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Abstract
Let H be a stratum of translation surfaces with at least two singularities, let 𝑚H denote the Masur-Veech measure
on H, and let 𝑍0 be a flow on (H, 𝑚H) obtained by integrating a Rel vector field. We prove that 𝑍0 is mixing of
all orders, and in particular is ergodic. We also characterize the ergodicity of flows defined by Rel vector fields, for
more general spaces (L, 𝑚L), whereL ⊂ H is an orbit-closure for the action of 𝐺 = SL2 (R) (i.e., an affine invariant
subvariety) and 𝑚L is the natural measure. These results are conditional on a forthcoming measure classification
result of Brown, Eskin, Filip and Rodriguez-Hertz. We also prove that the entropy of 𝑍0 with respect to any of the
measures 𝑚L is zero.

1. Introduction

Let H be a stratum of area-one translation surfaces, and let 𝐺
def
= SL2 (R). There is a G-invariant finite

measure 𝑚H on H known as the Masur-Veech measure, and the dynamics of the G-action on (H, 𝑚H)

have been intensively studied in recent years and are intimately connected to many problems in geometry
and ergodic theory; see, for example, [MaTa, Zo]. Suppose that surfaces in H have k singularities, where
𝑘 ≥ 2. Then there is a 𝑘 − 1-dimensional foliation of H, known as the real Rel foliation. A precise
definition of the foliation and some of its properties will be given below in §2.2. Loosely speaking, two
surfaces are in the same real Rel leaf if one can be obtained from the other by a surgery in which singular
points are moved with respect to each other in the horizontal direction without otherwise changing the
geometry of the surface. A natural question, which we address here, is the ergodic properties of this
foliation. Most of our results below rely on an unpublished result of Brown, Eskin, Filip and Rodriguez-
Hertz, which we refer to as Statement A and discuss in §5.

As we review in §2.2, by labeling the singularities and removing a set of leaves of measure zero, we
can think of the real Rel leaves as being the orbits of an action of a group Z on H, where 𝑍 � R𝑘−1, and
the restriction of this action to any one-dimensional subgroup of Z defines a flow. Our first main result
is the following.

Theorem 1.1. Assume Statement A. Let H be a connected component of a stratum H(𝑎1, . . . , 𝑎𝑘 ) with
all 𝑎𝑖 > 0 (i.e., no marked points). Let 𝑚H be the Masur-Veech measure on H, let 𝑍 � R𝑘−1 be the
corresponding action given by translation along the leaves of the real Rel foliation, and let 𝑍0 ⊂ 𝑍 be
any one-dimensional connected subgroup of Z. Then the 𝑍0-flow on (H, 𝑚H) is mixing of all orders
(and in particular, ergodic).

The definition of mixing of all orders is given in §3.3. For purposes of this introduction, it is enough
to note that it implies ergodicity of any nontrivial element. Note that when H has marked points, there

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fmp.2024.6 Published online by Cambridge University Press

doi:10.1017/fmp.2024.6
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fmp.2024.6&domain=pdf
https://doi.org/10.1017/fmp.2024.6


2 J. Chaika and B. Weiss

will be subgroups 𝑍0 which only move the marked points on surfaces without otherwise changing the
geometry, and the conclusion of Theorem 1.1 will not hold. This is the only obstruction to generalizing
our results to strata with marked points; see Theorem 8.1.

The proof of Theorem 1.1, as well as most of the other results of this paper, relies crucially on
measure-rigidity results of Eskin, Mirzakhani and Mohammadi [EM, EMM] and further forthcoming
work extending these results, which we will describe in §5.

Theorem 1.1 improves on the results of several authors. In those results, ergodicity for the full
Rel foliation was studied. The full Rel foliation (also referred to as the ‘kernel foliation’, ‘isoperiodic
foliation’ or ‘absolute period foliation’) will also be defined in §2.2. Its leaves are of dimension 2(𝑘−1) –
that is, twice the dimension of the real Rel leaves. Loosely speaking, two surfaces are in the same leaf
for this foliation if one can be obtained from the other by moving the singularities (without otherwise
affecting the geometry of the surface). That is, we relax the hypothesis that points can only be moved
horizontally. The first ergodicity results for the full Rel foliation were obtained by McMullen [McM],
who proved ergodicity in the two strata H(1, 1) and H(1, 1, 1, 1). Subsequently, Calsamiglia, Deroin
and Francaviglia [CDF] proved ergodicity in all principal strata, and Hamenstädt [Ham] reproved their
result by a simpler argument. Recently, Winsor [Wi1] proved ergodicity for most of the additional strata
and, in [Wi2], showed that there are dense orbits for the 𝑍0-flow, for any 𝑍0 as in Theorem 1.1. Note
that ergodicity for a foliation is implied by ergodicity for any of its subfoliations, and that ergodicity
implies the existence of dense leaves, and thus Theorem 1.1 generalizes all of these results. Also note
that full Rel is a foliation which is not given by a group action, and the notions of mixing and multiple
mixing do not make sense in this case.

