
µ for every infinite

µ 6 θ , we have established the first bullet, and the second bullet is vacuous.
I If θ+ < cf(λ), then by Theorem 6.1 below with (θ, χ, κ) = (θ, cf(λ), λ+),

we may pick a normal, Hausdorff, (cf(λ), θ+)-free λ+-Souslin tree (T, <T ) with
an ℱfin

θ -ascent path. As ℱfin
θ projects to ℱ bd

µ for every infinite µ 6 θ , we have
established the first bullet.

Next, suppose that θ < µ < cf(λ). By GCH, let 𝒰 be a selective ultrafilter over
µ. Then, by Lemmas 2.13 and 2.14 below, T µ/𝒰 is λ+-Aronszajn and almost
Souslin.

We now give an even more informative corollary than the one stated in the
abstract.

COROLLARY 1.15. If ♦ ℵ6 + GCH holds, then there exists an ℵ7-Souslin tree
(T, <T ), and a sequence of uniform ultrafilters 〈𝒰n | n < 7〉 such that:

• if n ∈ {0, 1, 4, 5}, then T ℵn/𝒰n is ℵ7-Aronszajn and almost Souslin;

• if n ∈ {2, 3, 6}, then T ℵn/𝒰n is not an ℵ7-Aronszajn tree.

Proof. By [BR15], ♦ ℵ6 entails P14(ℵ7,v,ℵ7, {Eℵ7
ℵ6
}). Thus, appealing to

Theorem 6.4 below with (ν, θ, χ, κ) = (ℵ2,ℵ3,ℵ6,ℵ7), we obtain a prolific,
normal, Hausdorff, ℵ2-free, (ℵ6,ℵ4)-free ℵ7-Souslin tree (T, <T ) with an ℱℵ2

ℵ3
-

ascent path (the filter ℱ ν
θ is defined at the beginning of Section 5).

I As (T, <T ) is ℵ2-free, for any selective ultrafilters 𝒰0,𝒰1 over ℵ0,ℵ1,
respectively, we get from Lemmas 2.13 and 2.14 below that T ℵ0/𝒰0 and T ℵ1/𝒰1

are ℵ7-Aronszajn and almost Souslin.
I As ℱℵ2

ℵ3
projects to ℱ bd

ℵ2
, the reduced power T ℵ2/𝒰2 by any uniform ultrafilter

𝒰2 over ℵ2 contains a cofinal branch.
I As ℱℵ2

ℵ3
⊆ ℱ bd

ℵ3
, the reduced power T ℵ3/𝒰3 by any uniform ultrafilter 𝒰3 over

ℵ3 contains a cofinal branch.

https://doi.org/10.1017/fms.2016.34 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.34


Reduced powers of Souslin trees 13

I As (T, <T ) is (ℵ6,ℵ4)-free, for any selective ultrafilters 𝒰4,𝒰5 over ℵ4,ℵ5,
respectively, we get from Lemmas 2.13 and 2.14 below that T ℵ4/𝒰4 and T ℵ5/𝒰5

are ℵ7-Aronszajn and almost Souslin.
I By [CK90, Proposition 4.3.5], let 𝒰6 be an ℵ6-regular ultrafilter over ℵ6. As

(T, <T ) is prolific, we get that the ℵ6th level of T has size ℵ6, and then by [CK90,
Proposition 4.3.7], the ℵ6th level of T ℵ6/𝒰6 has size ℵ7. In particular, T ℵ6/𝒰6 is
not an ℵ7-Aronszajn tree.

We conclude with a nontrivial improvement of Theorem 2 from [BDS86]. In
particular, this demonstrates the consistency of: for every singular cardinal λ of
countable cofinality, (there is a λ+-Souslin tree, and) all λ+-Aronszajn trees are
nonspecial.

COROLLARY 1.16. If ZFC + ∃ supercompact cardinal is consistent, then so is
ZFC+Martin’s Maximum+ the following:

(1) there exists a cf(λ)-free cf(λ)-complete λ+-Souslin tree for every cardinal
λ > ℵ2;

(2) there exists no special λ+-Aronszajn tree, for every singular cardinal λ of
countable cofinality.

Proof. By [BR15], it is consistent, relative to ZFC + ∃ supercompact cardinal,
that all of the following hold together:

• (ZFC and) Martin’s Maximum (MM);

• P14(λ
+,vℵ2, λ

+, {Eλ+
cf(λ)}) for every singular cardinal λ;

• P14(λ
+, λv, λ+, {Eλ+

λ }) for every regular uncountable cardinal λ.

Work in this model. By the second and third bullets, CHλ holds for every
uncountable cardinal λ. It follows that λ<cf(λ) = λ for every cardinal λ > ℵ2.

(1) Let λ denote a regular cardinal > ℵ2. By P14(λ
+, λv, λ+, {Eλ+

λ }),
λ<λ = λ and Theorem 6.7 with (χ, κ) = (λ, λ+), we obtain a λ-free λ-complete
λ+-Souslin tree.

Let λ denote a singular cardinal. Write µ = max{cf(λ),ℵ2}. By
P14(λ

+,vµ, λ+, {Eλ+
cf(λ)}) and Theorem 6.3 below, taking (χ, η, ν, θ, κ) = (cf(λ),

cf(λ), µ,µ, λ+) and U = ⋃
α<λ+

α1, we infer the existence of a cf(λ)-free
cf(λ)-complete λ+-Souslin tree.

(2) By [CM11], MM refutes �∗λ for every singular cardinal λ of countable
cofinality. As �∗λ is equivalent to the existence of a special λ+-Aronszajn tree
[Jen72], we are done.
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The versatile list of hypotheses of the above corollaries (Cohen forcing, �λ +
CHλ,♦(Eλ+

λ )+GCH, a model of MM) demonstrates well the utility of the proxy
principle P(κ, . . . ) as a device that provides a disconnection between the tree
constructions and the study of the combinatorial hypotheses.

2. Some theory of trees

DEFINITION 2.1. A tree (T, <T ) is said to be Hausdorff if for all x, y ∈ T of
limit-ordinal height, x↓ = y↓ entails x = y.

DEFINITION 2.2. A tree (T, <T ) is said to be normal if for all ordinals α < β

and every x ∈ Tα, if Tβ 6= ∅ then there exists some y ∈ Tβ such that x <T y.

DEFINITION 2.3. A tree (T, <T ) is said to be splitting if every node in T admits
at least two immediate successors.

The following is a basic, yet very useful, fact.

LEMMA 2.4 (folklore). Suppose that (T, <T ) is a κ-Souslin tree for some regular
uncountable cardinal κ .

Then there exists a club E in κ such that (T � E, <T ) is normal and splitting.

Proof. Let A = {x ∈ T | ∃β < κ ∀y ∈ Tβ (y is incompatible with x)}. Since
(T, <T ) has no antichains of size κ , we may pick a large enough α < κ such that
A ⊆ T � α. Let B = {x ∈ T | (x↑, <T ) is linearly ordered}. Since (T, <T ) has no
cofinal branches, we know that B ⊆ A. Consequently,

E = {β < κ | (∀x ∈ T � [α, β))(∃y0, y1 ∈ Tβ)
[y0, y1 are incompatible extensions of x]} \ α

is a club in κ . Evidently, (T � E, <T ) is normal and splitting.

DEFINITION 2.5. A subset T of <κκ is said to be a prolific tree if it is downward-
closed and for every α < κ and every x ∈ T ∩ ακ , we have

{xa〈i〉 | i < max{ω, α}} ⊆ T .

Notice that a prolific tree is always splitting. On the opposite extreme from
prolific, we have the following.

DEFINITION 2.6. A κ-tree is said to be binary if it is a downward-closed subset
of the complete binary tree <κ2.
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As mentioned earlier, in the Appendix below we analyse a natural process
that produces, for any given κ-tree, a corresponding binary κ-tree sharing many
properties of the original one.

DEFINITION 2.7. A filter ℱ over a cardinal θ is said to be selective if it is uniform,
and for every function f with dom( f ) ∈ ℱ , one of the following holds:

• there exists some C ∈ ℱ+ such that f � C is constant; or

• there exists some I ∈ ℱ+ such that f � I is injective.

Note that for every infinite cardinal θ , ℱ bd
θ is a selective filter. As for ultrafilters,

note that assuming GCH, for any infinite regular cardinal θ , one can enumerate
all functions from θ to θ in order-type θ+, and then use this enumeration to
recursively construct a tower that generates a selective ultrafilter over θ .

DEFINITION 2.8. An (ℱ , X)-ascent path Ef = 〈 fx | x ∈ X〉 through a κ-tree
(T, <T ) is said to be injective if for every b : κ→ κ such that {b�α | α < κ} ⊆ X ,
there exist some α < κ and some I ∈ ℱ such that fb�α � I is injective.

Recall that if the downward-closed tree (X,⊂) is isomorphic to (κ,∈), then
an (ℱ , X)-ascent path Ef is said to be an ℱ -ascent path. In this special case, it is
customary to identify Ef with a sequence 〈 fα | α < κ〉. So, Ef is injective if and
only if there exist α < κ and I ∈ ℱ such that fα � I is injective. Note that if ℱ is
a filter, then Ef is injective if and only if for coboundedly many α < κ , there exists
Iα ∈ ℱ such that fα � Iα is injective.

LEMMA 2.9. Suppose that κ is a regular uncountable cardinal, and (T, <T ) is a
θ+-free κ-Souslin tree. Then none of the following can occur:

(1) (T, <T ) admits an ℱ -ascent path for some selective filter ℱ over θ ;

(2) (T, <T ) admits an injective ℱ -ascent path for some (proper) filter ℱ over θ .

Proof. (1) Suppose not. Then by the results of the Appendix below, we may
assume that (T, <T ) = (T,⊂) is a binary θ+-free κ-Souslin tree that admits an
ℱ -ascent path, for some selective filter ℱ over θ . Let Ef = 〈 fα : θ → Tα | α < κ〉
denote an ℱ -ascent path through (T,⊂).

By Lemma A.7 below, 2θ < κ . As ℱ is a selective filter over θ , and 2θ < κ ,
one of the following must hold:

https://doi.org/10.1017/fms.2016.34 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.34


A. M. Brodsky and A. Rinot 16

(a) there exist a stationary S0 ⊆ κ and C ∈ ℱ+ such that fα � C is constant for
all α ∈ S0;

(b) there exist a stationary S1 ⊆ κ and I ∈ ℱ+ such that fα � I is injective for all
α ∈ S1.

In case (a), we then get that { fα(min(C)) | α ∈ S0} generates a cofinal branch
through the κ-Souslin tree (T,⊂). This is a contradiction.

In case (b), we do the following. Pick ε < κ such that fε � I is injective. By
Lemma 2.4, let E ⊆ κ be a club such that (T � E,⊂) is normal and splitting. By
discarding an initial segment of E , we may assume that min(E) > ε.

For every α ∈ E , the set Zα = {i < θ | fε(i) ⊆ fα(i)} is in ℱ . By 2θ < κ , we
can then pick Z ∈ ℱ and some stationary subset S ⊆ E such that Zα = Z for all
α ∈ S. As I ∈ ℱ+ and Z ∈ ℱ , the set I ′ = I ∩ Z is nonempty, hence we consider
the derived tree T̂ =⊗i∈I ′ fε(i)↑.

Let α ∈ S be arbitrary. Denote α+ = min(S \ (α + 1)). Since α < α+ are
elements of E , we may find gα+ ∈ (Tα+)I ′ such that for all i ∈ I ′:

gα+(i) � α = fα(i) and gα+(i) 6= fα+(i).

In particular, fε(i) ⊆ gα+(i) for all i ∈ I ′ ⊆ Zα, and hence gα+ ∈ T̂ .
Since |I ′| < θ+ and (T,⊂) is θ+-free, (T̂ , <T̂ ) is κ-Souslin, thus, let us pick

α < β in S such that gα+(i) ⊆ gβ+(i) for all i ∈ I ′. In particular, α+ 6 β. Since
Ef is an ℱ -ascent path, the following set

Aα+,β = {i < θ | fα+(i) ⊆ fβ(i)}
is in ℱ . In particular, I ′ ∩ Aα+,β is nonempty. Pick i ∈ I ′ ∩ Aα+,β . Then fα+(i) =
fβ(i) � α+ = (gβ+(i) � β) � α+. Recalling that gα+(i) 6= fα+(i), we conclude that
gα+(i) 6⊆ gβ+(i), contradicting the choice of α < β.

(2) The proof is similar to that of Clause (1). Instead of assuming that ℱ
is selective, the hypothesis readily implies the existence of ε < κ and I ∈ ℱ
such that fε � I is injective. In particular, I ∈ ℱ+, and the rest of the proof is
identical.

COROLLARY 2.10. If θ < κ = cf(κ) are infinite cardinals, then no θ+-free
κ-Souslin tree admits an ℱ bd

θ -ascent path.

We now introduce a two-cardinal version of freeness. As Corollary 1.15
demonstrates, this is a fruitful concept.

DEFINITION 2.11. Given a tree (T, <T ) and an ordinal τ , a subset A ⊆ T τ is
said to be an η-antichain if for all Ex and Ey from A, we have |{i < τ | ¬(Ex(i) <T

Ey(i))}| > η.
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DEFINITION 2.12. A κ-tree (T, <T ) is said to be (χ, η)-free if for every nonzero
τ < χ , any β < κ , and any sequence of distinct nodes 〈wi | i < τ 〉 ∈ τTβ , any
subset of

⊗
i<τ wi

↑ of size κ is not an η-antichain.

LEMMA 2.13.

(1) A normal κ-Souslin tree is χ -free if and only if it is (χ, 1)-free.

(2) If χ0 > χ1 and η0 6 η1, then (χ0, η0)-free implies (χ1, η1)-free.

Proof. Obvious.

LEMMA 2.14. Suppose that (X, <X ) is a Hausdorff (θ+, θ)-free κ-Souslin tree,
𝒰 is a selective ultrafilter over θ , and λ<θ < κ for all λ < κ . Then:

(1) if A ⊆ X θ/𝒰 is an antichain, then {ht(x) | x ∈ A} ∩ Eκ
>θ is nonstationary;

(2) X θ/𝒰 is κ-Aronszajn.

Proof. By Lemma A.7 below, we infer that λθ < κ for all λ < κ .
For every x ∈ X θ , let ht(x) denote the height of x(0) in (X, <X ). Note that

ht(x) coincides with the height of [x]𝒰 in X θ/𝒰 .
(1) Suppose we are given A ⊆ X θ , for which S = {ht(x) | x ∈ A} ∩ Eκ

>θ is
stationary. We shall prove that {[x]𝒰 | x ∈ A} is not an antichain.

For every α ∈ S, pick xα ∈ A with ht(xα) = α. As 𝒰 is a selective ultrafilter
over θ , and 2θ < κ , one of the following must hold:

(a) there exist a stationary S0 ⊆ S and C ∈ 𝒰 such that xα � C is constant for all
α ∈ S0;

(b) there exist a stationary S1 ⊆ S and I ∈ 𝒰 such that xα � I is injective for all
α ∈ S1.

In case (a), we use the fact that (X, <X ) is κ-Souslin to find α < β in S0

such that xα(min(C)) <X xβ(min(C)). Consequently, [xα]𝒰 and [xβ]𝒰 are two
compatible elements. Therefore, {[x]𝒰 | x ∈ A} is not an antichain.

In case (b), since |I | = θ < cf(α) and (X, <X ) is Hausdorff, we may find some
large enough ordinal βα < α such that xα(i)↓ ∩ (X � βα) 6= xα( j)↓ ∩ (X � βα)
for all two distinct i, j ∈ I . For α ∈ S1, let yα : I → Xβα be such that yα(i) is
the unique element of Xβα that is <X below xα(i), for all i ∈ I . Of course, for all
α ∈ S1, yα is an injection.

So, fix a stationary S2 ⊆ S1 such that {yα | α ∈ S2} is a singleton, say {y}. Then
{xα | α ∈ S2} is a κ-sized set in the derived tree T̂ =⊗i∈I y(i)↑. Since (X, <X ) is
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(θ+, θ)-free, there exist α < β in S2 such that |{i ∈ I | ¬(xα(i) <X xβ(i))}| < θ .
Since I ∈ 𝒰 and the latter is uniform, we get that {i < θ | xα(i) <X xβ(i))} ∈ 𝒰 .
Consequently, [xα]𝒰 and [xβ]𝒰 are two compatible elements. Therefore, {[x]𝒰 |
x ∈ A} is not an antichain.

(2) Since λθ < κ for all λ < κ , X θ/𝒰 is a κ-tree. Towards a contradiction,
suppose that we may find xα ∈ X θ for each α < κ , in such a way that {[xα]𝒰 |
α < κ} is a cofinal branch through X θ/𝒰 . As 𝒰 is a selective ultrafilter, and
(X, <X ) is κ-Aronszajn, an analysis similar to the above entails the existence of
a stationary S1 ⊆ κ and I ∈ 𝒰 such that xα � I is injective for all α ∈ S1. Pick an
arbitrary ε ∈ S1.

By Lemma 2.4, let E ⊆ κ be a club such that (X �E, <X ) is normal and splitting.
Without loss of generality, min(E) > ε. Find a stationary subset S ⊆ E , and some
Z ∈ 𝒰 such that {i < θ | xε(i) <X xα(i)} = Z for all α ∈ S. Put I ′ = Z ∩ I , and
consider the derived tree T̂ =⊗i∈I ′ xε(i)

↑.
As in the proof of Lemma 2.9, for all α ∈ S, we let α+ = min(S \ (α+ 1)), and

pick gα+ ∈ T̂ ∩ (Tα+)I ′ such that for all i ∈ I ′:

• gα+(i)↓ ∩ (T � α) = xα(i)↓;

• gα+(i) 6= xα+(i).

Since |I ′| < θ+ and (T,⊂) is (θ+, θ)-free, we may pick α < β in S such that

B = {i ∈ I ′ | ¬(gα+(i) <X gβ+(i))}
is of cardinality < θ . Since I ∈ 𝒰 , and the latter is a uniform ultrafilter over θ ,
I ′ \ B ∈ 𝒰 . By the choice of xα and xβ , also

Aα+,β = {i < θ | xα+(i) <X xβ(i)}
is in 𝒰 . Then (I ′ \ B)∩ Aα+,β is nonempty, contradicting the choice of α < β.

3. The microscopic approach to Souslin-tree construction

All of the trees that are constructed in this paper will be normal, prolific,
downward-closed subtrees of <κκ for some regular uncountable cardinal κ . Each
node of such a tree T is a function t : α → κ for some ordinal α < κ; the tree
order <T is simply extension of functions ⊂; and we require that if t : α → κ

is in T , then t � β ∈ T for every β < α. For any node t ∈ T , the height of t
in T is just its domain, that is, ht(t) = dom(t), and the set of its predecessors is
t↓ = {t �β | β < dom(t)}. For any α < κ , the level Tα of the tree T will be the set
of all elements of T that have domain α, that is, Tα = T ∩ακ . Finally, any function
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f : κ→ κ determines a cofinal branch through <κκ , namely { f �α | α < κ}, which
ought not to end up being a subset of T if T is to form a κ-Aronszajn tree.

The main advantage of this notational approach is the ease of completing a
branch at a limit level. Suppose that, during the process of constructing a tree
T , we have already inserted into T a ⊂-increasing sequence of nodes η :=
〈tα | α < β〉 for some β < κ . The (unique) limit of this sequence, which may
or may not become a member of T , is nothing but

⋃
Im(η), that is,

⋃
α<β tα.

Furthermore, compatibility of nodes in the tree is easily expressed: For x, y ∈ T ,
x and y are compatible if and only if x ∪ y ∈ T .

It is clear that any downward-closed tree T ⊆ <κκ is Hausdorff, and conversely
that any Hausdorff tree is isomorphic to a downward-closed subtree of <κκ for
some cardinal κ .

While classical constructions of κ-Souslin trees typically involve a recursive
process of determining a partial order <T over κ by consulting a ♦(κ)-sequence,
here, the order is already known (being⊂), and the recursive process involves the
determination of a subset of <κκ . For this reason, it is more convenient to work
with the following variation of ♦(κ):

DEFINITION 3.1 [BR15]. ♦(Hκ) asserts the existence of a partition 〈Ri | i < κ〉
of κ and a sequence 〈Sβ | β < κ〉 of subsets of Hκ such that for every p ∈ Hκ+ ,
i < κ , and Ω ⊆ Hκ , there exists an elementary submodel ℳ ≺ Hκ+ such that:

• p ∈ℳ;

• ℳ ∩ κ ∈ Ri ;

• ℳ ∩Ω = Sℳ∩κ .

Notice that if we let Zβ = Sβ whenever Sβ ⊆ β, and Zβ = ∅ otherwise, then
〈Zβ | β < κ〉 forms a ♦(κ)-sequence. A converse is also available:

FACT 3.2 [BR15]. ♦(κ) is equivalent to ♦(Hκ) for any regular uncountable
cardinal κ .