The papers [McM, CDF] go beyond ergodicity and obtain classifications of full Rel closed leaves
and leaf-closures in their respective settings. We suspect that there is not a reasonable classification of
real Rel leaf-closures; indeed, it is already known (see [HW]) that there are real Rel trajectories that
leave every compact set never to return.

The strata H support other interesting measures for which similar questions could be asked. Namely,
by work of Eskin, Mirzakhani and Mohammadi [EM, EMM], for any 𝑞 ∈ H, the orbit-closure L def

= 𝐺𝑞
is the support of a unique smooth G-invariant measure which we denote by 𝑚L. Let 𝑍L be the subgroup
of Z leaving L invariant. Then 𝑍L also preserves 𝑚L and for many choices of L, we have dim 𝑍L > 0. In
these cases, for any closed connected 𝑍1 ⊂ 𝑍L, there is a complexification ℜ1, which gives a foliation of
L whose leaves ℜ1(𝑞) have dimension 2 dim 𝑍1 (see §2.2). The leaves ℜ1(𝑞) have a natural translation
structure, and this induces a natural locally finite translation-invariant measure on each leaf. With this
terminology, we can now state the main result of this paper:

Theorem 1.2. Assume Statement A. Let L be a G-orbit closure, and let 𝑚L, 𝑍L be as above, where
dim 𝑍L > 0. Let 𝑧0 be a nontrivial element of 𝑍L, and let 𝑍0 = spanR(𝑧0). Then either

(1) The action of 𝑍0 on (L, 𝑚L) is mixing of all orders (and in particular, 𝑧0 acts ergodically); or
(2) there is an intermediate closed connected subgroup 𝑍1 so that 𝑍0 ⊂ 𝑍1 ⊂ 𝑍L, and the complexifi-

cation ℜ1 of 𝑍1 satisfies
• for every 𝑞 ∈ L, the leaf ℜ1(𝑞) is closed, and
• for 𝑚L-a.e. q, ℜ1(𝑞) is of finite volume with respect to its translation-invariant measure, and

𝑍0𝑞 = ℜ1(𝑞).

Example 1.3 (Branched covers). Using covering constructions, it is not hard to find examples for which
Case (2) above holds. Namely, suppose H = H(𝑎1, . . . , 𝑎𝑘 ) is a connected component of a stratum and
H′ = H(𝑎1, . . . , 𝑎𝑘 , 0) is the space obtained from H by marking an additional nonsingular point on
every surface in H. Thus, we can write every surface in H′ as a pair (𝑞, 𝑝), where 𝑞 ∈ H and p is a
nonsingular point on the underlying surface 𝑀𝑞 . We let L be the Hurwitz space of all surfaces obtained
as branched covers of 𝑀𝑞 a fixed topolgicial type, branched only over p, for surfaces (𝑞, 𝑝) ∈ H′, and
let 𝑍0 be the subspace of 𝑍L consisting of deformations which move p horizontally on 𝑀𝑞 relative to the
other singular points, without affecting the periods of paths between other singular points. In this case,
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we have 𝑍0 = 𝑍1, ℜ1 (𝑞) is naturally isomorphic to 𝑀𝑞 , with singular points removed, the translation
invariant measure on ℜ1(𝑞) is the natural measure on 𝑀𝑞 , and we will have ℜ1(𝑞) = 𝑍0𝑞 whenever the
horizontal direction is minimal on 𝑀𝑞 .

By Theorem 1.2, in order to establish ergodicity of real Rel subfoliations on G-orbit-closures, it is
enough to rule out Case (2). We will prove Proposition 7.1, which provides a simple way to achieve this,
using cylinder circumferences of surfaces in L. Theorems 1.1 and 8.1 are deduced from Theorem 1.2
using Proposition 7.1.