Let us unfold the setup that ♦(Hκ) entails. The functions, sequences, and
notation defined here do not rely on anything but diamond, and will be used in
all of the tree constructions in this paper.

Fix a partition 〈Ri | i < κ〉 of κ , and a sequence 〈Sβ | β < κ〉 of subsets of Hκ

as in Definition 3.1. Fix a bijection φ : κ ↔ Hκ . Let <φ denote the well ordering
that φ induces on Hκ . That is, x <φ y if and only if φ−1(x) < φ−1(y). Define
ψ : κ → Hκ by letting ψ(β) = φ(i) for the unique i < κ such that β ∈ Ri .
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For every T ∈ Hκ , denote β(T ) = 0 unless there exists β < κ such that
T ⊆ 6βκ and T * <βκ . Of course, in the latter case, β is uniquely determined, so
we define β(T ) = β for this unique β.

We now define three functions:

(1) The default extension function, extend : Hκ × Hκ → Hκ , is defined as
follows.

Let extend(x, T ) = x , unless Q̄ = {z ∈ T ∩ β(T )κ | x ⊆ z} is nonempty, in
which case we let extend(x, T ) = min(Q̄, <φ).

(2) The function for sealing antichains, anti : Hκ × Hκ → Hκ , is defined as
follows.

Let anti(x, T ) = extend(x, T ), unless

Q = {z ∈ T ∩ β(T )κ | ∃y ∈ Sβ(T )(x ∪ y ⊆ z)}
is nonempty, in which case we let anti(x, T ) = min(Q, <φ).

(3) For a cardinal η > 0, the function for sealing η-antichains in the power tree,
freeη : Hκ × Hκ × Hκ → Hκ , is defined as follows.

Given (x, T, Eb): if there exists τ < κ such that Eb ∈ τT and

Q = {Ez ∈ τ (T ∩ β(T )κ) | ∃Ey ∈ Sβ(T ) ∩ τT [∀ηξ < τ(Eb(ξ) ∪ Ey(ξ) ⊆ Ez(ξ))]}
is nonempty, and there exists a unique ξ < τ such that x = Eb(ξ), then let
freeη(x, T, Eb) = Ez(ξ) for Ez = min(Q, <φ) and this unique ξ . Otherwise, let
freeη(x, T, Eb)= extend(x, T ). (The quantifier ∀η appearing in the definition
of Q is the natural generalization of ∀∞, that is, ∀ηξ < τ(ϕ(ξ)) means that
|{ξ < τ | ϕ(ξ) fails}| < η.)

Note that freeη is a generalization of anti. Indeed, anti(x, T )= free1(x, T, 〈x〉)
whenever x ∈ T and T is downward-closed.

The following is obvious.

EXTENSION LEMMA. If x ∈ T ∈ Hκ and T is a normal subtree of 6β(T )κ ,
then extend(x, T ), anti(x, T ), and freeη(x, T, Eb) are elements of T ∩ β(T )κ

extending x.

A core component of the uniform construction of κ-Souslin trees in this paper is
the following. Given EC = 〈Cα | α < κ〉, we first derive some stationary subset Γ
of κ (the support of EC , see [BR17] for a general treatment, and Claim 5.1.1 below
for a concrete instance). Then, for every α ∈ Γ for which the initial tree T �α has
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already been defined, and every x ∈ T �Cα, we identify a branch bαx through T �α,
containing x . The recursive process of identification of such a branch consists of
‘microscopic’ steps, where each step involves invoking one of the three functions
mentioned in the Extension Lemma, with parameters that are suggested by the
oracle ψ . As usual, to be able to keep climbing up, it is necessary that at a limit
step ᾱ of the recursion, the limit of the portion of the branch identified so far,
bαx � ᾱ, is an element of Tᾱ. This will be accomplished by ensuring that such a
portion was in fact already identified as bᾱx at an earlier stage of the recursive
construction of the tree, when constructing Tᾱ. That is:

COHERENCE CLAIM TEMPLATE. Suppose ᾱ < α are elements of Γ , and T � α
has been constructed to satisfy the relevant properties. Suppose also that bαy � ᾱ
has already been constructed for all y ∈ T � Cᾱ.

If Cᾱ = Cα ∩ ᾱ, then for all x ∈ T � Cᾱ:

bᾱx = bαx � ᾱ.

As a by-product, some of the κ-Souslin trees (T,⊂) constructed in this paper
will be P−14(κ,ℛ, 1, {Γ })-respecting with a witnessing function:

bα(x) =
{⋃{bαx (β) | β ∈ dom(bαx )} if α ∈ Γ ;
∅ otherwise.

4. Souslin tree with a countable ascent path

In this section, we shall present constructions of κ-Souslin trees from
P14(κ,ℛ, θ,𝒮), where ℛ = v and θ = 1. We remark that by [BR15], in L ,
this principle holds for every regular uncountable cardinal κ that is not weakly
compact. As for κ = λ+, where λ is an uncountable cardinal, we have that
�λ + CHλ entails P14(λ

+,v, θ, {Eλ+
χ | ℵ0 6 cf(χ) = χ < λ}) for any cardinal

θ < λ.

4.1. Slim trees

THEOREM 4.1. Suppose that κ is a regular uncountable cardinal, and
P14(κ,v, 1, {κ}) holds.

Then there exists a prolific slim κ-Souslin tree with an injective ℱfin
ℵ0

-ascent
path.
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Proof. Recalling Definition 1.6 and Fact 3.2, we know that P−14(κ,v, 1, {κ}) and
♦(Hκ) hold.

Let 〈Cα | α < κ〉 be a witness to P−14(κ,v, 1, {κ}). Next, by ♦(Hκ), we fix the
function φ : κ ↔ Hκ , sequences 〈Sβ | β < κ〉, 〈Ri | i < κ〉, well ordering <φ

of Hκ , notation β(T ), and the function anti : Hκ × Hκ → Hκ as described in
Section 3.

The constructed tree T will be a downward-closed subset of <κκ , so that each
level Tα will be a subset of ακ , and the tree relation6T will simply be extension of
sequences. We will construct, simultaneously by recursion over α < κ , the levels
〈Tα | α < κ〉 of the tree T , as well as the functions 〈 fα | α < κ〉 and the nodes
〈〈bαx | x ∈ T �Cα〉 | α ∈ acc(κ)〉, so that after each stage α of the construction the
following properties are satisfied:

(1) Tα ⊆ ακ .

(2) The tree constructed so far is a downward-closed subset of 6ακ , that is, for
each t ∈ Tα we have {t � β | β < α} ⊆ T � α.

(3) The tree is normal, that is, for each s ∈ T � α, there is t ∈ Tα with s <T t .

(4) The tree is prolific, that is, for each s ∈ T � α, we have

{sa〈i〉 | i < max{ω, ht(s)}} ⊆ T � (α + 1).

(5) The tree is slim, that is, |Tα| 6 max{|α|,ℵ0}.
(6) If α is a limit ordinal, then for every x ∈ T � Cα, bαx ∈ Tα is the limit of

the increasing, continuous, cofinal sequence bαx in (T � α,⊆), satisfying the
following properties:

(a) dom(bαx ) = Cα\ht(x);

(b) bαx (ht(x)) = x ;

(c) For all β ∈ dom(bαx ), bαx (β) ∈ Tβ ;

(d) If β0 < β1 are two consecutive points in dom(bαx ), then

bαx (β1) = anti(bαx (β0), T � (β1 + 1)).

(7) fα : ω→ Tα is a function; moreover, if α > 0, then fα is injective.

(8) For every β < α,

{n < ω | fβ(n) <T fα(n)} ∈ ℱfin
ℵ0
.
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(9) If α is a limit ordinal and β ∈ acc(Cα) then

{n < ω | fβ(n) <T fα(n)} = ω.

(10) If α is a limit ordinal such that sup(acc(Cα)) < α, then for every n < ω

there is some x ∈ T � Cα such that

fα(n) = bαx .

(11) If α is a limit ordinal, then

Tα = {bαx | x ∈ T � Cα} ∪ { fα(n) | n < ω}.

The following instance of the Coherence Claim Template from page 21 gives
a hint as to how we will ensure that the sequences described in property (6) can
always be constructed:

CLAIM 4.1.1. Fix limit ordinals ᾱ < α < κ , and suppose T � α has been
constructed to satisfy the above properties. If Cᾱ = Cα ∩ ᾱ, x ∈ T � Cᾱ, and
bαx � (Cᾱ\ht(x)) has already been constructed, then

bᾱx = bαx � (Cᾱ\ht(x)).

Proof. Property (6)(d) says that, for two consecutive points β0 < β1 in dom(bαx ),
the value of bαx (ᾱ1) depends only on:

• the function anti;

• the value bαx (β0); and

• the tree T � (β1 + 1).

In particular, there is no further dependency on the initial point x or on α =
sup(Cα). This is the idea being captured by this claim. Formally, we prove the
claim by induction over the common domain:

On each side of the equation, the sequence has domain Cᾱ\ht(x). We prove
that the two sequences bᾱx and bαx have equal values on their common domain, by
induction over β ∈ Cᾱ\ht(x):

I β = ht(x): Using property (6)(b), we have

bᾱx (ht(x)) = x = bαx (ht(x)).
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I β > ht(x), β ∈ nacc(Cᾱ): Since Cᾱ is a club, β must have an immediate
predecessor in Cᾱ\ht(x), which we call β−. Then using property (6)(d) and
the induction hypothesis, we have

bᾱx (β) = anti(bᾱx (β
−), T � (β + 1)) = anti(bαx (β

−), T � (β + 1)) = bαx (β).

I β > ht(x), β ∈ acc(Cᾱ): Then also β ∈ acc(Cα), and by continuity of each
sequence and application of the induction hypothesis, we have

bᾱx (β) =
⋃
{bᾱx (δ) | δ ∈ Cᾱ ∩ β\ht(x)}

=
⋃
{bαx (δ) | δ ∈ Cᾱ ∩ β\ht(x)} = bαx (β).

The recursive construction proceeds as follows:

Base case, α = 0: Let T0 = {∅}, and define f0 : ω → T0 by setting f0(n) = ∅
for all n < ω. The required properties are automatically satisfied as there is
nothing to check.

Successor ordinal, α = β + 1: Define

Tα = {sa〈i〉 | s ∈ Tβ, i < max{ω, α}}.
In addition, define fα : ω→ Tα by setting, for n < ω, fα(n) = fβ(n)a〈n〉.
The required properties are easy to verify.

Limit level, α = supα > 0: We begin by constructing bαx ∈ ακ for each
x ∈ T � Cα.

Recall that Cα is a club subset of α. For each x ∈ T � Cα, we will use Cα

to determine a cofinal branch through (T � α,⊆), containing x , by defining an
increasing, continuous sequence bαx of nodes. The domain of the sequence bαx will
be Cα\ht(x). Notice that dom(bαx ) is a club subset of α, since Cα is club. Also, we
have

acc(dom(bαx )) = acc(Cα) \ (ht(x)+ 1);
nacc(dom(bαx )) \ {ht(x)} = nacc(Cα) \ (ht(x)+ 1).

We define the values bαx (β) of the sequence by recursion over β ∈ dom(bαx ),
where for every β we will have bαx (β) ∈ Tβ :

I β = ht(x): This is where the sequence begins. Let bαx (ht(x)) = x .
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I β > ht(x), β ∈ nacc(Cα): In this case, we denote the predecessor of β in Cα

by β−. That is, we define β− = max(Cα ∩ β). This maximum necessarily
exists, and it is in dom(bαx ), because Cα is club and β ∈ nacc(Cα) \
(ht(x)+ 1). Let

bαx (β) = anti(bαx (β
−), T � (β + 1)).

Since bαx (β
−) belongs to the normal tree T � (β + 1), we get from the

Extension Lemma (page 20) that bαx (β) is an element of Tβ extending
bαx (β

−).

I β > ht(x), β ∈ acc(Cα): In this case we define

bαx (β) =
⋃
{bαx (γ ) | γ ∈ dom(bαx ) ∩ β}.

It is clear that bαx (β) ∈ βκ , but we need to show that in fact we have bαx (β) ∈
Tβ as well.

From v-coherence of the sequence 〈Cα | α < κ〉, since α is a limit ordinal
and β ∈ acc(Cα), we must have Cβ v Cα, so that Cβ = Cα ∩ β. Then,
applying Claim 4.1.1, we have

bαx (β) =
⋃
{bαx (γ ) | γ ∈ dom(bαx )∩β} =

⋃
{bβx (γ ) | γ ∈ dom(bβx )} = bβx .

Since β < α, by induction hypothesis the level Tβ has already been
constructed, and the construction guarantees that we have included the limit
bβx of the sequence bβx into Tβ . But we have just shown that this is exactly
bαx (β), so that bαx (β) ∈ Tβ , as required.

Having defined bαx (β) for all β in the required domain, it is clear that the
sequence bαx defines a cofinal branch through (T � α,⊆), since Cα is club in α,
and that this branch contains x . We now let

bαx =
⋃
{bαx (β) | β ∈ dom(bαx )},

and it is clear that bαx ∈ ακ .
Next, we fix n < ω, and we must prescribe a function value fα(n) ∈ ακ .

CLAIM 4.1.2. The sequence 〈 fβ(n) | β ∈ acc(Cα)〉 is increasing in (T � α,⊆).

Proof. Consider any β1, β2 ∈ acc(Cα) with β1 < β2. Since β2 ∈ acc(Cα),
v-coherence gives Cβ2 = Cα ∩ β2. Since β1 < β2 and β1 ∈ acc(Cα), we must
then have β1 ∈ acc(Cβ2). By property (9) of the induction hypothesis applied to
β2, it follows that fβ1(n) <T fβ2(n), as required.
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Now let
α0 = sup(acc(Cα) ∪ {min(Cα\{0})}).

It is clear from the definition that 0 < α0 6 α, and that α0 = sup(acc(Cα)) if and
only if acc(Cα) 6= ∅. The definition of fα(n) splits into two possibilities:

I α0 = α: In particular, sup(acc(Cα)) = α. By Claim 4.1.2, the sequence
〈 fβ(n) | β ∈ acc(Cα)〉 is increasing, and in this case it is cofinal in (T �α,⊆).
Let

fα(n) =
⋃
{ fβ(n) | β ∈ acc(Cα)}.

It is clear that fα(n) ∈ ακ .

I 0 < α0 < α: From the definition of α0, any point in Cα \ (α0 + 1) must be
in nacc(Cα). Since Cα is club in α > α0, it follows that Cα \ α0 is an
ω-type cofinal subset of α. Enumerate Cα \ α0 as an increasing sequence
〈αm | m < ω〉 cofinal in α, and let

mn = max{m 6 n | 〈 fαi (n) | i 6 m〉 is <T -increasing}.
The maximum necessarily exists, because the set is nonempty (as m = 0
satisfies the defining condition vacuously) and finite. Then let

fα(n) = bαfαmn (n)
.

By αmn ∈ Cα, and property (7) of the induction hypothesis (applied to the
level αmn ), we have

fαmn
(n) ∈ Tαmn

⊆ T � Cα,

and hence fα(n) ∈ ακ is well defined.

Having constructed fα(n), we now claim:

CLAIM 4.1.3. If α0 < α then fα0(n) <T fα(n).

Proof. Referring back to the construction of fα(n), we have

fα0(n) 6T fαmn
(n) by choice of mn

<T bαfαmn (n)
= fα(n) by construction,

as required.

Finally, as promised, we set

Tα = {bαx | x ∈ T � Cα} ∪ { fα(n) | n < ω}.
To verify some of the required properties:
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(1) Each sequence bαx defined a cofinal branch through (T � α,⊆), so that its
limit bαx ∈ ακ .

In case α0 < α, we have (for each n < ω) fα(n) = bαfαmn (n)
∈ ακ .

If α0 = α, then fα(n) is also the limit of a cofinal branch in (T � α,⊆), so it
is in ακ .

(3) For every s ∈ T � α, since Cα is club in α, we can find some δ ∈ Cα such
that ht(s) < δ. Then, applying the induction hypothesis at the level δ, there
is some x ∈ Tδ such that s <T x . Since x ∈ T � Cα, we have constructed
a branch bαx through x and placed its limit bαx into Tα. We then have s <T

x <T bαx , so that this property is satisfied.

(5) Since α is a limit ordinal, we have |α| > ℵ0. Applying the induction
hypothesis, for each β < α we have |Tβ | 6 max{|β|,ℵ0} 6 |α|. Thus

|T � Cα| 6 |T � α| =
∑
β<α

|Tβ | 6 |α| · |α| = |α|.

Since every node of the form bαx is produced from some node x ∈ T � Cα,
and every node of the form fα(n) comes from some n < ω, it follows that

|Tα| 6 |T � Cα| + ℵ0 6 |α| + ℵ0 = |α|,
as required.

(6) This condition essentially summarizes how our construction of bαx was
carried out.

(9) Fix β ∈ acc(Cα) and n < ω. We must show that fβ(n) <T fα(n). Referring
back to the construction of fα(n), there are two cases to check:

I α0 = α: In this case, fα(n) was constructed to be above fβ(n).

I α0 < α: Since β ∈ acc(Cα), in particular acc(Cα) 6= ∅, so that α0 =
sup(acc(Cα)), and it follows that β 6 α0 and (since Cα is club in
α > α0) α0 ∈ acc(Cα). We then have

fβ(n) 6T fα0(n) from Claim 4.1.2
<T fα(n) from Claim 4.1.3,

as required.

(7) Fix n1 < n2 < ω, and we must show that fα(n1) 6= fα(n2). Again, there are
two cases to check:
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I α0 = α: Since sup(acc(Cα)) = α, we find β ∈ acc(Cα) such that 0 <
β < α. Applying the induction hypothesis to β, we get fβ(n1) 6=
fβ(n2). Since β ∈ acc(Cα), property (9) gives us fβ(n1) <T fα(n1)

and fβ(n2) <T fα(n2), and the result follows.

I α0 < α: Applying the induction hypothesis to α0, we get fα0(n1) 6=
fα0(n2). Then, Claim 4.1.3 gives us fα0(n1) <T fα(n1) and fα0(n2) <T

fα(n2), and the result follows.

(8) Fix β < α. Referring back to the construction of fα(n), there are two cases
to check:

I α0 = α: Since sup(acc(Cα)) = α, we find β ′ ∈ acc(Cα) such that
β < β ′ < α. Let

F = {n < ω | fβ(n) <T fβ ′(n)},
so that applying the induction hypothesis to β ′ gives us F ∈ ℱfin

ℵ0
.

Since β ′ ∈ acc(Cα), property (9) gives us fβ ′(n) <T fα(n) for all
n < ω. In particular, for n ∈ F , we have

fβ(n) <T fβ ′(n) <T fα(n),

as required.

I α0 < α: In this case we have identified a sequence 〈αm | m < ω〉 cofinal
in α, so we fix some m < ω such that β < αm . For each natural number
i < m, let

Fi = {n < ω | fαi (n) <T fαm (n)}.
Also let

G = {n < ω | fβ(n) <T fαm (n)} and H = {n < ω | n > m}.
Applying the induction hypothesis to αm , we have Fi ∈ ℱfin

ℵ0
for all

i < m, as well as G, H ∈ ℱfin
ℵ0

. Define

F = G ∩ H ∩
⋂
i<m

Fi .

Clearly, F ∈ ℱfin
ℵ0

as it is the intersection of finitely many sets from
that filter. Now, fix any n ∈ F , and we will show that fβ(n) <T fα(n):
For every i < m we have n ∈ F ⊆ Fi , so that fαi (n) <T fαm (n).
As fαm (n)↓ is a linear order and fαi (n) ∈ Tαi for each i , it follows that
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〈 fαi (n) | i 6 m〉 is<T -increasing. Furthermore, since n ∈ H , we have
n > m. Thus m satisfies the defining properties for membership in the
set whose maximum is mn , so it follows that m 6 mn . In particular, we
then have fαm (n) 6T fαmn

(n). We also have n ∈ G, so that fβ(n) <T

fαm (n). Putting everything together, we have

fβ(n) <T fαm (n) 6T fαmn
(n) <T bαfαmn (n)

= fα(n),

as required.

(10) In this case, α0 < α, so that every fα(n) was defined to be equal to some
bαfαmn (n)

.

Now we let
T =

⋃
α<κ

Tα.

Having built the tree, we now claim:

CLAIM 4.1.4. The tree (T,⊂) is a κ-Souslin tree.

Proof. It is clear that (T,⊂) is a κ-tree. Let A ⊆ T be a maximal antichain. We
will show that |A| < κ , by showing that A ⊆ T � α for some α < κ .

SUBCLAIM 4.1.4.1. For every i < κ , the following set is stationary:

Ai = {β ∈ Ri | A ∩ (T � β) = Sβ is a maximal antichain in T � β}.