The following statement is an immediate consequence of Theorem 1.2.

Corollary 1.4. Assume Statement A. LetL be a G-orbit-closure, let 𝑚L, 𝑍L be as above, and let 𝑍1 ⊂ 𝑍L
be one-dimensional. Suppose that the foliation induced by the complexification ℜ1 has a dense leaf.
Then the 𝑍1-flow on (L, 𝑚L) is mixing of all orders (and in particular, ergodic).

The density of certain leaves of the full Rel foliation in G-orbit-closures of rank one was obtained by
Ygouf in [Y]. Using these results, we obtain ergodicity of one-dimensional subgroups of the real Rel
foliation in many cases. For instance, using [Y, Thm. A & Prop. 5.1], we have the following:

Corollary 1.5. Assume Statement A. The real Rel foliation is mixing of all orders (and in particular,
ergodic) in any eigenform locus in H(1, 1) with a non-square discriminant.

Recall that in [Wi2] Winsor proved the existence of dense real Rel leaves, and dense leaves for one-
dimensional flows 𝑍0, in all strata. Using these results in conjunction with Corollary 1.4, one can obtain
an alternative proof of Theorem 1.1 that avoids the use of Proposition 7.1.

We also consider the entropy of real-Rel flows and show the following:

Theorem 1.6. Let L, 𝑚L, 𝑍L, 𝑧0 be as in the statement of Theorem 1.2. Then the entropy of the action
of Rel𝑧0 on the measure space (L, 𝑚L) is zero.

Using the geodesic flow, one easily shows that Rel𝑧0 is conjugate to Rel𝑡 𝑧0 for any 𝑡 > 0, and from
this, it follows that the entropy is either zero or infinite. However, the Rel flow is not continuous, and
we could not find a simple way to rule out infinite entropy. Our proof gives a more general result;
see Theorem 9.1. However, the argument fails for 𝑍0-invariant measures for which the backward time
geodesic flow diverges almost surely, and thus, we do not settle the question of whether the topological
entropy of real Rel flows is zero.

1.1. Outline

In §2, we give background material on translation surfaces, their moduli spaces, and the Rel foliation.
In §3, we use standard facts about joinings to build a measure 𝜃 on the product of two strata (see (3.1)),
depending on a real Rel flow 𝑍0, such that if 𝜃 is the product measure, then 𝑍0 is ergodic. In §3.3, we
discuss a technique of Mozes that makes it possible to upgrade ergodicity to mixing of all orders. In §4,
we show that 𝜃 is ergodic for the diagonal action of the upper triangular group 𝑃 ⊂ 𝐺 on the product of
two strata. In §5, we state Statement A, which is a far-reaching measure rigidity result of Brown, Eskin,
Filip and Rodriguez-Hertz for P-ergodic measures on products of two strata. In §6, we use Statement A,
as well as prior results for the action on one stratum due to Wright, in order to characterize the situations
in which 𝜃 is not a product measure, thus proving Theorem 1.2. Proposition 7.1 is proved in §7, and we
check its conditions to deduce Theorems 1.1 and 8.1 in §8. We prove Theorem 1.6 in §9.

2. Preliminaries about translation surfaces

2.1. Strata, period coordinates

In this section, we collect standard facts about translation surfaces and fix our notation. For more details,
we refer the reader to [Zo, Wr1, BSW]. Below, we briefly summarize the treatment in [BSW, §2].
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Let S be a compact oriented surface of genus g, Σ = {𝜉1, . . . , 𝜉𝑘 } ⊂ 𝑆 a finite set, 𝑎1, . . . , 𝑎𝑘 non-
negative integers with

∑
𝑎𝑖 = 2𝑔 − 2, and H = H(𝑎1, . . . , 𝑎𝑘 ) the corresponding stratum of unit-area

translation surfaces. We let Hm = Hm(𝑎1, . . . , 𝑎𝑘 ) denote the stratum of unit-area marked translation
surfaces and 𝜋 : Hm → H the forgetful mapping. Our convention is that singular points are labeled,
or equivalently, H = Hm/Mod(𝑆, Σ), where Mod(𝑆, Σ) is the group of isotopy classes of orientation-
preserving homeomorphisms of S fixing Σ, up to an isotopy fixing Σ.