Proof. Let i < κ be an arbitrary ordinal, and D ⊆ κ be an arbitrary club. We
must show that D∩ Ai 6= ∅. Put p = {A, T, D}. Using the fact that the sequences
〈Sβ | β < κ〉 and 〈Ri | i < κ〉 satisfy ♦(Hκ), pick ℳ ≺ Hκ+ with p ∈ℳ such
that β =ℳ∩ κ is in Ri , and Sβ = A∩ℳ. Since D ∈ℳ and D is club in κ , we
have β ∈ D. We claim that β ∈ Ai .

For all α < β, by α, T ∈ℳ, we have Tα ∈ℳ, and by ℳ |H |Tα| < κ , we have
Tα ⊆ℳ. So T � β ⊆ℳ. As dom(z) ∈ℳ for all z ∈ T ∩ℳ, we conclude that
T ∩ℳ = T � β. So, Sβ = A∩ (T � β). As Hκ+ |H A is a maximal antichain in T
and T ∩ℳ = T � β, we get that A ∩ (T � β) is maximal in T � β.

In particular, the set A0 is a cofinal subset of κ , so we apply the last part of the
proxy principle to obtain a limit ordinal α < κ such that

sup{β ∈ Cα | succω(Cα \ β) ⊆ A0} = α.
To see that A ⊆ T � α, consider any v ∈ T � (κ \ α), and we will show that

v /∈ A. We have ht(v) > α. Thus we can let v′ = v � α ∈ Tα, so that v′ 6T v.
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SUBCLAIM 4.1.4.2. There are some ᾱ ∈ acc(Cα)∪ {α} and x ∈ T �Cᾱ such that

bᾱx 6T v
′ and sup(nacc(Cᾱ) ∩ A0) = ᾱ.

Proof. Recall that v′ ∈ Tα. Since α is a limit ordinal, by property (11) there are
now two possibilities to consider:

I v′ = bαx for some x ∈ T � Cα: In this case, fix such an x , and let ᾱ = α, and
the subclaim is satisfied.

I v′ = fα(n) for some n < ω: Fix such an n. By our choice of α, we can choose
ε ∈ Cα such that succω(Cα \ ε) ⊆ A0. Define

ᾱ = sup(succω(Cα \ ε)).
It is clear that ᾱ is a limit ordinal, ε < ᾱ 6 α, and ᾱ ∈ acc(Cα) ∪ {α}.
Thus by property (9) we have fᾱ(n) 6T fα(n). Since ᾱ ∈ acc(Cα) ∪ {α},
v-coherence gives us Cᾱ = Cα ∩ ᾱ, so that

sup(acc(Cᾱ)) = sup(acc(Cα ∩ ᾱ)) 6 ε < ᾱ.

Thus by applying property (10) to ᾱ, we must have fᾱ(n) = bᾱx for some
x ∈ T � Cᾱ. Fix such an x . It follows that

bᾱx = fᾱ(n) 6T fα(n) = v′.
Notice that

ᾱ = sup(succω(Cα \ ε) ∩ A0) = sup(nacc(Cᾱ) ∩ A0),

giving the required conclusion.

We now fix ᾱ and x as in Subclaim 4.1.4.2.

SUBCLAIM 4.1.4.3. There is some y ∈ A such that y <T bᾱx .

Proof. Fix β ∈ nacc(Cᾱ) ∩ A0 with ht(x) < β < ᾱ.
Of course, β ∈ dom(bᾱx ), and by construction of bᾱx , we know that bᾱx (β) <T bᾱx .
Since β ∈ A0, we know that Sβ = A ∩ (T � β) is a maximal antichain in T � β.

Since β ∈ nacc(Cᾱ) \ (ht(x)+ 1), we refer back to the construction of bᾱx (β). We
have

bᾱx (β) = anti(bᾱx (β
−), T � (β + 1)).

It is clear that β(T � (β+1)) = β. Since T � (β+1) is normal, and since Sβ is a
maximal antichain in T � β, the set Q = {z ∈ T ∩ βκ | ∃y ∈ Sβ(bᾱx (β

−)∪ y ⊆ z)}
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is nonempty, so bᾱx (β) = min(Q, <φ). Pick y ∈ Sβ such that y ⊆ bᾱx (β). Then
y ∈ Sβ = A ∩ (T � β), and

y <T bᾱx (β) <T bᾱx ,

as required.

Altogether, we have
y <T bᾱx 6T v

′ 6T v.

Since y is an element of the antichain A, the fact that v extends y implies that
v /∈ A. Since v ∈ T � (κ \ α) was arbitrary, we have shown that A ⊆ T � α.

To see that |A| < κ: For each β < α we have |Tβ | < κ . Since A ⊆ T � α and
α < κ = cf(κ), it follows that we have

|A| 6 |T � α| =
∑
β<α

|Tβ | < κ,

as required.
Since A was an arbitrary maximal antichain in (T,⊂), we infer that our tree

has no antichains of size κ .
Any splitting tree with no antichains of size κ also has no chains of size κ . This

completes the proof that (T,⊂) is a κ-Souslin tree.

Property (4) guarantees that T is prolific, while property (5) guarantees that T
is slim.

Properties (7) and (8) guarantee that 〈 fα | α < κ〉 is an injective ℱfin
ℵ0

-ascent
path through T .

THEOREM 4.2. Suppose that κ is a regular uncountable cardinal, U ⊆ <κκ is a
slim downward-closed κ-tree, and P14(κ,v, 1, {κ}) holds.

Then there exists a prolific slim κ-Souslin tree with an injective (ℱfin
ℵ0
,U )-ascent

path.

Proof. We assume that the reader is comfortable with the proof of Theorem 4.1.
Define o : κ → κ by stipulating (using ordinal exponentiation):

o(α) = ωmax{|Uα |,α}+ω.

By passing to an isomorphic slim tree if necessary, we may assume that for all
u ∈ U and all β < dom(u), u(β) < o(β + 1).

We will construct, simultaneously by recursion over α < κ , the levels
〈Tα | α < κ〉 of the tree T as well as the functions 〈 fu | u ∈ U 〉 and the nodes
〈〈bαx | x ∈ T � Cα〉 | α ∈ acc(κ)〉 so that after each stage α, properties (1)–(6) of
the construction in Theorem 4.1 are satisfied, in addition to the following:

https://doi.org/10.1017/fms.2016.34 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.34


A. M. Brodsky and A. Rinot 32

(7) For every u ∈ Uα, fu : ω→ Tα is a function; moreover, if α > 0, then fu is
injective;

(8) For every u ∈ Uα and every β < α,

{n < ω | fu�β(n) <T fu(n)} ∈ ℱfin
ℵ0
;

(9) If α is a limit ordinal and β ∈ acc(Cα), then for every u ∈ Uα,

{n < ω | fu�β(n) <T fu(n)} = ω;

(10) If α is a limit ordinal such that sup(acc(Cα)) < α, then for every n < ω and
every u ∈ Uα there is some x ∈ T � Cα such that

fu(n) = bαx ;

(11) If α is a limit ordinal, then

Tα = {bαx | x ∈ T � Cα} ∪ { fu(n) | u ∈ Uα, n < ω};

(12) For any two distinct nodes u, v from Uα,

{n < ω | fu(n) 6= fv(n)} ∈ ℱfin
ℵ0
.

We have the following instance of the Coherence Claim Template from page 21:

CLAIM 4.2.1. Fix limit ordinals ᾱ < α < κ , and suppose T � α has been
constructed to satisfy the above properties. If Cᾱ = Cα ∩ ᾱ, x ∈ T � Cᾱ, and
bαx � (Cᾱ\ht(x)) has already been constructed, then

bᾱx = bαx � (Cᾱ\ht(x)).

Proof. Follows from property (6), as in the proof of Claim 4.1.1.

The recursive construction proceeds as follows:

Base case, α = 0: As always, let T0 = {∅}. The only element of U0 is the root ∅,
and we define f∅ : ω→ T0 by setting f∅(n) = ∅ for all n < ω. The required
properties are automatically satisfied as there is nothing to check.

Successor ordinal, α = β + 1: In this case, define

Tα = {ta〈i〉 | t ∈ Tβ, i < o(α)}.
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Then, for every u ∈ Uα, we define fu : ω→ Tα by setting, for all n < ω,

fu(n) = fu�β(n)a〈ω · (u(β))+ n〉.
The required properties are easy to verify (for (5) we use the fact that U is
slim).

Limit level, α = supα > 0: We construct bαx ∈ ακ for each x ∈ T � Cα, just as
in Theorem 4.1. Then, we fix u ∈ Uα, and we must construct the function
fu : ω→ ακ .

CLAIM 4.2.2. For all n < ω, the sequence 〈 fu�β(n) | β ∈ acc(Cα)〉 is increasing
in (T � α,⊆).

Proof. Follows from property (9), as in the proof of Claim 4.1.2.

Set
α0 = sup(acc(Cα) ∪ {min(Cα \ {0})}).

Let n < ω be arbitrary. We shall prescribe a function value fu(n) ∈ ακ , by
considering two possibilities:

I α0 = α: By Claim 4.2.2, the sequence 〈 fu�β(n) | β ∈ acc(Cα)〉 is increasing,
and in this case it is cofinal in (T � α,⊆). Let

fu(n) =
⋃
{ fu�β(n) | β ∈ acc(Cα)}.

It is clear that fu(n) ∈ ακ .

I 0 < α0 < α: Enumerate Cα\α0 as an increasing sequence 〈αm | m < ω〉 cofinal
in α, and let

mn = max{m 6 n | 〈 fu�αi (n) | i 6 m〉 is <T -increasing}.
Then, define

fu(n) = bαfu�αmn (n)
.

As fu�αmn
(n) ∈ T � Cα, we have that fu(n) is a well-defined element of ακ .

Having constructed fu(n), we now have the following variant of Claim 4.1.3:

CLAIM 4.2.3. If α0 < α then fu�α0(n) <T fu(n).
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Proof. Referring back to the construction of fu(n), we have

fu�α0(n) 6T fu�αmn
(n) by choice of mn

<T bαfu�αmn (n)
= fu(n) by construction,

as required.

Finally, as promised, we set

Tα = {bαx | x ∈ T � Cα} ∪ { fu(n) | u ∈ Uα, n < ω}.
The required properties are verified just as in the proof of Theorem 4.1,

replacing for β < α, the pair ( fα, fβ) with ( fu, fu�β), modulo the following
exceptions:

(5) As in the proof of Theorem 4.1, we know that |T � Cα| 6 |α|.
Since U is slim and |α| > ℵ0, we have |Uα| 6 |α|. Since every node of the
form bαx is produced from some node x ∈ T �Cα, and every node of the form
fu(n) comes from some u ∈ Uα and some n < ω, it follows that

|Tα| 6 |T � Cα| + |Uα| · ℵ0 6 |α| + |α| · ℵ0 = |α| + |α| = |α|,
as required.

(12) Fix two distinct points u, v ∈ Uα. Since α is a limit ordinal and u, v ∈ ακ ,
we find some β < α such that u � β 6= v � β. Define the following sets:

F1 = {n < ω | fu�β(n) 6= fv�β(n)}
F2 = {n < ω | fu�β(n) <T fu(n)}
F3 = {n < ω | fv�β(n) <T fv(n)}

Applying the induction hypothesis to β, we have F1 ∈ ℱfin
ℵ0

. Property (8)
gives F2, F3 ∈ ℱfin

ℵ0
. Define F = F1 ∩ F2 ∩ F3. Clearly, F ∈ ℱfin

ℵ0
, as it is

the intersection of finitely many sets from the filter. Consider any n ∈ F .
Since n ∈ F1, fu�β(n) and fv�β(n) are distinct (thus incompatible) elements
of Tβ . Since n ∈ F2 ∩ F3, we have fu�β(n) <T fu(n) and fv�β(n) <T fv(n).
It follows that fu(n) 6= fv(n), as required.

CLAIM 4.2.4. The tree T =⋃α<κ Tα is a κ-Souslin tree.

Proof. Just as in Claim 4.1.4, replacing, in the proof of Subclaim 4.1.4.2, the pair
( fα, fᾱ) with ( fu, fu�ᾱ).

Properties (7), (8), and (12) guarantee that 〈 fu | u ∈ U 〉 is an injective
(ℱfin
ℵ0
,U )-ascent path through T .
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4.2. Complete trees. By strengthening the fourth parameter of the principle
P−14, from {κ} to {Eκ

>χ }, for some cardinal χ < κ , we can ensure that the ordinal
α on which the ‘hitting’ action takes place in the course of proving that the tree is
Souslin has large cofinality. Thus, the careful limitation determining which nodes
of limit height α are placed into the tree (as given by property (11) of the recursive
construction in Theorems 4.1 and 4.2) needs to be observed only for ordinals
α ∈ Eκ

>χ . This gives us the flexibility to add as many nodes as we like at any
height α of small cofinality, subject only to the constraint that the tree remain a κ-
tree, that is, |Tα| < κ . In particular, if for every cardinal λ < κ we have λcf(α) < κ ,
then we can add a limit of every branch at level α into T , and if we can do this for
every limit ordinal α ∈ Eκ

<χ then we can ensure that our tree is χ -complete. Of
course we must forgo the slimness of the tree obtained in Theorems 4.1 and 4.2,
but this is obvious, as these are contradictory concepts.

Since, for height α ∈ Eκ
<χ , we will not need the nodes bαx to determine the

contents of Tα, it is tempting to avoid constructing the bαx for such α altogether. It
this a good idea?

This idea would actually be fine if the goal were only to construct a χ -complete
κ-Souslin tree, without requiring an ascent path, because in that case we could
adjust the construction so that in the proof of Subclaim 4.3.1.1 below, the first
option always holds. Moreover, this P14(κ,v, θ, {κ})-based construction would
go through as a P14(κ, χv, θ, {Eκ

>χ })-based construction (cf. Theorem 6.7 below,
as well as [BR16, Section 2]).

However, in the presence of the ascent-path functions, the proof of
Subclaim 4.3.1.1 requires us to have bαx defined at levels ᾱ of countable cofinality,
in particular, for ᾱ ∈ nacc(acc(Cα)) on which the ‘hitting’ action takes place.
Therefore, we shall maintain the construction of bαx even at limit levels of
cofinality < χ .

The next proof will demonstrate that there is a transparent way of transforming
any proxy-based construction of a slim tree, into a construction of a complete
tree. By comparison, more than ten years after Devlin’s paper [Dev83] with
a construction of an ℵ2-Souslin tree admitting an ℱfin

ℵ0
-ascent path, Cummings

[Cum97] gave a construction of such a tree which is moreover ℵ1-complete.

THEOREM 4.3. Suppose that κ is any regular uncountable cardinal, χ < κ is an
infinite cardinal, U ⊆ <κκ is a downward-closed κ-tree, and P14(κ,v, 1, {Eκ

>χ })
holds.

If λ<χ < κ for all λ < κ , then there exists a prolific χ -complete κ-Souslin tree
that admits an injective (ℱfin

ℵ0
,U )-ascent path.

Proof. Most of the proof is the same as the proof of Theorem 4.2.
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Let 〈Cα | α < κ〉 be a witness to P−14(κ,v, 1, {Eκ
>χ }). Let o : κ → κ be some

strictly increasing function with the property that for every α < κ , there exists an
elementary submodelℳ≺ Hκ+ containing α and the provided tree U as elements,
and such that o(α) =ℳ ∩ κ . In particular, for all u ∈ U and all β < dom(u),
u(β) < o(β + 1).

Similarly to the proof of Theorem 4.2, we will construct, simultaneously by
recursion over α < κ , the levels 〈Tα | α < κ〉 of the tree T as well as the functions
〈 fu | u ∈ U 〉 and the nodes 〈〈bαx | x ∈ T �Cα〉 | α ∈ acc(κ)〉 so that after each stage
α of the construction, properties (1)–(4), (6)–(10), and (12) of the construction in
Theorem 4.2 are satisfied, as well as the following:

(5) |Tα| < κ;

(11) (a) If α ∈ Eκ
>χ , then

Tα = {bαx | x ∈ T � Cα} ∪ { fu(n) | u ∈ Uα, n < ω}.
(b) If α ∈ acc(κ)∩ Eκ

<χ , then the limit of every branch through T � α is a
node in Tα.

The recursive construction proceeds just as in the proof of Theorem 4.2, with
the following differences: At successor stages, we use the above function o,
instead of the one from Theorem 4.2. At a limit level α, after constructing bαx ∈ ακ

for each x ∈ T � Cα as well as the function fu : ω → ακ for each u ∈ Uα, the
decision as to which elements of ακ are included in Tα depends further on the
nature of α, as follows:

I cf(α) > χ : In this case, we set

Tα = {bαx | x ∈ T � Cα} ∪ { fu(n) | u ∈ Uα, n < ω}.
I cf(α) < χ: In this case, let Tα consist of the limits of all branches through T �α.

Notice that each fu(n) and each bαx is constructed as the limit of a cofinal
branch through (T � α,⊆), and hence

Tα ⊇ {bαx | x ∈ T � Cα} ∪ { fu(n) | u ∈ Uα, n < ω}.
The required properties are verified just as in the proof of Theorem 4.2, with

the exception of:

(5) I cf(α) > χ : Applying the induction hypothesis, for each β < α we have
|Tβ | < κ . Since α < κ = cf(κ), it follows that

|T � Cα| 6 |T � α| =
∑
β<α

|Tβ | < κ.
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Since U is a κ-tree, |Uα| < κ . Then, since every node of the form bαx is
produced from some node x ∈ T � Cα, and every node of the form fu(n)
comes from some u ∈ Uα and some n < ω, it follows that

|Tα| 6 |T � Cα| + |Uα| · ℵ0 < κ,

as required.

I cf(α) < χ: To bound the number of nodes in Tα, we need a bound on the
number of branches through T � α. Choose a sequence 〈αι | ι < cf(α)〉
cofinal in α. Every branch b through T � α determines a distinct sequence
〈b � αι | ι < cf(α)〉 of nodes, where each b � αι ∈ Tαι . So the number of
branches through T �α is bounded by the number of such sequences, which
is ∏

ι<cf(α)

|Tαι |.

Define
λ = sup

ι<cf(α)
|Tαι |.

Applying the induction hypothesis, for each ι < cf(α) we have |Tαι | < κ .
Since cf(α) 6 α < κ = cf(κ), it follows that λ < κ . Since cf(α) < χ , we
then have ∏

ι<cf(α)

|Tαι | 6
∏
ι<cf(α)

λ = λcf(α) 6 λ<χ < κ,

where the last inequality comes from the arithmetic hypothesis in the
statement of the theorem. Thus the number of branches through T � α is
< κ , so that |Tα| < κ , as required.

The fact that T = ⋃
α<κ Tα is χ -complete is exactly what is provided by

property (11)(b) of the recursion.

CLAIM 4.3.1. The tree (T,⊂) is a κ-Souslin tree.

Proof. Let A ⊆ T be a maximal antichain. By Subclaim 4.1.4.1, the following set
is stationary:

A0 = {β ∈ R0 | A ∩ (T � β) = Sβ is a maximal antichain in T � β}.
So we apply the last part of the proxy principle to obtain an ordinal α ∈ Eκ

>χ

such that
sup{β ∈ Cα | succω(Cα \ β) ⊆ A0} = α.

Let v′ be an arbitrary element of Tα.
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SUBCLAIM 4.3.1.1. There are some ᾱ ∈ acc(Cα)∪ {α} and x ∈ T �Cᾱ such that

bᾱx 6T v
′ and sup(nacc(Cᾱ) ∩ A0) = ᾱ.

Proof. Since α ∈ Eκ
>χ , by property (11)(a) there are now two possibilities to

consider:

I v′ = bαx for some x ∈ T � Cα: In this case, fix such an x , and let ᾱ = α, and
the subclaim is satisfied.

I v′ = fu(n) for some u ∈ Uα and n < ω: Fix such u and n. By our choice of
α, we can choose ε ∈ Cα such that succω(Cα \ ε) ⊆ A0. Define

ᾱ = sup(succω(Cα \ ε)).
It is clear that ᾱ is a limit ordinal, ε < ᾱ 6 α, and ᾱ ∈ acc(Cα) ∪ {α}.
Thus by property (9) we have fu�ᾱ(n) 6T fu(n). By Cᾱ = Cα ∩ ᾱ, we have
sup(acc(Cᾱ)) = sup(acc(Cα∩ᾱ)) 6 ε < ᾱ. Then, by applying property (10)
to ᾱ, we must have fu�ᾱ(n) = bᾱx for some x ∈ T � Cᾱ. Fix such an x . It
follows that

bᾱx = fu�ᾱ(n) 6T fu(n) = v′.

As in the proof of Claim 4.1.4, it then follows that v′ extends some element
y from the antichain A. As v′ was an arbitrary element of Tα, this shows that
A ⊆ T �α. Of course, A was an arbitrary antichain, and hence the splitting κ-tree
(T,⊂) is κ-Souslin.

This completes the proof.

Applying Theorem 4.3 to the special case U =⋃α<κ
α1, we obtain:

COROLLARY 4.4. Suppose that κ is any regular uncountable cardinal, χ < κ is
an infinite cardinal, and P14(κ,v, 1, {Eκ

>χ }) holds.
If λ<χ < κ for all λ < κ , then there exists a prolific χ -complete κ-Souslin tree

with an injective ℱfin
ℵ0

-ascent path.

We remark that the techniques of this section can be used to produce a
slim or complete κ-Souslin tree with an injective (ℱ bd

θ ,U )-ascent path from
P14(κ,v, 1, {κ}), not only for θ = ℵ0, but also for any cardinal θ < κ of countable
cofinality. For the slim tree, one needs to employ the trick of distinguishing small
and large successor ordinals, as is done in the proof of Theorem 5.1 below.

https://doi.org/10.1017/fms.2016.34 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.34


Reduced powers of Souslin trees 39

QUESTION 1. Write D v∗ C if and only if D \ γ v C \ γ for some γ < sup(D).
Can a κ-Souslin tree with an ℱfin

ℵ0
-ascent path be constructed from

P14(κ,v∗, 1, {κ})? If not, how about some simple intermediate relation ℛ such
that v ⊆ ℛ ⊆ v∗?

5. Wider ascent paths

As mentioned in the introduction, a λ+-tree that admits an ℱ bd
θ -ascent path is

nonspecial (and hard to specialize), unless cf(θ) = cf(λ). So, if λ is a singular
cardinal of countable cofinality, then one may be interested in λ+-trees with
an ℱ bd

θ -ascent path for some regular uncountable cardinal θ . In fact, there are
reasons to study ℱ bd

θ -ascent paths for uncountable θ , even for κ-trees where κ is
not a successor cardinal. For instance, a simplified form of a theorem of Lücke
from [Luc17] asserts that the Proper Forcing Axiom (PFA) implies that for every
regular cardinal κ > ℵ2, no κ-Aronszajn tree admits an ℱℵ0 -ascent path, let alone
an ℱ bd

ℵ0
-ascent path.

Therefore, in this section, we shall address the task of constructing κ-Souslin
trees that admit ℱ bd

θ -ascent paths for various values of θ . Of course, whenever
possible, we shall want to obtain ℱfin

θ -ascent paths. To better understand what is
possible and what is not possible, let ν < κ denote two infinite regular cardinals,
and (T, <T ) some κ-Aronszajn tree. An adaptation of the argument of [Fre84,
Theorem 41H] entails that if ν is a supercompact cardinal, then (T, <T ) admits
no ℱ bd

θ -ascent path for every infinite cardinal θ ∈ Eκ
<ν . So, the best one can hope

for in this scenario is the existence of an ℱ bd
θ -ascent path for θ ∈ Eκ

>ν . For this,
we define the following ν-complete filter over θ :

ℱ ν
θ = {Z ⊆ θ | |θ \ Z | < ν}.

Clearly, ℱℵ0
θ = ℱfin

θ . More importantly, ℱ ν
θ projects to a subfilter of ℱ bd

µ , for all
µ ∈ [ℵ0, θ] ∩ cof(> ν). Let us demonstrate how this helps.

By [BR15], P14(λ
+,vν, λ+, {λ+}) is consistent together with ν being

supercompact and, say, λ = ν+ω. By the upcoming Theorem 5.1, this entails
the existence of a λ+-Souslin tree (T,⊂) with an ℱ ν

λ -ascent path. Consequently,
for all θ 6 λ: the tree (T,⊂) admits an ℱ bd

θ -ascent path if and only if cf(θ) > ν.
So the results of this section are sharp.

Coming back to Lücke’s theorem, we mention that the proof of Corollary
1.16 demonstrates the consistency of PFA together with principles of the form
P14(κ,vℵ2, . . .).

The constructions of κ-Souslin trees in this section will be from the principle
P14(κ,ℛ, θ,𝒮), where θ < κ is the width of the ascent path. In the previous
section, we managed to get by, assuming merely P14(κ,ℛ, 1,𝒮). This was
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possible, because the ordinal ᾱ from Subclaim 4.1.4.2 that was responsible for
sealing antichains is of countable cofinality. For θ of uncountable cofinality, we
occur into a situation of mismatch of cofinalities that prevents addressing fα(ι)
for all ι < θ at once. This is resolved by increasing the third parameter to θ , and
handling fα(ι) for each ι < θ separately.

THEOREM 5.1. Suppose that ν < κ are regular infinite cardinals, θ ∈ [ν, κ)
is an infinite cardinal, U ⊆ <κκ is a slim downward-closed κ-tree, and
P14(κ,vν, θ, {κ}) holds.

Then there exists a prolific slim κ-Souslin tree with an injective (ℱ ν
θ ,U )-ascent

path.

Proof. Define o : κ → κ by stipulating (using ordinal exponentiation):

o(α) =
{
ωmax{|Uα |,α}+ω if α < θ;
θmax{|Uα |,α}+ω otherwise.

By passing to an isomorphic slim tree if necessary, we may assume that for all
u ∈ U and all β < dom(u), u(β) < o(β + 1).

We commence, using ♦(Hκ), by fixing the functions φ : κ ↔ Hκ , ψ : κ → Hκ ,
sequences 〈Sβ | β < κ〉, 〈Ri | i < κ〉, well ordering <φ , notation β(T ), and the
functions extend : Hκ × Hκ → Hκ and anti : Hκ × Hκ → Hκ as described in
Section 3. Let 〈Cα | α < κ〉 be a witness to P−14(κ,vν, θ, {κ}). Without loss of
generality, we may assume that Cα = Cα \ (θ + 1) whenever θ < α < κ .

Having weakened the second parameter from v to vν , there is no way to
guarantee that the sequence bαx can always be constructed. Thus, unlike the
constructions from the previous section, we are not going to define bαx for every
limit α < κ and every x ∈ T �Cα. Rather, this time, we shall define bαx only when
α ∈ Γ for a particular stationary subset Γ of κ .

However, the lack of sequences bαx for limit ordinals α /∈ Γ leaves us with
another problem: How do we guarantee normality at these levels? One of the
main uses of the sequences bαx was to ensure the existence of a node at level α
above x (see proof of property (3) in the limit-level construction of Theorem 4.1),
which in turn was necessary in order to apply the Extension Lemma from page 20
during the course of the construction. In the absence of some of the sequences
in this construction, we shall obtain normality by another means: the ascent path.
Instead of constructing a single ascent path 〈 fα | α < κ〉 as in Theorem 4.1, we
shall construct an ascent path 〈 fx,α | α < κ〉 for every node x of the tree, where
each value fx,α(ι) of the ascent path will always be compatible with the node x .
This way, whenever α > ht(x), we shall have fx,α(ι) serving as an extension of x
to level α.

https://doi.org/10.1017/fms.2016.34 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.34


Reduced powers of Souslin trees 41

But the above-mentioned ascent paths serve only to ensure the normality of
the tree, and have nothing to do with the task of injecting an (ℱ ν

θ ,U )-ascent path
through the tree. Nevertheless, it turned out to be convenient to address these tasks
in a uniform way. Therefore, we shall simply construct 〈 fx,u | u ∈ U 〉 for each
x ∈ T .

A last remark before embarking on the construction. As fx,u(ι) is required to
be compatible with x , this means that for every u ∈ U with htU (u) 6 htT (x),
we must obviously have fx,u(ι) = x � htU (u). For this reason, we shall only be
explicitly specifying fx,u for u ∈ U with htU (u) > htT (x).

CLAIM 5.1.1. Define Γ = {α ∈ acc(κ) \ (θ + 1) | (∀β ∈ acc(Cα))Cβ v Cα}.
Then:

(1) If α ∈ Γ and ᾱ ∈ acc(Cα), then ᾱ ∈ Γ ;

(2) Γ ⊇ {α ∈ acc(κ) \ (θ + 1) | otp(Cα) > ν or nacc(Cα) contains a limit
ordinal}.

In particular, Γ covers the stationary set Eκ
>ν \ (θ + 1).

Proof. (1) Fix α ∈ Γ and ᾱ ∈ acc(Cα). We must show that ᾱ ∈ Γ . Clearly ᾱ is a
limit ordinal > θ , and from the fact that α ∈ Γ it follows that Cᾱ v Cα. Consider
any β ∈ acc(Cᾱ). Then also β ∈ acc(Cα), and it follows (again from α ∈ Γ ) that
Cβ v Cα. Then Cβ = Cα∩β = Cα∩ ᾱ∩β = Cᾱ∩β, so that Cβ v Cᾱ, as required
to show that ᾱ ∈ Γ .

(2) Suppose α ∈ acc(κ) \ (θ + 1) and otp(Cα) > ν. Then for all ᾱ ∈ acc(Cα),
we have Cᾱ vν Cα, which must mean that Cᾱ v Cα. Consequently, α ∈ Γ .

Suppose α ∈ acc(κ)\(θ+1) and nacc(Cα) contains a limit ordinal. Then for all
ᾱ ∈ acc(Cα), we have Cᾱ vν Cα, which must mean that Cᾱ v Cα. Consequently,
α ∈ Γ .

As always, the tree T will be a downward-closed subset of <κκ , so that each
level Tα will be a subset of ακ , and the tree relation 6T will simply be extension
of sequences. We will construct, simultaneously by recursion over α < κ , the
levels 〈Tα | α < κ〉 of the tree T as well as the functions 〈〈 fx,u | x ∈ T � α,
u ∈ Uα〉 | α < κ〉 and the nodes 〈〈bαx | x ∈ T � Cα〉 | α ∈ Γ 〉, so that after each
stage α, properties (1)–(5) of the construction in Theorem 4.1 are satisfied, as well
as the following:

(6) If α ∈ Γ , then for every x ∈ T � Cα, bαx ∈ Tα is the limit of the increasing,
continuous, cofinal sequence bαx in (T �α,⊆), satisfying the same properties
(a)–(d) as in the corresponding property (6) of Theorem 4.1;
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(7) For every x ∈ T � α and every u ∈ Uα, fx,u : θ → Tα ∩ x↑ is a function.
Moreover:

(a) if α 6 θ , then fx,u is a constant function;

(b) if α > θ is a successor ordinal, then fx,u is injective.

(8) For every β < α, every x ∈ T � β, and every u ∈ Uα,

{ι < θ | fx,u�β(ι) <T fx,u(ι)} ∈ ℱ ν
θ ;

(9) (a) if α 6 θ , then for every β < α, every x ∈ T � β, and every u ∈ Uα,

{ι < θ | fx,u�β(ι) <T fx,u(ι)} = θ;

(b) if α ∈ Γ and β ∈ acc(Cα), then for every x ∈ T �β and every u ∈ Uα,

{ι < θ | fx,u�β(ι) <T fx,u(ι)} = θ.

(10) If α ∈ Γ satisfies sup(acc(Cα)) < α, and if ι∗ < θ is such that, for some
β < α, ψ[Cα \ β] = {ι∗}, then for every x ∈ T � α and every u ∈ Uα there
is some y ∈ T � Cα such that

fx,u(ι
∗) = bαy .

(11) If α ∈ Γ , then

Tα = {bαx | x ∈ T � Cα} ∪ { fx,u(ι) | x ∈ T � α, u ∈ Uα, ι < θ}.

(12) If α ∈ acc(κ) \ Γ , then

Tα = { fx,u(ι) | x ∈ T � α, u ∈ Uα, ι < θ}.

(13) For any two distinct nodes u, v from Uα,

{ι < θ | f∅,u(ι) 6= f∅,v(ι)} ∈ ℱ ν
θ .

Notice that property (7)(b) is weaker than in previous theorems, in that we do
not require fx,u to be an injection when α is a limit ordinal.

We leave for the reader to verify that the following instance of the Coherence
Claim Template from page 21 holds:
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CLAIM 5.1.2. Fix limit ordinals ᾱ < α both in Γ , and suppose T � α has been
constructed to satisfy the above properties. If Cᾱ = Cα ∩ ᾱ, x ∈ T � Cᾱ, and
bαx � (Cᾱ\ht(x)) has already been constructed, then

bᾱx = bαx � (Cᾱ\ht(x)).

The recursive construction proceeds as follows:

Base case, α = 0: As always, let T0 = {∅}. The required properties are
automatically satisfied as there is nothing to check. We do not define
any ascent-path function here, since our commitment is to define fx,u only
when x ∈ T � α, and of course T � 0 is empty.

Small successor ordinal, α = β + 1 < θ: In this case, define

Tα = {ta〈ι〉 | t ∈ Tβ, ι < o(α)}.
In addition, for every x ∈ T � α and every u ∈ Uα, define the constant
function fx,u : θ → Tα ∩ x↑ by setting, for all ι < θ ,

fx,u(ι) =
{

xa〈u(β)〉 if x ∈ Tβ ;
fx,u�β(ι)

a〈u(β)〉 if x ∈ T � β.

The required properties are easy to verify.

Large successor ordinal, α = β + 1 > θ: In this case, define

Tα = {ta〈ι〉 | t ∈ Tβ, ι < o(α)}.
In addition, for every x ∈ T � α and every u ∈ Uα, define the injective
function fx,u : θ → Tα ∩ x↑ by setting, for all ι < θ ,

fx,u(ι) =
{

xa〈θ · (u(β))+ ι〉 if x ∈ Tβ ;
fx,u�β(ι)

a〈θ · (u(β))+ ι〉 if x ∈ T � β.

The required properties are easy to verify.

Limit level, α /∈ Γ : Since α /∈ Γ , we do not define any nodes of the form bαx .

Let x ∈ T �α and u ∈ Uα be arbitrary. We need to define fx,u : θ → ακ . For
every β0 < β1 in Cα \ (ht(x)+ 1), define

Fβ0,β1
x,u = {ι < θ | ( fx,u�β0(ι) <T fx,u�β1(ι))},

and then let

F∗x,u =
⋂
{F x,u

β0,β1
| β0 < β1 in Cα \ (ht(x)+ 1)}.
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CLAIM 5.1.3. F∗x,u ∈ ℱ ν
θ .

Proof. There are two cases to consider:

I α 6 θ : For every β0 < β1 in Cα \ (ht(x) + 1), applying property (9)(a)
to β1 gives Fβ0,β1

x,u = θ . Thus in fact F∗x,u = θ ∈ ℱ ν
θ in this case.

I α > θ: By property (8), Fβ0,β1
x,u ∈ ℱ ν

θ for every β0 < β1 in Cα\(ht(x)+1).
Since α /∈ Γ , Claim 5.1.1(2) gives otp(Cα) < ν in this case. The result
now follows from the ν-completeness of the filter ℱ ν

θ .

By definition of F∗x,u , for all ι ∈ F∗x,u , the sequence 〈 fx,u�β(ι) | ht(x) ∈ β ∈
Cα〉 is increasing and cofinal in (T � α,⊆). Since θ > ν, F∗x,u is nonempty.
Denote ι∗x,u = min(F∗x,u). Then, define fx,u : θ → ακ by stipulating

fx,u(ι) =
{⋃{ fx,u�β(ι) | ht(x) ∈ β ∈ Cα} if ι ∈ F∗x,u;⋃{ fx,u�β(ι

∗
x,u) | ht(x) ∈ β ∈ Cα} otherwise.

Clearly, fx,u(ι) ∈ ακ for each ι < θ .

Finally, as promised, we set

Tα = { fx,u(ι) | x ∈ T � α, u ∈ Uα, ι < θ}.

To verify some of the required properties:

(1) Each fx,u(ι) is the limit of some cofinal branch through (T � α,⊆), so
it is in ακ .

(3) Since (U,⊂) is a κ-tree, in particular Uα 6= ∅, so by picking an
arbitrary u ∈ Uα, we see that for every x ∈ T � α, we have defined
some node fx,u(0) ∈ Tα above x .

(7)(a) Assuming α 6 θ : By the induction hypothesis, each fx,u�β for β ∈
Cα \ (ht(x) + 1) is a constant function, and by Claim 5.1.3, F∗x,u
is nonempty, so the sequence consisting of their constant values,
〈 fx,u�β(0) | β ∈ Cα \ (ht(x) + 1)〉, must be increasing and cofinal
in (T � α,⊆). Our definition of fx,u in this case then gives, for every
ι < θ ,

fx,u(ι) =
⋃
{ fx,u�β(0) | ht(x) ∈ β ∈ Cα},

so that the function fx,u is constant.
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(5) Just as in Theorem 4.1, we have |T � α| 6 |α|. Since (U,⊂) is slim
and |α| > ℵ0, we have |Uα| 6 |α|. For every pair of nodes x ∈ T � α
and u ∈ Uα, we show that |Im( fx,u)| 6 |α|, by considering two cases:

I α 6 θ : In this case, property (7)(a) tells us that fx,u is a constant
function, so that

|Im( fx,u)| = 1 < |α|.
I α > θ: In this case, we have

|Im( fx,u)| 6 |dom( fx,u)| = θ 6 |α|.
In both cases, we then have

|Tα| 6 |T � α| · |Uα| · sup{|Im( fx,u)| | x ∈ T � α, u ∈ Uα}
6 |α| · |α| · |α| = |α|,

as required.

(8) Fix β < α, x ∈ T �β, and u ∈ Uα. Since sup(Cα) = α, find some β ′ ∈
Cα such that β < β ′ < α. Define F = {ι < θ | fx,u�β(ι) <T fx,u�β ′(ι)}.
Applying the induction hypothesis to u � β ′, we know that F ∈ ℱ ν

θ .
Then also F ∩ F∗x,u ∈ ℱ ν

θ .
For every ι ∈ F∗x,u , since β ′ ∈ Cα, we have defined fx,u(ι) to be above
fx,u�β ′(ι). Thus for any ι ∈ F∩F∗x,u , we have fx,u�β(ι) <T fx,u�β ′(ι) <T

fx,u(ι), as required.

(9)(a) Assuming α 6 θ : Follow the same proof as for (8), but this time we
have F = F∗x,u = θ .

(13) As in property (12) of Theorem 4.2.

Limit level, α ∈ Γ : We begin by constructing bαx ∈ ακ for each x ∈ T �Cα, just as
in Theorem 4.1. Of course, when defining bαx (β) for some β ∈ acc(Cα), it is
crucial that bαx (β) ∈ Tβ . The latter is indeed the case, thanks to Claims 5.1.1
and 5.1.2 and the fact that α ∈ Γ .

Next, we fix x ∈ T � α and u ∈ Uα, and we must construct a function
fx,u : θ → ακ . Fix ι < θ , and let us prescribe a function value fx,u(ι) ∈ ακ .

We shall need the following variant of Claim 4.1.2:

CLAIM 5.1.4. The sequence 〈 fx,u�β(ι) | β ∈ acc(Cα) \ (ht(x) + 1)〉 is
increasing in (T � α,⊆).
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Proof. Consider any β1, β2 ∈ acc(Cα) \ (ht(x) + 1) with β1 < β2. Since
α ∈ Γ and β2 ∈ acc(Cα), it follows that Cβ2 v Cα. Since β1 < β2 and
β1 ∈ acc(Cα), we must then have β1 ∈ acc(Cβ2). Claim 5.1.1 gives β2 ∈ Γ .
By property (9)(b) of the induction hypothesis applied to β2, it follows that
fx,u�β1(ι) <T fx,u�β2(ι), as required.

Let
αx = sup(acc(Cα) ∪ {min(Cα \ (ht(x)+ 1))}).

It is clear from the definition that ht(x) < αx 6 α, that αx ∈ Cα ∪ {α}, and
that αx = sup(acc(Cα)) if and only if ht(x) < sup(acc(Cα)). Notice also
that α∅ coincides with α0 of the proof of Theorem 4.1.

The definition of fx,u(ι) splits into two possibilities:

I αx = α: In particular, sup(acc(Cα)) = α. By Claim 5.1.4, the sequence
〈 fx,u�β(ι) | ht(x) ∈ β ∈ acc(Cα)〉 is increasing, and in this case it is
cofinal in (T � α,⊆), so we let

fx,u(ι) =
⋃
{ fx,u�β(ι) | ht(x) ∈ β ∈ acc(Cα)}.

Clearly, fx,u(ι) ∈ ακ .

I αx < α: In this case, Cα \ αx is an ω-type cofinal subset of α. Let
〈αm

x | m < ω〉 denote the increasing enumeration of Cα \ αx , so that
αx = α0

x .
Let us define fx,u(ι) by considering several possibilities:

II If there exists some m < ω such that ψ(αk
x) = ι whenever

m < k < ω, then let

fx,u(ι) = bαfx,u�αx (ι)
.

II Otherwise, consider the ordinal

m ι = sup{m < ω | 〈 fx,u�αn
x
(ι) | n 6 m〉 is <T -increasing},

and let

fx,u(ι) =
{

bαfx,u�αmι
x
(ι) if m ι < ω;⋃{ fx,u�αn

x
(ι) | n < ω} if m ι = ω.

In all cases, it is clear that fx,u(ι) ∈ ακ , as it is the limit of a cofinal
branch through (T � α,⊆).
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Having constructed fx,u(ι), we now have the following variant of
Claim 4.1.3:

CLAIM 5.1.5. If αx < α then fx,u�αx (ι) <T fx,u(ι).