There is an R>0-action that dilates the atlas of a translation surface by 𝑐 ∈ R>0. For a stratum H
and marked stratum Hm, we denote the collection of surfaces of arbitrary area, obtained by applying
such dilations, by H̄, H̄m. The marked stratum H̄m is a linear manifold modeled on the vector space
𝐻1 (𝑆, Σ;R2). It has a developing map dev : H̄m → 𝐻1 (𝑆, Σ;R2), sending an element of H̄m represented
by 𝑓 : 𝑆 → 𝑀 , where M is a translation surface, to 𝑓 ∗(hol(𝑀, ·)), where for an oriented path 𝛾 in

M which is either closed or has endpoints at singularities, hol(𝑀, 𝛾) =

(∫
𝛾

𝑑𝑥∫
𝛾

𝑑𝑦

)
, and 𝑑𝑥, 𝑑𝑦 are the

1-forms on M inherited from the plane. Furthermore, there is an open cover {U𝜏} of Hm, indexed by
triangulations 𝜏 of S with triangles whose vertices are in Σ, and maps dev|U𝜏 : U𝜏 → 𝐻1 (𝑆, Σ;R2),
which are homeomorphisms onto their image, and such that the transition maps on overlaps for this atlas
are restrictions of linear automorphisms of 𝐻1 (𝑆, Σ;R2).

This atlas of charts {(U𝜏 , dev|U𝜏 )} is known as period coordinates. Since each U𝜏 is identified via
period coordinates with an open subset of the vector space 𝐻1 (𝑆, Σ;R2), the tangent space at each U𝜏

is identified canonically with 𝐻1(𝑆, Σ;R2), and thus the tangent bundle of Hm is locally constant. A
sub-bundle of the tangent bundle is called locally constant or flat if it is constant in the charts afforded
by period coordinates. The Mod(𝑆, Σ)-action on Hm is properly discontinuous, and hence, H is an
orbifold, and the map 𝜋 : Hm → H is an orbifold covering map.

The group G acts on translation surfaces in H by modifying planar charts and acts on 𝐻1(𝑆, Σ;R2)
via its action on R2, thus inducing a G-action on Hm. The G-action commutes with the Mod(𝑆, Σ)-
action, and thus, the map 𝜋 is G-equivariant for these actions. The G-action on Hm is free since
dev(𝑔q) ≠ dev(q) for any nontrivial 𝑔 ∈ 𝐺. We will use the following subgroups of G:

𝑔𝑡 =

(
𝑒𝑡 0
0 𝑒−𝑡

)
, 𝑢𝑠 =

(
1 𝑠
0 1

)

𝑈 = {𝑢𝑠 : 𝑠 ∈ R}, 𝑃 =

{(
𝑎 𝑏
0 𝑎−1

)
: 𝑎 > 0, 𝑏 ∈ R

}
.

2.2. Rel foliation and real Rel foliation

We define and list some important properties of the Rel foliation, the real Rel foliation and the corre-
sponding action on the space of surfaces without horizontal saddle connections. See [MW, BSW] for
more details. See also [Zo, McM], and references therein.

We have a canonical splitting R2 = R ⊕ R, and we write R2 = Rx ⊕ Ry to distinguish the two
summands in this splitting. There is a corresponding splitting

𝐻1(𝑆, Σ;R2) = 𝐻1(𝑆, Σ;Rx) ⊕ 𝐻1 (𝑆,Σ;Ry). (2.1)

We also have a canonical restriction map Res : 𝐻1 (𝑆, Σ;R2) → 𝐻1(𝑆;R2) (given by restricting
a cochain to absolute periods). Since Res is topologically defined, its kernel ker(Res) is Mod(𝑆, Σ)-
invariant. Moreover, from our convention that singular points are marked, the Mod(𝑆, Σ)-action on
ker(Res) is trivial.

Let

ℜ
def
= ker(Res) and 𝑍

def
= ℜ ∩ 𝐻1(𝑆, Σ;Rx). (2.2)
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Since 𝐻1 (𝑆, Σ;Rx) and 𝐻1(𝑆, Σ;Ry) are naturally identified with each other via their identification
with 𝐻1(𝑆, Σ;R), for each 𝑍1 ⊂ 𝑍 , we can define the space ℜ1 spanned by the two copies of 𝑍1
in 𝐻1(𝑆, Σ;Rx) and 𝐻1(𝑆, Σ;Ry), respectively. The space ℜ1 is the complexification of 𝑍1. This
terminology arises from viewing 𝐻1(𝑆, Σ;R2) as 𝐻1(𝑆, Σ;C), a vector space over C, and viewing
𝐻1 (𝑆, Σ;Rx) and 𝐻1(𝑆, Σ;Ry) as the real and imaginary subspace of this complex vector space. With
this viewpoint, ℜ1 is the C-span of 𝑍1.