Proof. Referring back to the construction of fx,u(ι), we see that in all
subcases, either

fx,u�αx (ι) <T bαfx,u�αx (ι)
= fx,u(ι),

or
fx,u�αx (ι) 6T fx,u�αmι

x (ι) <T bαfx,u�αmι
x
(ι) = fx,u(ι),

or
fx,u�αx (ι) <T

⋃
{ fx,u�αn

x
(ι) | n < ω} = fx,u(ι),

so that the required condition is satisfied.

Finally, as promised, we set

Tα = {bαx | x ∈ T � Cα} ∪ { fx,u(ι) | x ∈ T � α, u ∈ Uα, ι < θ}.
To verify some of the required properties:

(1) Each sequence bαx defines a cofinal branch through (T � α,⊆), so that
its limit bαx ∈ ακ .
Each fx,u(ι) is either equal to some bαy or the limit of some other
cofinal branch through (T � α,⊆), so it is in ακ .

(3) As (U,⊂) is a κ-tree, by picking an arbitrary u ∈ Uα, we see that for
every x ∈ T � α, we have defined some node fx,u(0) ∈ Tα above x .

(5) Following the proof of the same property in the case α /∈ Γ , we have

|T � Cα| 6 |T � α| 6 |α|
as well as |Uα| 6 |α|. Since α ∈ Γ , it follows that α > θ . In this case,
every node of the form bαx is produced from some node x ∈ T � Cα,
and every node of the form fx,u(ι) comes from some pair of nodes
x ∈ T � α and u ∈ Uα as well as some ι < θ , so it follows that

|Tα| 6 |T � Cα| + |T � α| · |Uα| · θ 6 |α| + |α| · |α| · |α| = |α|,
as required.
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(9)(b) Fix β ∈ acc(Cα), x ∈ T � β, u ∈ Uα and ι < θ . We must show that
fx,u�β(ι) <T fx,u(ι). Referring back to the construction of fx,u , there
are two cases to check:

I αx = α: In this case, fx,u(ι) was constructed to be above fx,u�β(ι).
I αx < α: Since ht(x) < β ∈ acc(Cα), in particular ht(x) <

sup(acc(Cα)), so that αx = sup(acc(Cα)). Thus β 6 αx and
(since Cα is club in α > αx ) αx ∈ acc(Cα). We then have

fx,u�β(ι) 6T fx,u�αx (ι) from Claim 5.1.4
<T fx,u(ι) by Claim 5.1.5,

as required.

(8) Fix β < α, x ∈ T � β, and u ∈ Uα. Again referring back to the
construction of fx,u , there are two cases to check:

I αx = α: Just as in the proof of property (8) of Theorem 4.1.
I αx < α: In this case we have identified a sequence 〈αm

x | m < ω〉
cofinal in α, so we fix some m < ω such that β < αm

x . For each
natural number n < m, let

Fn = {ι < θ | fx,u�αn
x
(ι) <T fx,u�αm

x
(ι)}.

Also let
G = {ι < θ | fx,u�β(ι) <T fx,u�αm

x
(ι)}.

Applying the induction hypothesis to αm
x , we have Fn ∈ ℱ ν

θ for
all n < m, and also G ∈ ℱ ν

θ . Define

F = G ∩
⋂
n<m

Fn.

If there exists some m < ω and some ι∗ < θ such that
ψ(αk

x) = ι∗ whenever m < k < ω, then replace F with F \ {ι∗}.
(There can be at most one such ι∗.)
Clearly, F ∈ ℱ ν

θ as it is the intersection of finitely many sets
from that filter. Now, fix any ι ∈ F , and we will show that
fx,u�β(ι) <T fx,u(ι): First, by construction of F , it is not the
case that there exists some m < ω such thatψ(αk

x)= ιwhenever
m < k < ω.
Then, for every n < m, we have ι ∈ F ⊆ Fn , so that
fx,u�αn

x
(ι) <T fx,u�αm

x
(ι). As fx,u�αm

x
(ι)↓ is a linear order and

fx,u�αn
x
(ι) ∈ Tαn for each n, it follows that 〈 fx,u�αn

x
(ι) | n 6 m〉
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is <T -increasing. Thus m satisfies the defining property for
membership in the set whose supremum is m ι, so it follows that
m 6 m ι. We also have ι ∈ G, so that fx,u�β(ι) <T fx,u�αm

x
(ι).

Putting everything together, we have

fx,u�β(ι) <T fx,u�αm
x
(ι)6T

{
fx,u�αmι

x (ι) <T bαfx,u�αmι
x
(ι) if m ι < ω;⋃{ fx,u�αn

x
(ι) | n < ω} otherwise,

and the right-hand side of the above equation is equal to fx,u(ι).
So, we are done.

(10) Consider any x ∈ T � α. In this case, αx < α, and there exists some
m < ω such that ψ(αk

x) = ι∗ whenever m < k < ω, so that fx,u(ι
∗)

was defined to be equal to bαfx,u�αx (ι
∗).

Now we let
T =

⋃
α<κ

Tα.

CLAIM 5.1.6. The tree (T,⊂) is a κ-Souslin tree.

Proof. Let A ⊆ T be a maximal antichain, and we will show that A ⊆ T � α for
some α < κ . By Subclaim 4.1.4.1, for every ordinal ι < θ , the set

Aι = Aφ−1(ι)

= {β < κ | ψ(β) = ι and A ∩ (T � β) = Sβ is a maximal antichain in T � β}
is stationary. In particular, Aι ∩ acc(κ) is cofinal in κ . Thus we can apply the last
part of the proxy principle to the sequence 〈Aι ∩ acc(κ) | ι < θ〉 to obtain a limit
ordinal α with θ < α < κ such that for every ι < θ ,

sup{β ∈ Cα | succω(Cα \ β) ⊆ Aι ∩ acc(κ)} = α.

SUBCLAIM 5.1.6.1. α ∈ Γ .

Proof. By the choice of α, we know that α > θ is a limit ordinal, and we can find
β ∈ Cα such that succω(Cα \ β) ⊆ A0 ∩ acc(κ). As succω(Cα \ β) ⊆ nacc(Cα),
we infer that the latter contains a limit ordinal, and so Claim 5.1.1(2) gives
α ∈ Γ .

To see that the antichain A is a subset of T � α, consider any v′ ∈ Tα, and we
will find some y ∈ A ∩ (T � α) compatible with v′.
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SUBCLAIM 5.1.6.2. There are some ι < θ , ᾱ ∈ acc(Cα)∪{α} ⊆ Γ , and x ∈ T �Cᾱ

such that
bᾱx 6T v

′ and sup(nacc(Cᾱ) ∩ Aι) = ᾱ.

Proof. By Subclaim 5.1.6.1 we have α ∈ Γ , so that by property (11) there are
two possibilities to consider:

I v′ = bαx for some x ∈ T � Cα: In this case, fix such an x , set ᾱ = α and the
subclaim is satisfied for any choice of ι < θ .

I v′ = fx,u(ι) for some x ∈ T � α, u ∈ Uα, and ι < θ: Fix such x , u, and ι. By
our choice of α, let us pick ε ∈ Cα with max{θ, ht(x)} < ε such that
succω(Cα \ ε) ⊆ Aι. Let

ᾱ = sup(succω(Cα \ ε)).
Clearly ᾱ ∈ acc(Cα) ∪ {α}. Since α ∈ Γ , property (9)(b) gives us
fx,u�ᾱ(ι) 6T fx,u(ι). Also, it follows from Claim 5.1.1(1) that ᾱ ∈ Γ and
Cᾱ = Cα ∩ ᾱ, so that

Cᾱ \ (ε + 1) = (Cα ∩ ᾱ) \ (ε + 1) = succω(Cα \ ε) ⊆ Aι,

and also
sup(acc(Cᾱ)) = sup(acc(Cα ∩ ᾱ)) 6 ε < ᾱ.

For every β ∈ Aι we have ψ(β) = ι. Thus

ψ[Cᾱ \ (ε + 1)] = ψ[succω(Cα \ ε)] = ψ[Aι] = {ι},
so that by applying property (10) to ᾱ, we must have fx,u�ᾱ(ι) = bᾱx for some
x ∈ T � Cᾱ. Fix such an x . It follows that

bᾱx = fx,u�ᾱ(ι) 6T fx,u(ι) = v′.
Notice that

ᾱ = sup(succω(Cα \ ε) ∩ Aι) = sup(nacc(Cᾱ) ∩ Aι),

giving the required conclusion.

We now fix ι, ᾱ, and x as in Subclaim 5.1.6.2. Then we can find some y ∈ A
such that y <T bᾱx , just as in the proof of Subclaim 4.1.4.3, replacing A0 with Aι.

Altogether, we have
y <T bᾱx 6T v

′.
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Thus we have shown that every v′ ∈ Tα extends some element y of the antichain
A, so it follows that A ⊆ T � α. Consequently, |A| 6 |T � α| < κ , and this shows
that there are no antichains of size κ in the splitting tree (T,⊂). Therefore, it is
κ-Souslin.

Property (4) guarantees that the tree (T,⊂) is prolific, while property (5)
guarantees that it is slim.

Let f∅,∅ : θ → {∅} be the constant function. Then properties (7)(b), (8) and (13)
guarantee that 〈 f∅,u | u ∈ U 〉 forms an injective (ℱ ν

θ ,U )-ascent path through
(T,⊂).

Applying Theorem 5.1 to the special case ν = ℵ0 and U =⋃α<κ
α1, we obtain:

COROLLARY 5.2. Suppose that θ < κ = cf(κ) are any infinite cardinals, and
P14(κ,v, θ, {κ}) holds.

Then there exists a prolific slim κ-Souslin tree with an injective ℱfin
θ -ascent

path.

We now turn to the χ -complete counterpart of Theorem 5.1.

THEOREM 5.3. Suppose that ν < κ are regular infinite cardinals, θ, χ are infinite
cardinals, and P14(κ,vν, θ, {Eκ

>χ }) holds.
Suppose that θ ∈ [ν, κ), λ<χ < κ for all λ < κ , and U ⊆ <κκ is a given

downward-closed κ-tree.
Then, there exists a prolific χ -complete κ-Souslin tree that admits an injective

(ℱ ν
θ ,U )-ascent path.

Proof. Let 〈Cα | α < κ〉 be a witness to P−14(κ,vν, θ, {Eκ
>χ }). Define Γ =

{α ∈ acc(κ) \ (θ + 1) | (∀β ∈ acc(Cα))Cβ v Cα}. Let o : κ → κ be some
strictly increasing function with the property that for every α < κ , there exists an
elementary submodelℳ≺ Hκ+ containing α and the provided tree U as elements,
and such that o(α) =ℳ ∩ κ .

By recursion over α < κ , construct the levels 〈Tα | α < κ〉 of the tree T as well
as the functions 〈〈 fx,u | x ∈ T � α, u ∈ Uα〉 | α < κ〉 and the nodes 〈〈bαx | x ∈
T � Cα〉 | α ∈ Γ 〉 so that after each stage α, properties (1)–(5) of the construction
in Theorem 4.3 together with properties (6)–(10) and (13) of the construction in
Theorem 5.1 are satisfied, as well as the following:

(11) If α ∈ Γ ∩ Eκ
>χ , then

Tα = {bαx | x ∈ T � Cα} ∪ { fx,u(ι) | x ∈ T � α, u ∈ Uα, ι < θ}.
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(12) If α ∈ Eκ
>χ \ Γ , then

Tα = { fx,u(ι) | x ∈ T � α, u ∈ Uα, ι < θ}.

(14) If α ∈ acc(κ) ∩ Eκ
<χ , then the limit of every branch through T � α is a node

in Tα.

By now, it should be clear that the resulting tree T = ⋃α<κ Tα will admit an
injective (ℱ ν

θ ,U )-ascent path. The proof that (T,⊂) is κ-Souslin is the outcome
of modifying the proof of Claim 5.1.6 in the same way that the proof of Claim
4.1.4 was modified in Claim 4.3.1. Finally, the fact that (T,⊂) is χ -complete is
exactly what is provided by property (14) of the recursion.

Applying Theorem 5.3 to the special case ν 6 cf(θ) and U = ⋃
α<κ

α1, we
obtain:

COROLLARY 5.4. Suppose that ν < κ are infinite regular cardinals, θ, χ are
infinite cardinals, θ ∈ Eκ

>ν , and λ<χ < κ for all λ < κ .
If P14(κ,vν, θ, {Eκ

>χ }) holds, then there exists a prolific χ -complete κ-Souslin
tree with an injective ℱ bd

θ -ascent path.

6. Free Souslin trees with ascent paths

In this section, we shall present constructions of (χ, η)-free κ-Souslin trees
from P14(κ,ℛ, θ,𝒮), where θ = κ . Therefore, we note that:

• by [BR15], for every uncountable cardinal λ, ♦ λ entails P14(λ
+,v, λ+,

{Eλ+
cf(λ)});

• by [Rin15a], for λ regular, P14(λ
+,v, λ+, {Eλ+

λ }) does not imply ♦(Eλ+
λ ), let

alone ♦ λ;

• by [Rin15b], for λ singular, ♦ λ is equivalent to �λ + CHλ.

To motivate the arithmetic hypotheses in the statement of the theorems of this
section, we point out that by Lemma A.7 below, if there exists a χ -free κ-Souslin
tree, then λ<χ < κ for all λ < κ .

THEOREM 6.1. Suppose that κ is any regular uncountable cardinal,
P14(κ,v, κ, {Eκ

>χ }) holds, and λ<χ < κ for all λ < κ .
If θ is an infinite cardinal and θ+ < χ , then there exists a prolific slim (χ, θ+)-

free κ-Souslin tree with an injective ℱfin
θ -ascent path.
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Proof. We commence, using ♦(Hκ), by fixing the functions φ : κ ↔ Hκ , ψ :
κ → Hκ , sequences 〈Sβ | β < κ〉, 〈Ri | i < κ〉, well ordering <φ , notation β(T ),
and the functions anti : Hκ × Hκ → Hκ and freeθ+ : Hκ × Hκ × Hκ → Hκ

as described in Section 3. Let 〈Cα | α < κ〉 be a witness to P−14(κ,v, κ, {Eκ
>χ }).

Without loss of generality, Cα = Cα \ {0} for all α > 1.
As always, the tree T will be a downward-closed subset of <κκ , so that each

level Tα will be a subset of ακ , and the tree relation6T will simply be extension of
sequences. We will construct, simultaneously by recursion over α < κ , the levels
〈Tα | α < κ〉 of the tree T , as well as the functions 〈 fα | α < κ〉 and the nodes
〈〈bαx | x ∈ T � Cα〉 | α ∈ acc(κ)〉, so that after each stage α of the construction,
properties (1)–(5) of the construction in Theorem 4.1 are satisfied, as well as:

(6) If α is a limit ordinal, then for every x ∈ T � Cα, bαx ∈ Tα is the limit of
the increasing, continuous, cofinal sequence bαx in (T � α,⊆), satisfying the
following properties:

(1) dom(bαx ) = Cα\ht(x);

(2) bαx (ht(x)) = x ;

(3) for all β ∈ dom(bαx ), bαx (β) ∈ Tβ ;

(4) if β− < β are two consecutive points in dom(bαx ), then letting Ψ (β) =
<κ(T � ((Cα ∪ {0}) ∩ β−)) \ {∅}, we require:

bαx (β) =
{

freeθ+(bαx (β
−), T � (β + 1), σ αβ ) if ψ(β) ∈ Ψ (β);

anti(bαx (β
−), T � (β + 1)) otherwise,

where σ αβ : dom(ψ(β))→ T � {0, β−} is defined by stipulating:

σ αβ (ξ) =
{

bαψ(β)(ξ)(β
−) if ψ(β)(ξ) 6= ∅;

∅ otherwise.

(7) fα : θ → Tα is a function. Moreover:

(a) if α 6 θ , then fα is a constant function;

(b) if α > θ , then fα is injective.

(8) For every β < α,

{ι < θ | fβ(ι) <T fα(ι)} ∈ ℱfin
θ ;
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(9) (a) if α 6 θ , then for every β < α,

{ι < θ | fβ(ι) <T fα(ι)} = θ;

(b) if α is a limit ordinal and β ∈ acc(Cα), then

{ι < θ | fβ(ι) <T fα(ι)} = θ.

(10) If α > θ is a limit ordinal such that sup(acc(Cα)) < α, and if ι∗ < θ is such
that, for some β < α, ψ[Cα \ β] = {ι∗}, then there is some x ∈ T �Cα such
that

fα(ι∗) = bαx .

(11) If α is a limit ordinal, then

Tα = {bαx | x ∈ T � Cα} ∪ { fα(ι) | ι < θ}.

The following instance of the Coherence Claim Template from page 21 shows
how we will ensure that the sequences described in property (6) can always be
constructed:

CLAIM 6.1.1. Fix limit ordinals ᾱ < α < κ such that Cᾱ = Cα ∩ ᾱ. Suppose
T � α has been constructed to satisfy the above properties. Suppose also that, for
every y ∈ T � Cᾱ, bαy � (Cᾱ\ht(y)) has already been constructed. Then for every
x ∈ T � Cᾱ,

bᾱx = bαx � (Cᾱ\ht(x)).

Proof. First, notice that for every x ∈ T � Cᾱ, the sequence on each side of the
equation has domain Cᾱ\ht(x). Next, we will prove, by induction over β ∈ Cᾱ,
that for every x ∈ T � (Cᾱ ∩ (β + 1)), bᾱx (β) = bαx (β). Fix β ∈ Cᾱ, and suppose
that for every x ∈ T � (Cᾱ ∩ β) we have shown that bᾱx � (Cᾱ ∩ β\ht(x)) = bαx �
(Cᾱ∩β\ht(x)). We must show that bᾱx (β) = bαx (β) for every x ∈ T �(Cᾱ∩(β+1)).

Consider the nodes x ∈ Tβ separately. For such x , property (6)(b) gives

bᾱx (β) = x = bαx (β).

It remains to check all nodes x ∈ T � (Cᾱ ∩ β). For all such x , we have
Cᾱ ∩ β\ht(x) 6= ∅. We now consider two cases:

I β ∈ nacc(Cᾱ): Since Cᾱ is a club, β must have an immediate predecessor in
Cᾱ\ht(x), which we call β−. Then β− < β are two consecutive points in
dom(bᾱx ), and also in dom(bαx ).
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II Suppose ψ(β) ∈ <κ(T � ((Cα ∪ {0}) ∩ β−)) \ {∅}: Recall that Cᾱ ∩
β = Cα ∩ β and Cᾱ ∩ β− = Cα ∩ β−. Since the definition of σ αβ
depends only onψ(β) and on values of bαy (β

−) for y ∈ T �(Cα∩β−)=
T � (Cᾱ ∩ β−), it follows from the induction hypothesis that σ αβ = σ ᾱβ .
Consequently, for every x ∈ T � (Cᾱ ∩ β), by property (6)(d) and the
induction hypothesis, we have:

bᾱx (β) = freeθ+(bᾱx (β
−), T � (β + 1), σ ᾱβ )

= freeθ+(bαx (β
−), T � (β + 1), σ αβ ) = bαx (β).

II Otherwise: For every x ∈ T � (Cᾱ ∩ β), by property (6)(d) and the
induction hypothesis, we have,

bᾱx (β)= anti(bᾱx (β
−), T �(β+1))= anti(bαx (β

−), T �(β+1))= bαx (β).

I β ∈ acc(Cᾱ): Then also β ∈ acc(Cα), and by continuity of each sequence and
application of the induction hypothesis, we have, for each x ∈ T � (Cᾱ ∩β),

bᾱx (β) =
⋃
{bᾱx (δ) | δ ∈ Cᾱ ∩ β\ht(x)}

=
⋃
{bαx (δ) | δ ∈ Cᾱ ∩ β\ht(x)} = bαx (β).

The recursive construction proceeds as follows:

Base case, α = 0: As always, let T0 = {∅}. Define f0 : θ → T0 by setting
f0(ι) = ∅ for all ι < θ . The required properties are automatically satisfied
as there is nothing to check.

Successor ordinal, α = β + 1: As in Theorem 4.1, define

Tα = {sa〈ι〉 | s ∈ Tβ, ι < max{ω, α}}.
Then, for the sake of slimness, define fα : θ → Tα by setting, for ι < θ ,

fα(ι) =
{

fβ(ι)a〈0〉 if α < θ;
fβ(ι)a〈ι〉 if θ < α < κ.

The required properties are easy to verify.

Limit level: We begin by constructing bαx for each x ∈ T � Cα.