For any subspace 𝑍1 ⊂ ℜ, we can foliate the vector space 𝐻1(𝑆, Σ;R2) by affine subspaces parallel
to 𝑍1. Pulling back this foliation using the period coordinate charts gives rise to a foliation of H̄m.
Since monodromy acts trivially on ℜ, this foliation descends to a well-defined foliation on H̄. It is
known (see, for example, [BSW, Prop. 4.1]) that the area of a surface is constant on leaves of the Rel
foliation, and thus, the Rel foliation and any of its subfoliations descend to a foliation of H. The foliation
corresponding to ℜ (respectively, to Z) is known as the Rel foliation (respectively, the real Rel foliation).

Because the Mod(𝑆, Σ)-monodromy action fixes all points of ℜ, the leaves of the Rel foliation, and
any of its sub-foliations, acquire a translation structure. In particular, they are equipped with a natural
measure.

For any 𝑣 ∈ 𝑍 , we have a constant vector field, well-defined on Hm and on H, everywhere
equal to v. Integrating this vector field we get a partially defined real REL flow (corresponding to v)
(𝑡, 𝑞) ↦→ Rel𝑡 𝑣 (𝑞); the flow may not be defined for all time due to possible ‘collide of zeroes’. For every
𝑞 ∈ H, it is defined for 𝑡 ∈ 𝐼𝑞 , where the domain of definition 𝐼𝑞 = 𝐼𝑞 (𝑣) is an open subset of R which
contains 0. The sets 𝐼𝑞 (𝑣) are explicitly described in [BSW, Thm. 6.1]. Let Ĥ denote the set of surfaces
in H with no horizontal saddle connections. Then 𝐼𝑞 = R for all 𝑞 ∈ Ĥ.

If 𝑞 ∈ H, 𝑠 ∈ R and 𝜏 ∈ 𝐼𝑞 , then

𝜏 ∈ 𝐼𝑢𝑠𝑞 and Rel𝜏𝑣 (𝑢𝑠𝑞) = 𝑢𝑠Rel𝜏𝑣 (𝑞).

Similarly, if 𝑞 ∈ H, 𝑡 ∈ R and 𝜏 ∈ 𝐼𝑞 , then

𝜏′
def
= 𝑒𝑡𝜏 ∈ 𝐼𝑔𝑡𝑞 and Rel𝜏′𝑣 (𝑔𝑡𝑞) = 𝑔𝑡Rel𝜏𝑣 (𝑞). (2.3)

In particular, since P preserves Ĥ and 𝑃 = {𝑔𝑡𝑢𝑠 : 𝑡, 𝑠 ∈ R}, there is an action of 𝑃 � 𝑍 on Ĥ, given by
(𝑝, 𝑧).𝑞 = 𝑝Rel𝑧 (𝑞).

3. Preliminaries from ergodic theory

3.1. Ergodic decomposition

We will use the notation G � (𝑋, 𝜇) to indicate that G is a locally compact second countable group,
(𝑋,B) is a standard Borel space, and 𝜇 is a probability measure on B preserved by the G-action. We
say that G� (𝑌, 𝜈) is a factor of (𝑋, 𝜇) if there is a measurable G-invariant conull subset 𝑋0 ⊂ 𝑋 and
a measurable map 𝑇 : 𝑋0 → 𝑌 such that 𝑇 ◦ 𝑔 = 𝑔 ◦ 𝑇 for all 𝑔 ∈ G, and 𝜈 = 𝑇∗𝜇. In this situation, we
refer to T as the factor map. Given a factor map, there is a (unique up to nullsets) measure disintegration
𝜇 =

∫
𝜇𝑦 𝑑𝜈(𝑦), for a Borel mapping 𝑦 ↦→ 𝜇𝑦 from Y to the space of Borel probability measures on X,

such that 𝜇𝑦 (𝑇
−1 (𝑦)) = 1 for 𝜈-a.e. y. Equivalently, we can write 𝜇 =

∫
𝑥

𝜇′
𝑥 𝑑𝜇(𝑥), where 𝜇′

𝑥
def
= 𝜇𝑇 (𝑥) .

For a closed subgroup 𝐻 ⊂ G, we say that 𝜇 is H-ergodic if any invariant set is null or conull. We have
the following well-known ergodic decomposition theorem:

Proposition 3.1. Suppose G � (𝑋, 𝜇), and H is a closed subgroup of G. Then there is a factor of
𝐻 � (𝑋, 𝜇), called the space of ergodic components and denoted by 𝑋//𝐻, with the following properties:

(i) For 𝜈-a.e. 𝑦 ∈ 𝑋//𝐻, 𝜇𝑦 is H-invariant and H-ergodic.
(ii) H acts trivially on 𝑋//𝐻.

(iii) 𝐻 � (𝑋, 𝜇) is ergodic if and only if 𝑋//𝐻 = {𝑝𝑡.}.
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(iv) The properties (i)–(iii) uniquely determine the factor 𝑋//𝐻 up to measurable isomorphism.
(v) If 𝐻 � G, then G� (𝑋//𝐻, 𝜈).

Proof. For (i) and (ii), see [Va, Thm. 4.4] (in the notation of [Va], these assertions follow from the fact
that 𝛽 is a map on points and is H-invariant). Assertion (iii) is immediate from definitions and (iv) follows
from [Va, Lemma 4.4]. For (v), one can argue using the uniqueness property (iv), and the fact that the
image of an H-invariant ergodic measures under any element 𝑔 ∈ G is also H-invariant and ergodic. �

Remark 3.2. An action is called prime if it has no factors (besides the action itself, and the trivial action
on a point). The construction above shows that if 𝐻 � G, G′ is a subgroup of G so that G′ � (𝑋, 𝜇) is
prime and 𝐻 � (𝑋, 𝜇) is not isomorphic to the trivial action, then 𝐻 � (𝑋, 𝜇) is ergodic. This is not
the approach we will take for proving Theorem 1.1.

3.2. Joinings

We recall some well-known facts about joinings; see [dlR] and references therein. Let G � (𝑋𝑖 , 𝜇𝑖)
for 𝑖 = 1, 2. A joining is a measure 𝜃 on 𝑋1 × 𝑋2, invariant under the diagonal action of G, such that
𝜋𝑖∗𝜃 = 𝜇𝑖 . A self-joining is a joining in case 𝑋1 = 𝑋2. If (𝑋𝑖 , 𝜇𝑖) → (𝑍, 𝜈) is a joint factor, then the
relatively independent joining over Z is the joining

∫
𝑍
(𝜇1)𝑧 × (𝜇2)𝑧 𝑑𝜈(𝑧), where 𝜇𝑖 =

∫
𝑍
(𝜇𝑖)𝑧 𝑑𝜈(𝑧)

is the disintegration of 𝜇𝑖 . In case 𝑋1 = 𝑋2 = 𝑋 , and 𝑍 = 𝑋//𝐻 is the space of ergodic components of
the action of H on (𝑋, 𝜇) as in Proposition 3.1, we obtain the relatively independent self-joining over
𝑋//𝐻. From the definitions, one finds that this joining satisfies:

Proposition 3.3. The following are equivalent:

• 𝐻 � (𝑋, 𝜇) is ergodic.
• 𝑋//𝐻 = {𝑝𝑡.}.
• The relatively independent self-joining over 𝑋//𝐻 is 𝜇 × 𝜇.

We note three properties of this self-joining. We fix a topology on X which generates the 𝜎-algebra
and denote by supp 𝜇 the topological support of 𝜇 (i.e., the smallest closed set of full measure).

Proposition 3.4. Let 𝜃 be the measure on 𝑋 × 𝑋 which is the relatively independent self-joining over
𝑋//𝐻, for some H, and let 𝑇 : 𝑋 → 𝑋//𝐻 be the factor map. Then the following hold:

• We have

𝜃 =
∫
𝑋

𝜇𝑇 (𝑥) × 𝜇𝑇 (𝑥) 𝑑𝜇(𝑥). (3.1)

• The set
{
𝑥 ∈ 𝑋 : 𝑥 ∉ supp 𝜇𝑇 (𝑥)

}
is of 𝜇-measure zero.

• If 𝑋 = supp 𝜇, then supp 𝜃 contains the diagonal Δ𝑋
def
= {(𝑥, 𝑥) : 𝑥 ∈ 𝑋}.