For each x ∈ T � Cα, we will use Cα to determine a cofinal branch through
(T �α,⊆), containing x , by defining an increasing, continuous sequence bαx
of nodes. The domain of the sequence bαx will be Cα\ht(x).
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We define the values bαx (β) of the sequences by recursion over β ∈ Cα,
simultaneously for all x ∈ T � Cα, where for every β ∈ dom(bαx ) we will
have bαx (β) ∈ Tβ . So we fix β ∈ Cα, and we assume that for every x ∈ T �Cα

we have already defined bαx � (dom(bαx ) ∩ β). We must define the value of
bαx (β) for all x such that β ∈ dom(bαx ), that is, for all x ∈ T � (Cα ∩ (β+1)):

I x ∈ Tβ: We take care of these nodes separately, because for these nodes
we have dom(bαx ) ∩ β = ∅, so that the sequence is just starting here.
Let bαx (β) = x .
It remains to define bαx (β) for all x ∈ T � (Cα ∩ β). For all such x we
have dom(bαx ) ∩ β 6= ∅.

I β ∈ nacc(Cα): Let β− denote the predecessor of β in Cα. For every
x ∈ T � (Cα ∩ β), we have β− ∈ dom(bαx ) ∩ β, so that bαx (β

−) has
already been defined.
The definition of bαx (β) splits into two possibilities:

II ψ(β) ∈ <κ(T � ((Cα ∪ {0}) ∩ β−)) \ {∅}: Define σ αβ as on page
53, and then for every x ∈ T � (Cα ∩ β) let

bαx (β) = freeθ+(bαx (β
−), T � (β + 1), σ αβ ).

Since bαx (β
−) belongs to the normal tree T � (β + 1), we get

from the Extension Lemma (page 20) that bαx (β) is an element
of Tβ extending bαx (β

−).
II Otherwise: For every x ∈ T � (Cα ∩ β), let

bαx (β) = anti(bαx (β
−), T � (β + 1)).

In this case, we get from the Extension Lemma that bαx (β) is an
element of Tβ extending bαx (β

−).

I β ∈ acc(Cα): In this case, for every x ∈ T � (Cα ∩ β) we define as in
previous proofs

bαx (β) =
⋃
{bαx (γ ) | γ ∈ dom(bαx ) ∩ β}.

It is clear that bαx (β) ∈ βκ , and in fact we have bαx (β) ∈ Tβ using
Claim 6.1.1, just as explained in the proof of Theorem 4.1.

We then let
bαx =

⋃
{bαx (β) | β ∈ dom(bαx )},

and it is clear that bαx ∈ ακ .

Next, we shall define a function fα : θ → ακ , by considering several cases:
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I α 6 θ : By property (7)(a) of the induction hypothesis, each fβ for β < α
is a constant function, and by property (9)(a) the sequence consisting
of their constant values, 〈 fβ(0) | β < α〉, is increasing and cofinal in
(T � α,⊆). Thus, we can define the constant function fα : θ → ακ by
setting, for all ι < θ ,

fα(ι) =
⋃
{ fβ(0) | β < α}.

I α > θ: Fix ι < θ , and we must prescribe a function value fα(ι) ∈ ακ .
Let

α0 = sup(acc(Cα) ∪ {min(Cα \ (θ + 1))}).
It is clear from the definition that θ < α0 6 α, and that α0 =
sup(acc(Cα)) if and only if acc(Cα)\(θ+1) 6= ∅. Again, the definition
of fα(ι) splits into two possibilities:
II α0 = α: By replacing n with ι in the proof of Claim 4.1.2, we

see that the sequence 〈 fβ(ι) | β ∈ acc(Cα)〉 is increasing. As
sup(acc(Cα)) = α, it is also cofinal in (T � α,⊆). Therefore, as
in the construction of Theorem 4.1, let

fα(ι) =
⋃
{ fβ(ι) | β ∈ acc(Cα)}.

II θ < α0 < α: Enumerate Cα \ α0 as an increasing sequence
〈αm | m < ω〉 cofinal in α. This time, to define fα(ι), we
consider the following possibilities:
III If there exists some m < ω such that ψ(αk) = ι whenever

m < k < ω, then let

fα(ι) = bαfα0 (ι)
.

Of course, α0 ∈ Cα, thus fα0(ι) ∈ Tα0 ⊆ T �Cα, and hence
fα(ι) ∈ ακ is well defined.

III Otherwise, consider the ordinal

m ι = sup{m < ω | 〈 fαn (ι) | n 6 m〉 is <T -increasing},
and let

fα(ι) =
{

bαfαmι (ι)
if m ι < ω;⋃{ fαn (ι) | n < ω} if m ι = ω.

If m ι < ω, then αmι
∈ Cα, thus fαmι

(ι) ∈ Tαmι
⊆ T � Cα,

and fα(ι) ∈ ακ is well defined. If m ι = ω, then fα(ι) ∈ ακ ,
as it is the limit of a cofinal branch through (T � α,⊆).
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Having constructed fα(ι), we now have the following variant of Claim 4.1.3,
proven in the same way as Claim 5.1.5:

CLAIM 6.1.2. If α0 < α then fα0(ι) <T fα(ι).

Finally, as promised, we set

Tα = {bαx | x ∈ T � Cα} ∪ { fα(ι) | ι < θ}.

To verify some of the required properties:

(3) Just as in Theorem 4.1.

(9) (a) By construction of fα in the case α 6 θ .
(b) Assuming α > θ : Just as in Theorem 4.1, replacing ω with θ

and n with ι.

(7) (a) If α 6 θ , then fα was constructed to be a constant function;
(b) Just as in Theorem 4.1, replacing n1 < n2 < ω with ι1 < ι2 < θ ,

and making sure (in case α0 = α) to choose β > θ .

(8) If α 6 θ , then this is covered by property (9)(a). So we assume α > θ ,
and then the proof is just as in case α ∈ Γ of Theorem 5.1.

(5) Just as in Theorem 4.1, we have |T �Cα| 6 |α|. We show that |{ fα(ι) |
ι < θ}| 6 |α|, by considering two cases:

I α 6 θ : In this case, property (7)(a) tells us that fα is a constant
function, so that

|Im( fα)| = 1 < |α|.
I α > θ: In this case, we have

|Im( fα)| 6 |dom( fα)| = θ 6 |α|.
In both cases, we then have

|Tα| 6 |T � Cα| + |Im( fα)| 6 |α| + |α| = |α|,
as required.

(10) In this case, α0 < α, and there exists some m < ω such thatψ(αk)= ι∗
whenever m < k < ω, so that fα(ι∗) was defined to be equal to bαfα0 (ι

∗).

Now let T =⋃α<κ Tα. Having built the tree, we now investigate its properties.
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CLAIM 6.1.3. The tree (T,⊂) is (χ, θ+)-free.

Proof. Fix any nonzero ordinal τ < χ , any level δ < κ , and consider any sequence
of distinct nodes

〈wξ | ξ < τ 〉 ∈ τTδ.

Let
T̂ =

⊗
ξ<τ

wξ
↑ ⊆ T τ

be the corresponding derived tree.
Each level of T̂ consists of τ -sequences of elements from the corresponding

level of T . The number of such sequences is

|Tα||τ | 6 |Tα|<χ < κ,

using τ < χ and the arithmetic hypothesis in the statement of the theorem. Thus
each level of T̂ has size < κ .

Suppose that A is a maximal θ+-antichain in T̂ . We need to find α < κ such
that A ⊆ T̂ � α. Note that if τ < θ+, then |A| = 1. Thus we may assume that
τ > θ+.

SUBCLAIM 6.1.3.1. For every i < κ , the following set is stationary:

Ai = {β ∈ Ri | A ∩ τ (T � β) = Sβ is a maximal θ+-antichain in T̂ ∩ τ (T � β)}.

Proof. Let i < κ be an arbitrary ordinal, and D ⊆ κ be an arbitrary club. We must
show that D∩ Ai 6= ∅. Put p = {A, T, T̂ , D, τ }. Using the fact that the sequences
〈Sβ | β < κ〉 and 〈Ri | i < κ〉 satisfy ♦(Hκ), pick ℳ ≺ Hκ+ with p ∈ℳ such
that β =ℳ ∩ κ is in Ri , and Sβ = A ∩ℳ. Since τ ∈ℳ, we have β > τ > θ+.
Since D ∈ℳ and D is club in κ , we have β ∈ D. We claim that β ∈ Ai .

For all α < β, by α, T̂ ∈ℳ, we have T̂α ∈ℳ, and by ℳ |H |T̂α| < κ , we
have T̂α ⊆ℳ. So T̂ � β ⊆ℳ. As dom(z) ∈ℳ for all z ∈ T̂ ∩ℳ, we conclude
that T̂ ∩ℳ = T̂ � β = T̂ ∩ τ (T � β). So, Sβ = A ∩ τ (T � β).

Finally, as Hκ+ |H A is a maximal θ+-antichain in T̂ , and T̂∩ℳ= T̂∩τ (T �β),
we get that A ∩ τ (T � β) is a maximal θ+-antichain in T̂ ∩ τ (T � β).

By the preceding subclaim, we can apply the last part of the proxy principle to
the sequence 〈Ai | i < κ〉 to obtain a stationary set

W = {α ∈ Eκ
>χ | ∀i < α[sup{β ∈ Cα | succω(Cα \ β) ⊆ Ai} = α]}.

As Z = {β < κ | <χ (T �β) ⊆ φ[β]} is a club relative to Eκ
>χ , let us fix an ordinal

α ∈ W ∩ Z with α > δ.
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SUBCLAIM 6.1.3.2. A ⊆ T̂ � α.

Proof. Suppose not, and pick some Ev = 〈vξ | ξ < τ 〉 ∈ A \ τ (T � α).
For each ξ < τ , we have ht(vξ ) > α, so that v′ξ = vξ � α is an element of Tα.

Define
I = {ξ < τ | v′ξ = bαx for some x ∈ T � Cα}.

For every ξ ∈ I , fix xξ ∈ T � Cα such that

v′ξ = bαxξ =
⋃
{bαxξ (β) | β ∈ dom(bαxξ )}.

For every ξ ∈ τ \ I , set xξ = ∅.
By cf(α) > χ > τ and sup(Cα) = α, fix a large enough γ ∈ Cα such that
{xξ | ξ < τ } ⊆ T � γ .

Note that since Ev ∈ T̂ , we have that v′ξ is compatible with wξ for all ξ < τ ,
so it follows that xξ is compatible with wξ for all ξ < τ . Let Ex = 〈xξ | ξ < τ 〉.
Evidently, Ex ∈ T̂ ∩ τ (T � ((Cα ∪ {0}) ∩ γ )). Put

i = φ−1(Ex).
By α ∈ Z , we have i < α.

Since i < α, and α ∈ W , we have sup(nacc(Cα) ∩ Ai) = α. So let us fix
β ∈ nacc(Cα) ∩ Ai with max{γ, δ} 6 sup(Cα ∩ β) < β < α. Since β ∈ Ai , we
know that Sβ = A ∩ τ (T � β) is a maximal θ+-antichain in T̂ ∩ τ (T � β).

Write β− = sup(Cα ∩ β) and T̄ = T � (β + 1). Define Eb ∈ τ (T � {0, β−}) by
setting, for every ξ < τ ,

Eb(ξ) =
{

bαxξ (β
−) if ξ ∈ I ;

∅ otherwise.

Notice that Eb(ξ) = ∅ if and only if xξ = ∅ if and only if ξ /∈ I .
By β ∈ Ai ⊆ Ri , we have

ψ(β) = φ(i) = Ex ∈ T̂ ∩ τ (T � ((Cα ∪{0})∩γ )) ⊆ <κ(T � ((Cα ∪{0})∩β−))\{∅}.
Consequently, Eb = σ αβ , and for all x ∈ T � (Cα ∩ β), we have

bαx (β) = freeθ+(bαx (β
−), T � (β + 1), Eb).

Therefore, consider the set

Q = {Ez ∈ τ (T̄ ∩ β(T̄ )κ) | ∃Ey ∈ Sβ(T̄ ) ∩ τ T̄ [∀θ+ξ < τ(Eb(ξ) ∪ Ey(ξ) ⊆ Ez(ξ))]}.
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Clearly, Q is equal to the set

{Ez ∈ τ (Tβ) | ∃Ey ∈ A ∩ τ (T � β)[∀θ+ξ < τ(Eb(ξ) ∪ Ey(ξ) ⊆ Ez(ξ))]}.
Since A ∩ τ (T � β) is a maximal θ+-antichain in T̂ ∩ τ (T � β), and Eb ∈ T̂ ,

we get from the normality of T � (β + 1) that the set Q must be nonempty. Let
Ez = min(Q, <φ).

Recall that Eb(ξ) = ∅ for every ξ ∈ τ \ I . Now, for every ξ ∈ I , we have
Eb(ξ) = bαxξ (β

−) <T bαxξ = v′ξ , so that Eb(ξ) is compatible with wξ , and by δ 6 β−,
it follows that wξ 6T bαxξ (β

−). Since 〈wξ | ξ < τ 〉 is a sequence of distinct nodes
of Tδ, we get that for all ξ ∈ I , {ξ ′ < τ | Eb(ξ) = Eb(ξ ′)} is equal to the singleton
{ξ}. Consequently, for all ξ ∈ I :

bαxξ (β) = Ez(ξ).
Let Ey ∈ A ∩ τ (T � β) be a witness to the choice of Ez. This means that we can

fix some set J ⊆ τ with |τ \ J | 6 θ such that Eb(ξ) ∪ Ey(ξ) ⊆ Ez(ξ) for all ξ ∈ J .
Altogether, for all ξ ∈ (I ∩ J ) we have

Ey(ξ) <T Ez(ξ) = bαxξ (β) <T bαxξ = v′ξ <T Ev(ξ).
Finally, since 〈wξ | ξ < τ 〉 is a sequence of distinct nodes of Tδ, and wξ <T v

′
ξ

for every ξ < τ , it follows that 〈v′ξ | ξ < τ 〉 is a sequence of distinct nodes of Tα.
By α ∈ Eκ

>χ and the construction of Tα (in particular, property (11)), we know
that

{v′ξ | ξ ∈ τ \ I } ⊆ { fα(ι) | ι < θ},
so that |τ \ I | 6 θ . It follows that |τ \ (I ∩ J )| 6 θ < θ+, contradicting the fact
that Ey and Ev are distinct elements of the θ+-antichain A.

Altogether, |A| 6 |T̂ � α| < κ .

CLAIM 6.1.4. The tree (T,⊂) is a κ-Souslin tree.

Proof. We briefly go over the proof of Claim 4.1.4, verifying that all arguments
go through.

Let A ⊆ T be a given maximal antichain. Consequently, for all ι < θ , the
following set is stationary:

Aι = {β < κ | ψ(β) = ι and A ∩ (T � β) = Sβ is a maximal antichain in T � β}.
Hence, we may fix a large enough limit ordinal α < κ such that for every ι < θ ,

sup{β ∈ Cα | succω(Cα \ β) ⊆ Aι} = α.
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To see that A ⊆ T �α, consider any v′ ∈ Tα, and we will find some y ∈ A∩(T �α)
compatible with v′.

Just like in Subclaim 5.1.6.2, an application of property (10) entails ι < θ ,
ᾱ ∈ acc(Cα) ∪ {α}, and x ∈ T � Cᾱ such that

bᾱx 6T v
′ and sup(nacc(Cᾱ) ∩ Aι) = ᾱ.

SUBCLAIM 6.1.4.1. There exists some y ∈ A such that y <T bᾱx .
In particular, there exists some y ∈ A such that y <T v

′.

Proof. Fix β ∈ nacc(Cᾱ)∩ Aι with ht(x) < β < ᾱ. Of course, β ∈ dom(bᾱx ), and
by the construction of bᾱx , we know that bᾱx (β) <T bᾱx . Since β ∈ Aι, we have:

• Sβ = A ∩ (T � β) is a maximal antichain in T � β;

• ψ(β) = ι. In particular, ψ(β) is not an element of <κ(T � ((Cα ∪ {0})) \ {∅}.
Referring back to the construction of bᾱx (β), by β ∈ nacc(Cᾱ) \ (ht(x) + 1), we
have

bᾱx (β) = anti(bᾱx (β
−), T � (β + 1)).

So a verification identical to that of the proof of Claim 4.1.4.3 entails the existence
of some y ∈ Sβ = A ∩ (T � β), such that

y <T bᾱx (β) <T bᾱx .

As bᾱx 6T v
′, we have, in particular, y <T v

′.

Thus we have shown that every v′ ∈ Tα extends some element y of the antichain
A. That is, A ⊆ T � α. As A was an arbitrary maximal antichain, the proof is
complete.

Properties (7)(b) and (8) guarantee that 〈 fα | α < κ〉 is an injective ℱfin
θ -ascent

path through (T,⊂).

QUESTION 2. Can the preceding construction be improved to yield a (χ, θ+)-
free κ-Souslin tree with an injective (ℱfin

θ , X)-ascent path for some κ-Kurepa tree
X ⊆ <κκ?

THEOREM 6.2. Suppose that κ is any regular uncountable cardinal, χ < κ ,
λ<χ < κ for all λ < κ , and P14(κ,v, κ, {Eκ

>χ }) holds.
Then there exists a prolific slim χ -free κ-Souslin tree.
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Proof. The proof is similar to that of Theorem 6.1. We carry out the very same
construction of 〈〈bαx | x ∈ T � Cα〉 | α ∈ acc(κ)〉, but we use free1 instead of
freeθ+ and we do not define the functions 〈 fα | α < κ〉 at all. Therefore, Tα =
{bαx | x ∈ T � Cα} for every limit α < κ . Consequently, in the proof of Subclaim
6.1.3.2, we will have I = J = τ , and hence the proof of Claim 6.1.3 establishes
that the outcome slim tree is (χ, 1)-free. That is, (T,⊂) is a slim χ -free κ-Souslin
tree.

When reading the statement of the next theorem, the reader should keep in mind
that P14(κ,vν, . . .) entails P14(κ,vµ, . . .) for all ν 6 µ < κ . Furthermore, as
ℱ θ
θ = ℱ bd

θ , the case ν = θ of this theorem provides the statement of Theorem 1.8.

THEOREM 6.3. Suppose that ν < κ are any regular cardinals, η is a cardinal
satisfying λ<η < κ for all λ < κ , and U ⊆ <κκ is a given P−14(κ,vν, κ, {Eκ

>η})-
respecting κ-tree.

Let χ = min{η, ν}. If ♦(κ) holds, then for every infinite cardinal θ ∈ [ν, κ),
there exists a prolific χ -free η-complete κ-Souslin tree with an injective (ℱ ν

θ ,U )-
ascent path.

Proof. By ♦(κ) and Fact 3.2, let us fix the functions φ : κ ↔ Hκ , ψ : κ → Hκ ,
sequences 〈Sβ | β < κ〉, 〈Ri | i < κ〉, well ordering <φ , notation β(T ), and the
functions extend : Hκ ×Hκ → Hκ and free1 : Hκ ×Hκ ×Hκ → Hκ as described
in Section 3.

Let § ⊆ κ and 〈bα : (U � Cα) → ακ ∪ {∅} | α < κ〉 witness the fact that
U is P−14(κ,vν, κ, {Eκ

>η})-respecting. In particular, 〈Cα | α < κ〉 is a witness to
P−14(κ,vν, κ, {§ ∩ Eκ

>η}). Without loss of generality, we may assume that Cα =
Cα \ (θ + 1) whenever θ < α < κ .

CLAIM 6.3.1. Define Γ = {α ∈ acc(κ) \ (θ + 1) | (∀β ∈ acc(Cα))Cβ v Cα}.
Then:

(1) If α ∈ Γ and ᾱ ∈ acc(Cα), then ᾱ ∈ Γ ;

(2) Γ ⊇ {α ∈ acc(κ) \ (θ + 1) | otp(Cα) > ν or nacc(Cα) contains a limit
ordinal}.

In particular, Γ covers the stationary set Eκ
>ν \ (θ + 1).

Proof. Just like the proof of Claim 5.1.1.

For every α ∈ acc(κ), β 6 α, and x ∈ <κκ with dom(x) < sup(Cα ∩β), denote

Φα
β (x) = sup(acc(Cα ∩ β) ∪ {min((Cα ∩ β) \ (dom(x)+ 1))}).
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Notice that:

• Φα
α (x) coincides with αx that was defined right after Claim 5.1.4 (provided that

x is placed into the tree T );

• dom(x) < Φα
β (x) 6 sup(Cα ∩ β);

• Φα
β (x) ∈ Cα ∪ {α};

• Φα
β (x) = sup(acc(Cα ∩ β)) if and only if dom(x) < sup(acc(Cα ∩ β)).

As always, the tree T will be a downward-closed subset of <κκ , so that each
level Tα will be a subset of ακ , and the tree relation 6T will simply be extension
of sequences. We will construct, simultaneously by recursion over α < κ , the
levels 〈Tα | α < κ〉 of the tree T as well as the functions 〈〈 fx,u | x ∈ T � α,
u ∈ Uα〉 | α < κ〉 and the nodes 〈〈bαx | x ∈ T � Cα〉 | α ∈ Γ 〉 so that after each
stage α, properties (1)–(14) of the construction in Theorem 5.3 are satisfied, with
the following changes to clauses (6) and (10):

(6) If α ∈ Γ , then for every x ∈ T � Cα, bαx ∈ Tα is the limit of the increasing,
continuous, cofinal sequence bαx in (T � α,⊆), satisfying the following
properties:

(a) dom(bαx ) = Cα\ht(x);

(b) bαx (ht(x)) = x ;

(c) for all β ∈ dom(bαx ), bαx (β) ∈ Tβ ;

(d) if β− < β are two consecutive points in dom(bαx ), then letting Ψ (β) =
<κ(κ × (T � β−)× (U � β−)) \ {∅}, we require:

bαx (β) =
{

free1(bαx (β
−), T � (β + 1), ςαβ ) if ψ(β) ∈ Ψ (β);

extend(bαx (β
−), T � (β + 1)) otherwise,

where ςαβ : dom(ψ(β))→ T � {0, β−} is defined by stipulating:

ςαβ (ξ) =
{

bαϕα(β)(ξ)(β
−) if ϕα(β)(ξ) 6= ∅;

∅ otherwise,

and ϕα(β) : dom(ψ(β))→ T � ((C ∪ {0}) ∩ β) is defined as follows.
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For all ξ ∈ dom(ψ(β)), denote (ι, y, z) = ψ(β)(ξ), and then put:

ϕα(β)(ξ) =



y if (ι, y, z) ∈ (κ \ θ)×
(T � (Cα ∩ β−))× {∅};

fy,bα(z)�Φαβ (y)(ι) if (ι, y, z) ∈ θ × (T � β−)×
(U � (Cα ∩ β−))

& bα(z) �Φα
β (y) ∈ UΦαβ (y);

∅ otherwise.

(10) If α ∈ Γ satisfies sup(acc(Cα)) < α, and if there is some β < α and g ∈
<χ (Hκ×Hκ×Hκ) such that ψ[Cα \β] = {g}, then for every ι < θ such that
(ι, h, h′) ∈ Im(g) for some h, h′, every x ∈ T � (sup(acc(Cα))), and every
u ∈ Uα, we have

fx,u(ι) = bαfx,u�(sup(acc(Cα)))(ι)
.

The following instance of the Coherence Claim Template from page 21 utilizes
the successful interaction of the tree (U,⊂) with the sequence EC .

CLAIM 6.3.2. Fix ordinals ᾱ < α, both in Γ , such that Cᾱ = Cα ∩ ᾱ. Suppose
T � α has been constructed to satisfy the above properties. Suppose also that, for
every y ∈ T � Cᾱ, bαy � (Cᾱ\ht(y)) has already been constructed. Then for every
x ∈ T � Cᾱ,

bᾱx = bαx � (Cᾱ\ht(x)).

Proof. Following the proof of Claim 6.1.1, the differences arise only when β ∈
nacc(Cᾱ), so we focus on that case.

Since Cᾱ is a club, β must have an immediate predecessor in Cᾱ\ht(x), which
we call β−. Then β− and β are two consecutive points in dom(bᾱx ), and also in
dom(bαx ).

I Suppose ψ(β) ∈ <κ(κ × (T � β−)× (U � β−)) \ {∅}: Recall that Cᾱ ∩ β =
Cα∩β and Cᾱ∩β− = Cα∩β−. Notice that the definition ofΦα

β (x) depends
only on dom(x) and Cα ∩ β. In particular, for any y ∈ T � β−,

Φα
β (y) = Φ ᾱ

β (y) 6 sup(Cᾱ ∩ β) = β− < β < ᾱ < α,

and then by Clause (3) of Definition 1.7 we have for any z ∈ U � Cᾱ:

bᾱ(z) �Φ ᾱ
β (y) = (bα(z) � ᾱ) �Φ ᾱ

β (y) = bα(z) �Φα
β (y)
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and hence ϕᾱ(β) coincides with ϕα(β). So, by the induction hypothesis,
ς ᾱβ = ςαβ , and then for every x ∈ T �(Cᾱ∩β), we have, using property (6)(d)
and the induction hypothesis,

bᾱx (β) = free1(bᾱx (β
−), T � (β + 1), ς ᾱβ )

= free1(bαx (β
−), T � (β + 1), ςαβ ) = bαx (β).

I Otherwise: For every x ∈ T � (Cᾱ ∩ β), we have, again using property (6)(d)
and the induction hypothesis,

bᾱx (β) = extend(bᾱx (β
−), T � (β + 1))

= extend(bαx (β
−), T � (β + 1)) = bαx (β).

The recursive construction proceeds as follows:

Base case, successor ordinal, and limit α /∈ Γ : These steps of the construction
are identical to the corresponding steps in Theorem 5.3.

Limit level, α ∈ Γ : We begin by constructing bαx for each x ∈ T � Cα.

For each x ∈ T � Cα, we will use Cα to determine a cofinal branch through
(T �α,⊆), containing x , by defining an increasing, continuous sequence bαx
of nodes. The domain of the sequence bαx will be Cα\ht(x).

We define the values bαx (β) of the sequences by recursion over β ∈ Cα,
simultaneously for all x ∈ T � Cα, where for every β ∈ dom(bαx ) we will
have bαx (β) ∈ Tβ . So we fix β ∈ Cα, and we assume that for every x ∈ T �Cα

we have already defined bαx � (dom(bαx ) ∩ β). We must define the value of
bαx (β) for all x such that β ∈ dom(bαx ), that is, for all x ∈ T � (Cα ∩ (β+1)):

I x ∈ Tβ: We take care of these nodes separately, because for these nodes
we have dom(bαx ) ∩ β = ∅, so that the sequence is just starting here.
Let bαx (β) = x .
It remains to define bαx (β) for all x ∈ T � (Cα ∩ β). For all such x we
have dom(bαx ) ∩ β 6= ∅.

I β ∈ nacc(Cα): Let β− denote the predecessor of β in Cα. For every
x ∈ T � (Cα ∩ β), we have β− ∈ dom(bαx ) ∩ β, so that bαx (β

−) has
already been defined.
The definition of bαx (β) splits into two possibilities:
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II ψ(β) ∈ <κ(κ × (T � β−)× (U � β−)) \ {∅}: Define ςαβ as on
page 64, and then for every x ∈ T � (Cα ∩ β), let

bαx (β) = free1(bαx (β
−), T � (β + 1), ςαβ ).

Since bαx (β
−) belongs to the normal tree T � (β + 1), we get

from the Extension Lemma (page 20) that bαx (β) is an element
of Tβ extending bαx (β

−).
II Otherwise: For every x ∈ T � (Cα ∩ β), let

bαx (β) = extend(bαx (β
−), T � (β + 1)).

In this case, we get from the Extension Lemma that bαx (β) is an
element of Tβ extending bαx (β

−).

I β ∈ acc(Cα): In this case, for every x ∈ T � (Cα ∩ β) we define (just as
in previous theorems)

bαx (β) =
⋃
{bαx (γ ) | γ ∈ dom(bαx ) ∩ β}.

It is clear that bαx (β) ∈ βκ , and in fact we have bαx (β) ∈ Tβ using
Claims 6.3.1 and 6.3.2.

We then let
bαx =

⋃
{bαx (β) | β ∈ dom(bαx )},

and it is clear that bαx ∈ ακ .

Next, we fix x ∈ T � α and u ∈ Uα, and we must construct a function
fx,u : θ → ακ . Fix ι < θ , and let us prescribe a function value fx,u(ι) ∈ ακ .

For notational simplicity, let us write αx for Φα
α (x). Just as in the proof of

Theorem 5.1, the definition of fx,u(ι) splits into two possibilities:

I αx = α: In particular, sup(acc(Cα)) = α. The same proof of Claim 5.1.4
entails that the sequence 〈 fx,u�β(ι) | ht(x) ∈ β ∈ acc(Cα)〉 is
increasing, and by sup(acc(Cα)) = α, it is cofinal in (T � α,⊆),
so we let

fx,u(ι) =
⋃
{ fx,u�β(ι) | ht(x) ∈ β ∈ acc(Cα)}.

Clearly, fx,u(ι) ∈ ακ .

I αx < α: In this case, Cα \ αx is an ω-type cofinal subset of α. Let
〈αm

x | m < ω〉 denote the increasing enumeration of Cα \ αx , so that
αx = α0

x . Let us define fx,u(ι) by considering several possibilities:
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II If there exist some m < ω, a function g ∈ <χ (Hκ × Hκ × Hκ),
and h, h′ ∈ Hκ such that (ι, h, h′) ∈ Im(g), and ψ(αk

x) = g
whenever m < k < ω, then let

fx,u(ι) = bαfx,u�αx (ι)
.

II Otherwise, consider the ordinal

m ι = sup{m < ω | 〈 fx,u�αn
x
(ι) | n 6 m〉 is <T -increasing},

and let

fx,u(ι) =
{

bαfx,u�αmι
x
(ι) if m ι < ω;⋃{ fx,u�αn

x
(ι) | n < ω} if m ι = ω.

In all cases, it is clear that fx,u(ι) ∈ ακ , as it is the limit of a cofinal
branch through (T � α,⊆).

CLAIM 6.3.3. If αx < α then fx,u�αx (ι) <T fx,u(ι).

Proof. As in the proof Claim 5.1.5.

Having constructed bαx ∈ ακ for every x ∈ T � Cα and the function fx,u :
θ → ακ for every x ∈ T � α and every u ∈ Uα, the decision as to which
elements of ακ are included in Tα is exactly as in Theorem 5.3:

Tα =


{ fx,u(ι) | x ∈ T � α, u ∈ Uα, ι < θ}
∪ {bαx | x ∈ T � Cα} if α ∈ Eκ

>χ ∩ Γ ;
{ fx,u(ι) | x ∈ T � α, u ∈ Uα, ι < θ} if α ∈ Eκ

>χ \ Γ ;
{⋃ b | b is a cofinal branch through (T � α,⊆)} if α ∈ Eκ

<χ .

The required properties are verified just as in previous theorems, with the
exception of:

(8) Fix β < α, x ∈ T � β, and u ∈ Uα. Referring back to the construction
of fx,u , there are two cases to check:

I αx = α: Just as in the proof of property (8) of Theorem 4.1.
I αx < α: Define F ∈ ℱ ν

θ as in the proof of the corresponding
property in Theorem 5.1 (with the obvious substitutions).
This time, if there exist some m < ω and a function
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g ∈ <χ (Hκ × Hκ × Hκ) such that ψ(αk
x) = g whenever

m < k < ω, then replace F with

F \ {ι < θ | (ι, h, h′) ∈ Im(g) for some h, h′}.
The subtracted set has size |Im(g)| 6 dom(g) < χ 6 ν. Thus
we still have F ∈ ℱ ν

θ .
Now, fix any ι ∈ F , and we must show that fx,u�β(ι) <T fx,u(ι):
First, by construction of F , it is not the case that there exist some
m < ω, a function g ∈ <χ (Hκ × Hκ × Hκ), and h, h′ ∈ Hκ such
that ψ(αn

x ) = g whenever m < n < ω, and (ι, h, h′) ∈ Im(g).
We then proceed as in the proof of property (8) of Theorem 5.1
to show that fx,u�β(ι) <T fx,u(ι), as required.

(10) Suppose that α ∈ Γ satisfies sup(acc(Cα)) < α, and we can fix some
β < α and g ∈ <χ (Hκ×Hκ×Hκ) such thatψ[Cα \β] = {g}. Consider
any ι < θ such that (ι, h, h′) ∈ Im(g) for some h, h′, any x ∈ T �
(sup(acc(Cα))), and any u ∈ Uα. Since ht(x) < sup(acc(Cα)), we
have αx = sup(acc(Cα)), so that we follow the case αx < α in the
definition of fx,u(ι). In that case, under the given assumptions, we
have defined fx,u(ι) to be equal to bαfx,u�α0

x
(ι), where α0

x = αx , so that
the result follows.

Now, let T =⋃α<κ Tα.

CLAIM 6.3.4. The tree (T,⊂) is a χ -free κ-Souslin tree.

Proof. Fix any nonzero ordinal τ < χ , any level δ < κ , and consider any sequence
of distinct nodes

〈wξ | ξ < τ 〉 ∈ τTδ.

Let
T̂ =

⊗
ξ<τ

wξ
↑ ⊆ T τ

be the corresponding derived tree. We need to show that (T̂ , <T̂ ) is a κ-Souslin
tree.

The tree (T,⊂) is clearly a κ-tree, and by arithmetic considerations we already
met, so is (T̂ , <T̂ ). Let A ⊆ T̂ be a maximal antichain. We will show that A ⊆
T̂ � α for some α < κ .

Now, for each i < κ , the following set is stationary:

Ai = {β ∈ Ri | A ∩ τ (T � β) = Sβ is a maximal antichain in T̂ ∩ τ (T � β)}.
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Thus we can apply the last part of the proxy principle to the sequence
〈Ai ∩ acc(κ) | i < κ〉 to obtain a stationary set

W = {α ∈ Eκ
>η ∩ § | ∀i < α[sup{β ∈ Cα | succω(Cα \ β) ⊆ Ai ∩ acc(κ)} = α]}.

Since this set is a stationary subset of Eκ
>η, it must intersect the (relative) club

subset of Eκ
>η

Z = {β < κ | <χ ((θ + 1)× (T � β)× (U � β)) ⊆ φ[β]}
stationarily often. Thus we can fix an ordinal α ∈ W ∩ Z with α > max{δ, θ}.

SUBCLAIM 6.3.4.1. α ∈ Γ ∩ § and sup(acc(Cα)) = α.

Proof. We have α ∈ Γ just as in the proof of Subclaim 5.1.6.1. By α ∈ W , we
also have α ∈ §.

Towards a contradiction, suppose that α0 = sup(acc(Cα)) is< α. Thus Cα\α0 is
a cofinal subset of α of order-type ω. Then we must be able to fix β1, β2 ∈ Cα \α0

such that succω(Cα \ β1) ⊆ A1 and succω(Cα \ β2) ⊆ A2. But succω(Cα \ β1) and
succω(Cα\β2) share a common tail, while A1∩A2 = ∅. This is a contradiction.

To see that the maximal antichain A is a subset of T̂ � α, consider any
〈v′ξ | ξ < τ 〉 ∈ T̂ ∩ τ (Tα).

Since α ∈ Γ ∩Eκ
>η, property (11) tells us that every node of Tα was constructed

in one of two ways: either it is bαx for some x ∈ T � Cα, or it is fx,u(ι) for some
x ∈ T � α, some u ∈ Uα, and some ι < θ . In particular, each v′ξ is of one of these
forms. We now define a vector g ∈ τ ((θ + 1)× (T � α)× (U �Cα)) to capture the
construction of the components v′ξ . For each ξ < τ , we define g(ξ) as follows:

I If there exists some xξ ∈ T � Cα such that v′ξ = bαxξ , then we let g(ξ) =
(θ, xξ ,∅), where xξ is the <φ-least such element.

I Otherwise, there exist some ιξ < θ , xξ ∈ T � α and uξ ∈ Uα such that
v′ξ = fxξ ,uξ (ιξ ). Since α ∈ §, Clause (1) of Definition 1.7 tells us that we can
find some zξ ∈ U �Cα such that bα(zξ ) = uξ . In this case, we let g(ξ) = (ιξ ,
xξ , zξ ) be the <φ-least such triple.

By cf(α) > η > χ > τ and sup(acc(Cα)) = α, fix a large enough γ ∈ acc(Cα)

such that {xξ | ξ < τ } ⊆ T � γ and {zξ | ξ < τ } ⊆ U � γ . Thus in fact
g ∈ τ ((θ + 1)× (T � γ )× (U � (Cα ∩ γ ))).

Put i = φ−1(g), and it follows from α ∈ Z that i < α. So, by α ∈ W , there
exists some ε ∈ Cα \max{γ, δ} such that succω(Cα \ ε) ⊆ Ai . Fix such an ε, and
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write ᾱ = sup(succω(Cα \ ε)). By Subclaim 6.3.4.1 we cannot have ᾱ = α, and
hence ᾱ ∈ acc(Cα). Since α ∈ Γ , we have ᾱ ∈ Γ and Cᾱ = Cα ∩ ᾱ, so that

Cᾱ \ (ε + 1) = (Cα ∩ ᾱ) \ (ε + 1) = succω(Cα \ ε) ⊆ Ai ⊆ Ri ,

and also (using γ ∈ acc(Cα))

γ 6 sup(acc(Cᾱ)) = sup(acc(Cα ∩ ᾱ)) 6 ε < ᾱ < α.

For every β ∈ Ai ⊆ Ri we have ψ(β) = φ(i) = g. Thus

ψ[Cᾱ \ (ε + 1)] = ψ[succω(Cα \ ε)] = ψ[Ai ] = ψ[Ri ] = {g}.
Fix some β ∈ Cᾱ \ (ε + 1) ⊆ nacc(Cᾱ), and define β− = max(Cᾱ ∩ β). In

particular, ψ(β) = g, and we also have

γ 6 sup(acc(Cᾱ)) = sup(acc(Cα ∩ β)) 6 ε 6 β− < β < ᾱ,

and it follows that for every x ∈ T � γ ,

Φα
β (x) = sup(acc(Cα ∩ β)) = sup(acc(Cᾱ)).

SUBCLAIM 6.3.4.2. For every ξ < τ , we have

bᾱϕᾱ(β)(ξ) <T v
′
ξ .

(The definition of ϕᾱ(β) may be found on page 65.)

Proof. Consider any ξ < τ . We have ht(xξ ) < γ , so that Φα
β (xξ ) = sup(acc(Cᾱ)).

Now, recalling that ψ(β) = g, we consider two possibilities, based on the two
parts in the definition of g(ξ):

I If g(ξ) = (θ, xξ ,∅), then we must have xξ ∈ T � (Cα ∩γ ), and by definition
of the function ϕᾱ(β) in this case we have ϕᾱ(β)(ξ) = xξ , and by the
Coherence Claim 6.3.2 it follows that

bᾱϕᾱ(β)(ξ) = bᾱxξ = bαxξ (ᾱ) <T bαxξ = v′ξ .

I If g(ξ) = (ιξ , xξ , zξ ) for ιξ < θ , then we must have xξ ∈ T � γ and zξ ∈
U � (Cα ∩ γ ), as well as uξ = bα(zξ ) ∈ Uα, let alone uξ � sup(acc(Cᾱ)) ∈
Usup(acc(Cᾱ)). By definition of the function ϕᾱ(β) in this case we have

ϕᾱ(β)(ξ) = fxξ ,uξ �sup(acc(Cᾱ))(ιξ ).
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Since ᾱ ∈ Γ , sup(acc(Cᾱ)) < ᾱ, ψ[Cᾱ \(ε+1)] = {g}, (ιξ , xξ , zξ ) ∈ Im(g),
x ∈ T � γ ⊆ T � (sup(acc(Cα))), and uξ � ᾱ ∈ Uᾱ, we apply property (10)
to ᾱ, obtaining

fxξ ,uξ �ᾱ(ιξ ) = bᾱfxξ ,uξ �(sup(acc(Cᾱ )))(ιξ )
.

Furthermore, since α ∈ Γ and ᾱ ∈ acc(Cα), property (9) gives
fxξ ,uξ �ᾱ(ιξ ) <T fxξ ,uξ (ιξ ). Altogether, it follows that

bᾱϕᾱ(β)(ξ) = bᾱfxξ ,uξ �(sup(acc(Cᾱ )))(ιξ )
= fxξ ,uξ �ᾱ(ιξ ) <T fxξ ,uξ (ιξ ) = v′ξ .

Thus in both cases the subclaim is proven.

Write T̄ = T � (β + 1), and

Eb = 〈bᾱϕᾱ(β)(ξ)(β−) | ξ < τ 〉.
By Subclaim 6.3.4.2, for all ξ < τ , we have

Eb(ξ) <T bᾱϕᾱ(β)(ξ) <T v
′
ξ .

By ψ(β) = i = φ−1(g), we have Eb = ς ᾱβ , and so for all x ∈ T � (Cα ∩ β), we
have

bᾱx (β) = free1(bᾱx (β
−), T � (β + 1), Eb).

Therefore, consider the set

Q = {Ez ∈ τ (T ∩ β(T )κ) | ∃Ey ∈ Sβ(T ) ∩ τT [∀1ξ < τ(Eb(ξ) ∪ Ey(ξ) ⊆ Ez(ξ))]}.
Since β ∈ Ai , Sβ = A ∩ τ (T � β) is a maximal antichain in T̂ ∩ τ (T � β). In

particular, Q is equal to

{Ez ∈ τ (Tβ) | ∃Ey ∈ A ∩ τ (T � β) ∀ξ < τ(Eb(ξ) ∪ Ey(ξ) ⊆ Ez(ξ))}.
As 〈v′ξ | ξ < τ 〉 ∈ T̂ and β− > ε > δ, we get that wξ <T Eb(ξ) for all ξ < τ , so

that Eb ∈ T̂ .
Since A∩τ (T �β) is a maximal antichain in T̂ ∩τ (T �β), and Eb ∈ T̂ , we get from

the normality of T �(β+1) that the set Q must be nonempty. Let Ez = min(Q, <φ).
Since wξ 6T Eb(ξ) for all ξ < τ , and 〈wξ | ξ < τ 〉 is a sequence of distinct nodes
of Tδ, we get that for all ξ < τ , {ξ ′ < τ | Eb(ξ) = Eb(ξ ′)} is equal to the singleton
{ξ}.

Altogether, for all ξ < τ :

bᾱϕᾱ(β)(ξ)(β) = free1(bᾱϕᾱ(β)(ξ)(β
−), T � (β + 1), Eb) = Ez(ξ).
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Let Ey ∈ A∩ τ (T �β) be a witness to the choice of Ez. Then for all ξ < τ we have

Ey(ξ) <T Ez(ξ) = bᾱϕᾱ(β)(ξ)(β) <T bᾱϕᾱ(β)(ξ) <T v
′
ξ ,

as sought.
As A was an arbitrary maximal antichain in (T̂ , <T̂ ), we have established that

it is a κ-Souslin tree. But (T̂ , <T̂ ) was an arbitrary derived tree of (T,⊂), so we
are done.

The fact that (T,⊂) is η-complete is exactly what is provided by property (14)
of the recursion.

Define f∅,∅ : θ → {∅} to be the constant function. Then properties (7)(b), (8)
and (13) guarantee that 〈 f∅,u | u ∈ U 〉 is an injective (ℱ ν

θ ,U )-ascent path through
(T,⊂).

THEOREM 6.4. Suppose that cf(ν) = ν < θ+ < χ < cf(κ) = κ are infinite
cardinals, λ<χ < κ for all λ < κ , and P14(κ,v, κ, {Eκ

>χ }) holds.
Then there exists a prolific ν-free, (χ, θ+)-free, χ -complete κ-Souslin tree with

an injective ℱ ν
θ -ascent path.

Proof. Let 〈Cα | α < κ〉 be a witness to P14(κ,v, κ, {Eκ
>χ }). Without loss of

generality, Cα = Cα \ {0} for all α > 1. By recursion over α < κ , construct the
levels 〈Tα | α < κ〉 of the tree T , as well as the functions 〈 fα | α < κ〉 and the
nodes 〈〈bαx | x ∈ T � Cα〉 | α ∈ acc(κ)〉, in a way that is almost identical to the
construction of Theorem 6.3, but more relaxed in the following senses:

(a) There, the second parameter of the proxy principle was vν , and so, for the
sake of normality, we constructed an ascent path 〈 fx,u | u ∈ U 〉 for each
x ∈ T . Here, we work with v, and we obtain normality by defining bαx for
all α ∈ acc(κ) = Γ . Consequently, it suffices to have 〈 fx,u | u ∈ U 〉 only for
x = ∅.

(b) There, we constructed an (ℱ ν
θ ,U )-ascent path, whereas, here, we merely

want an ℱ ν
θ -ascent path.

Altogether, we shall only construct 〈 fu | u ∈ U 〉, where U = ⋃
α<κ

α1.
Consequently, for every α ∈ Eκ

>χ , letting uα denote the unique element of α1,
we shall have

Tα = {bαx | x ∈ T � Cα} ∪ { fuα (ι) | ι < θ},
and hence the proof of Claim 6.1.3 goes through, establishing that (T,⊂) is
(χ, θ+)-free.
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(c) In the hypothesis of Theorem 6.3, χ was 6 ν. Here, we make them
equal, and use χ for a different purpose. By ‘make them equal’, we mean
that on property (10) from page 65, we restrict our attention to functions
g ∈ <ν(Hκ × Hκ × Hκ).

Consequently, the proof of Claim 6.3.4 establishes that (T,⊂) is ν-free.

(d) There, the fourth parameter of the proxy principle was {Eκ
>η} for some η > χ ,

and the outcome tree was η-complete. Here, we have η = χ .

Consequently, the outcome tree is χ -complete.

As made clear in Sections 4 and 5, to any construction of a slim tree, there is a
counterpart construction of a complete tree, and vice versa. In particular, we have
the following variations of the preceding theorems.

THEOREM 6.5. Suppose that ν < κ are any regular cardinals, χ 6 ν is a cardinal
satisfying λ<χ < κ for all λ < κ , and U ⊆ <κκ is a given slim P−14(κ,vν, κ,
{Eκ
>χ })-respecting κ-tree.
If ♦(κ) holds, then for every infinite cardinal θ ∈ [ν, κ), there exists a prolific

slim χ -free κ-Souslin tree with an injective (ℱ ν
θ ,U )-ascent path.

THEOREM 6.6. Suppose that cf(ν) = ν < θ+ < χ < cf(κ) = κ are infinite
cardinals, λ<χ < κ for all λ < κ , and P14(κ,v, κ, {Eκ

>χ }) holds.
Then there exists a prolific slim ν-free, (χ, θ+)-free, κ-Souslin tree with an

injective ℱ ν
θ -ascent path.

If we do not require the tree to have an ascent path at all, then the arithmetic
constraint on χ along with the stronger fourth parameter {Eκ

>χ } allow us to
weaken v to χv, as explained at the beginning of Subsection 4.2:

THEOREM 6.7. Suppose that κ is any regular uncountable cardinal, χ < κ is
some cardinal satisfying λ<χ < κ for all λ < κ , and P14(κ, χv, κ, {Eκ

>χ }) holds.
Then there exists a prolific χ -complete χ -free κ-Souslin tree.
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Appendix A. Producing a binary tree similar to any given tree

In this short section, we analyse a natural process that, for any given κ-tree
(X, <X ), produces a downward-closed subtree T of <κ2 with great resemblance
to the original one. Note that we do not assume that the tree (X, <X ) is Hausdorff.

A.1. The process. Suppose that κ is a regular uncountable cardinal. Let
(X, <X ) be a κ-tree. As |Xα| < κ for all α < κ , we may recursively find a
sequence of injections 〈πα : Xα → κ | α < κ〉 such that for all α < β < κ ,
sup(Im(πα)) < min(Im(πβ)). Let π = ⋃

α<κ πα. Note that if y, z ∈ X and
y <X z, then π(y) < π(z). So for all δ < κ and x ∈ Xδ, the set of ordinals
[x] = {π(y) | y ∈ X, y <X x} has order-type δ. Fix a bijection ψ : κ → κ × κ .
For all δ < κ and x ∈ Xδ, let

• ux : δ→ [x] be the order-preserving isomorphism;

• tx : δ→ 2, where tx(β) = 1 if and only if there exists (α, γ ) ∈ δ × δ such that
ψ(β) = (α, γ ) and ux(α) = γ .

Consider the club E = {δ < κ | π [X � δ] ⊆ δ & ψ[δ] = δ × δ}, and let

T = {tx � β | β 6 δ, δ ∈ E, x ∈ Xδ}.
Then T is a downward-closed subtree of <κ2. Next, we shall compare (T,⊂)

with (X, <X ).

A.2. The analysis

LEMMA A.1. Suppose x, x ′ ∈ X, and x 6X x ′. Then ux ⊆ ux ′ . If moreover, x,
x ′ ∈ X � E, then tx ⊆ tx ′ .

In particular, Tδ = {tx | x ∈ Xδ} for all δ ∈ E.
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Proof. By transitivity of <X , we have [x ′] ⊇ [x]. Then, by the choice of π , [x ′]
is an end-extension of [x]. Consequently, ux ′ is an end-extension of ux . It follows
that if x, x ′ ∈ X � E , then tx ⊆ tx ′ .

Now, if δ ∈ E and t ∈ Tδ, then there exists some x ′ ∈ X � (E \ δ) such that
t = tx ′ � δ. But then, if x is the unique element of Xδ with x 6T x ′, then tx ⊆ tx ′

and dom(tx) = δ. That is, tx = t .

LEMMA A.2. (T,⊂) is a κ-tree.

Proof. It is clear that {α | Tα 6= ∅} = sup(E) = κ . Fix β < κ , and we must
show that |Tβ | < κ . Let δ = min(E \ β). By construction of T , each node in Tβ
is extended by some node in Tδ. By the previous claim, |Tδ| 6 |Xδ|. Altogether,
|Tβ | 6 |Tδ| 6 |Xδ| < κ .

LEMMA A.3.

(1) If (X, <X ) is normal, then so is (T,⊂);
(2) If (X, <X ) is normal and splitting, then (T � E,⊂) is also splitting.

Proof.

(1) Consider any t ∈ T and ordinal α such that htT (t) < α < κ . We must find
some element of Tα extending t . Let η = htT (t). By Lemma A.1, there exists
x ∈ Xmin(E\η) such that t ⊆ tx . Since E is unbounded in κ , we choose some
δ ∈ E \max{α, htX (x)}. By normality of X , we find some x ′ ∈ Xδ extending
x . Then Lemma A.1 gives tx ⊆ tx ′ . It follows that tx ′ � α ∈ Tα, and

t = tx � η = tx ′ � η ⊆ tx ′ � α,

as required.

(2) Suppose t ∈ T � E . Write α = htT (t), and let δ = min(E \ (α + 1)). By
Lemma A.1, there exists x ∈ Xα such that t = tx . Since (X, <X ) is splitting,
let x0, x1 ∈ Tα+1 be two distinct extensions of x . Since (X, <X ) is normal,
for all i < 2, we may pick yi ∈ Xδ that extends xi . Then t ⊆ tyi ∈ Tδ for all
i < 2. Now, to see that ty0 6= ty1 , write γi = π(xi). Since α + 1 < δ ∈ E ,
we have γi = πα+1(xi) < δ. Since π is injective, γ0 6= γ1. Let β be such that
ψ(β) = (α + 1, γ1). Then β < δ and ty1(β) = 1, while ty0(β) = 0.

https://doi.org/10.1017/fms.2016.34 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.34


Reduced powers of Souslin trees 77

LEMMA A.4. If (X, <X ) has no chains of cardinality κ , then neither does (T,⊂).

Proof. Suppose C is a chain in (T,⊂) of cardinality κ . Let f = ⋃
C , so that

f ∈ κ2, and consider the set B = f −1{1}. Then, put

D = {y ∈ X | ∃(α, β) ∈ κ × B[(α, π(y)) = ψ(β)]}.
We first show that D is a chain in (X, <X ). For this, let y0, y1 be arbitrary

elements of D. For each i < 2, pick (αi , βi) ∈ κ×B such that (αi , π(yi))= ψ(βi).
Pick c ∈ C with dom(c) > max{α0, α1}. Write ε = dom(c). By definition of

T , there exists x ∈ X � (E \ ε) such that c ⊆ tx . Recalling the definition of f , we
have f � ε = c = tx � ε. In particular, tx(βi) = 1 for all i < 2. By definition of tx ,
then, we have ux(αi) = π(yi) for all i < 2. In particular, π(yi) ∈ [x] for all i < 2.
So yi <X x for all i < 2. As (X, <X ) is a tree, y0 and y1 are comparable.

Thus, to get a contradiction it suffices to show that the chain D has cardinality
κ . As π and ψ are injective and κ is regular, this reduces to showing that B is
unbounded in κ . Let α be an arbitrary element of E . We shall find some β > α

and c ∈ C with c(β) = 1.
Let δ = min(E \ (α + 1)). Pick c ∈ C with dom(c) > δ, and then pick

x ∈ X � E such that c ⊆ tx . Let y denote the unique predecessor of x in level
α. Then ux(α) = π(y), say it is γ . Let β be such that ψ(β) = (α, γ ). By α ∈ E ,
we have ψ[α] = α×α, and hence β > α. By δ ∈ E \ (α+1), we have π [Tα] ⊆ δ,
and so from y ∈ Tα, we infer that γ = π(y) < δ. By α < δ and π [δ] = δ× δ, we
altogether infer that α < β < δ. Finally, by c = tx � δ, we have c(β) = tx(β) = 1,
as indeed ψ(β) = (α, γ ) and ux(α) = γ .

LEMMA A.5. Suppose that S ⊆ κ is such that for every antichain A ⊆ X,
{htX (x) | x ∈ A} ∩ S is nonstationary.

Then, for every antichain B ⊆ T , {htT (t) | t ∈ B} ∩ S is nonstationary.

Proof. Suppose that B ⊆ T , and S′ = {htT (t) | t ∈ B}∩S is stationary. By Lemma
A.1, for all α ∈ S′ ∩ E , we may pick xα ∈ Xα such that {txα | α ∈ S′ ∩ E} ⊆ B.
As {htX (xα) | α ∈ S′ ∩ E} is a stationary subset of S, the hypothesis entails the
existence of two ordinals α < β in S′ ∩ E such that xα <X xβ . Then, by Lemma
A.1, txα ⊆ txβ . In particular, B is not an antichain in (T,⊂).

LEMMA A.6. If (X, <X ) has no antichains of cardinality κ , then neither does
(T,⊂).

Proof. Suppose A ⊆ T is an antichain of cardinality κ . We enumerate A as
{t i | i < κ}. For each i < κ , we must have t i = txi � βi for some xi ∈ X � (E \ βi),
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where βi = htT (t i). For i < j < κ , t i and t j are incomparable elements of the
antichain A, and hence txi and tx j are incomparable. In particular, t i 7→ xi is one-
to-one, and {xi | i < κ} has size κ . As (X, <X ) has no antichain of size κ , we may
pick i < j < κ such that xi and x j are comparable. But then, by Lemma A.1, txi

and tx j are comparable. This is a contradiction.

LEMMA A.7. Suppose (X, <X ) is a (χ, η)-free κ-Souslin tree (for example, η =
1).

If λ<η < κ for all λ < κ , then:

(1) λ<χ < κ for all λ < κ;

(2) (T,⊂) is a (χ, η)-free κ-Souslin tree.

Proof. (1) By Lemma 2.4, let D ⊆ E be a club such that (X � D, <X ) is normal
and splitting.

CLAIM A.7.1 (Kurepa, see [Kan03, Proposition 7.9]). For every y ∈ X � D and
cardinal µ < κ , there exists some β < κ such that |Xγ ∩ y↑| > µ whenever
β 6 γ < κ .

Proof. Let y and µ be as in the hypothesis. Since otp(D \ htX (y)) = κ , we may
choose some β ∈ D such that otp((D \ htX (y)) ∩ β) > µ. Pick z ∈ Xβ with
y <X z. Since z↓ is linearly ordered by <X , we may find {yi | i < µ} ⊆ X � D
with y0 = y that is <X -increasing below z. Since (X � D, <X ) is splitting, for all
i < µ, let us pick xi ∈ XhtX (yi+1) that extends yi and is distinct from yi+1. Then
{xi | i < µ} ⊆ X � (D ∩ β) is an antichain above y. Finally, given γ < κ with
γ > β, by normality of (X � D, <X ), we may pick {zi | i < µ} ⊆ Xγ such that
xi <X zi for all i < µ. In particular, |Xγ ∩ y↑| > |{zi | i < µ}| = µ.

Towards a contradiction, suppose that there exist λ < κ and τ < χ such that
λτ > κ . Let λ < κ be the least cardinal for which there exists τ < χ satisfying
λτ > κ . Then, let τ < χ be the least cardinal such that λτ > κ . In particular,
µ = λ<τ is < κ , and η 6 τ < χ . By Claim A.7.1, let us find an ordinal β ∈ D
such that |Xβ |> τ , and then pick a sequence 〈yξ | ξ < τ 〉 of distinct elements from
Xβ . Next, by Claim A.7.1, find a large enough γ < κ such that |Xγ ∩ yξ↑| > µ
for all χ < τ . For any ξ < τ , pick an injection ψξ : λξ → Xγ ∩ yξ↑.

Consider the derived tree X̂ = ⊗
ξ<τ yξ↑. For every function h ∈ τλ, define

Exh : τ → Xγ by stipulating

Exh(ξ) = ψξ (h � ξ).
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Then {Exh | h ∈ τλ} is a collection of λτ many nodes of the γ th level of X̂ with
the property for any two distinct h, h′ ∈ τλ, the set {ξ < τ | Exh(ξ) = Exh′(ξ)} has
size < τ . Recalling that λτ > κ and τ > η, we have obtained a contradiction to
the hypothesis that (X, <X ) is (χ, η)-free.

(2) Suppose that 〈wξ | ξ < τ 〉 is a sequence of< χ many distinct elements from
Tα, for some α < κ , and consider the corresponding derived tree T̂ =⊗ξ<τ wξ

↑.
Suppose that {Et i | i < κ} is the injective enumeration of some η-antichain subset
of T̂ . Let δ = min(E \ α). By discarding an initial segment, we may assume that
htT̂ (Et i) > δ for all i < κ .

As in the proof of Lemma A.6, for all i < κ and ξ < τ , we pick xi,ξ ∈ X � E
such that Et i(ξ) ⊆ txi,ξ , and then infer that {〈xi,ξ | ξ < τ 〉 | i < κ} is a κ-sized subset
of X τ which forms an η-antichain. But this does not yet contradict anything, so
we continue.

For each i < κ and ξ < τ , let vi,ξ denote the unique element of Xδ that is
6X xi,ξ . Note that if ξ < ζ < τ , then vi,ξ 6= vi,ζ . Indeed, otherwise, we would
get txi,ξ � δ = tvi,ξ = tvi,ζ = txi,ζ � δ, contradicting the fact that wξ ⊆ txi,ξ � δ and
wξ ′ ⊆ txi,ξ ′ �δ. By |Xδ| < κ and Clause (1), there must exist 〈vξ | ξ < τ 〉 and some
I ∈ [κ]κ such that vi,ξ = vξ for all ξ < τ and i ∈ I . So {〈xi,ξ | ξ < τ 〉 | i ∈ I }
forms a κ-sized η-antichain subset of the derived tree

⊗
ξ<τ vξ

↑, contradicting the
hypothesis that (X, <X ) is (χ, η)-free.

LEMMA A.8. Suppose that ℱ is a collection of sets over a cardinal θ .

(1) If ℱ is upward-closed, then whenever (X, <X ) admits an ℱ -ascent path, so
does (T,⊂);

(2) If ℱ is a filter, then whenever (X, <X ) admits an injective ℱ -ascent path, so
does (T,⊂).

Proof.

(1) Suppose Ef = 〈 fα | α < κ〉 is an ℱ -ascent path through (X, <X ). We need to
construct an ℱ -ascent path Eh = 〈hα | α < κ〉 through (T,⊂). Note that since
ℱ is an upwards-closed family over θ , for all α < κ , we have dom( fα) =⋃

ℱ = θ . Thus, for every α < κ , we construct the function hα : θ → Tα
as follows: First, let α+ = min(E \ α). Then, for every i < θ , let hα(i) =
t fα+ (i) � α. Since fα+(i) ∈ Xα+ where α+ ∈ E , and α 6 α+, it is clear that
hα(i) ∈ Tα for every i < θ .

Let us check that Eh really is an ℱ -ascent path through (T,⊂). Consider
α < β < κ . Let α+ = min(E \ α) and β+ = min(E \ β), so that α+ 6 β+.
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Consider the set

Aα,β = {i < θ | fα+(i) 6X fβ+(i)}.

Since Ef is an ℱ -ascent path through (X, <X ), we must have Aα,β ∈ ℱ . Then:

• hα(i) 6T t fα+ (i) 6T t fβ+ (i) for all i ∈ Aα,β , recalling Lemma A.1;

• hβ(i) 6T t fβ+ (i) for all i < θ .

So for all i ∈ Aα,β , hα(i) and hβ(i) are both 6T t fβ+ (i), and hence they are
compatible. By α 6 β, then:

Aα,β ⊆ {i < θ | hα(i) 6T hβ(i)}.

This shows that if ℱ is upward-closed, then Eh is an ℱ -ascent path through
(T,⊂).

(2) Suppose Ef = 〈 fα | α < κ〉 is an injective ℱ -ascent path through (X, <X ).
We will show that Eh as constructed in part (1) really is an injective ℱ -ascent
path through (T,⊂).
Choose some α < κ and B1 ∈ ℱ such that fα � B1 is injective. Consider any
δ ∈ E \ (α + 1), and set:

B2 = {i < θ | fα(i) <X fδ(i)}.
Then B2 ∈ ℱ , and we will show that hδ � (B1 ∩ B2) is injective.

Consider any distinct i, j ∈ B1 ∩ B2. By α < δ, it follows that

u fδ(i)(α) = π( fα(i)) 6= π( fα( j)) = u fδ( j)(α).

Letting β = ψ−1(α, π( fα(i)), we have β < δ (since δ ∈ E), and since
fδ(i) 6= fδ( j), we have

hδ(i)(β) = t fδ(i)(β) = 1 6= 0 = t fδ( j)(β) = hδ( j)(β),

and it follows that hδ(i) 6= hδ( j).

Consequently, the map hδ � (B1 ∩ B2) is injective. Thus, if ℱ is a filter, then
hδ is injective on a set from ℱ , showing that Eh is an injective ℱ -ascent path
through (T,⊂).
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