Proof. Formula (3.1) is immediate from the definition of the relatively independent self-joining over
𝑋//𝐻. Since each 𝜇′

𝑥 = 𝜇𝑇 (𝑥) is H-invariant and ergodic, and 𝜇′
𝑥 (𝑇

−1 (𝑇 (𝑥))) = 1, the set {𝑥 ∈ 𝑋 : 𝑥 ∉
supp 𝜇′

𝑥} is a 𝜇-nullset. For the last assertion, given (𝑥0, 𝑥0) ∈ 𝑋 × 𝑋 , and a neighborhood U of (𝑥0, 𝑥0),
we need to show that 𝜃 (U ) > 0. We can assume with no loss of generality that U = O ×O for an open
set O ⊂ 𝑋 containing 𝑥0. Since supp 𝜇 = 𝑋 , we have 𝜇(O) > 0, and by the preceding discussion, for
a.e. 𝑥 ∈ O, 𝑥 ∈ supp 𝜇′

𝑥 , and hence, 𝜇′
𝑥 (O) > 0. Now the result follows from (3.1). �

Example 3.5 (Branched covers, cont.). With the notation of Example 1.3, the relatively independent
self-joining 𝜃 can be written as

𝜃 =
∫
L

𝜈𝑞 𝑑𝑚L(𝑞),
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where 𝜈𝑞 is the natural translation invariant measure on the leaf ℜ1 (𝑞), which is identified with the
underlying surface 𝑀𝑞 , and which we embed in L × L via the map

ℜ1 (𝑞) → L × L, 𝑞′ ↦→ (𝑞′, 𝑞).

3.3. Ergodicity, mixing, and mixing of all orders

For G � (𝑋, 𝜇), let 𝐿2
0 (𝜇) denote the Hilbert space of 𝐿2-functions on (𝑋, 𝜇) of integral zero, and

let 𝑘 ≥ 2. The action is called k-mixing if for any 𝑓1, . . . , 𝑓𝑘 ∈ 𝐿2
0 (𝜇) and for any 𝑘 − 1 sequences(

𝑔 (𝑖)
𝑛

)
𝑛∈N

∈ G, 𝑖 = 1, . . . , 𝑘 − 1, for which all of the sequences

(
𝑔 (𝑖)
𝑛

)
𝑛∈N

(1 ≤ 𝑖 ≤ 𝑘 − 1) and
(
𝑔 (𝑖)
𝑛 (𝑔

( 𝑗)
𝑛 )−1

)
𝑛∈N

(1 ≤ 𝑖 < 𝑗 ≤ 𝑘 − 1)

eventually leave every compact subset of G, we have

∫
𝑋

𝑓1

(
𝑔 (1)
𝑛 𝑥

)
· · · 𝑓𝑘−1

(
𝑔 (𝑘−1)
𝑛 𝑥

)
𝑓𝑘 (𝑥) 𝑑𝜇(𝑥)

𝑛→∞
−→

𝑘∏
𝑖=1

∫
𝑋

𝑓𝑖 𝑑𝜇 = 0.

We say that the action is mixing if it is 2-mixing, and mixing of all orders if it is mixing of order k for
any 𝑘 ≥ 2. It is easy to check that mixing implies ergodicity of any unbounded subgroup of G. We have
the following:
Proposition 3.6. Let 𝑍0 � R, and let {𝑔𝑡 } be a one-parameter group acting on 𝑍0 by dilations (i.e., for
all 𝑣 ∈ 𝑍0 and 𝑡 ∈ R we have 𝑔𝑡𝑣 = 𝑒𝜆𝑡𝑣 for some 𝜆 ≠ 0). Let 𝐹 = {𝑔𝑡 } � 𝑍0, and let 𝐹 � (𝑋, 𝜇) be a
probability space. The following are equivalent:
(a) the restricted flow 𝑍0 � (𝑋, 𝜇) is ergodic;
(b) the restricted flow 𝑍0 � (𝑋, 𝜇) is mixing of all orders;
(c) the restricted flow 𝑍0 � (𝑋, 𝜇) is mixing;
(d) any nontrivial element of 𝑍0 acts ergodically.
Remark 3.7. The group F appearing in Proposition 3.6 is isomorphic as a Lie group to the subgroup
P of upper triangular matrices in G, but in our application, we will use it for the group generated by a
one-parameter real Rel flow 𝑍0 and the diagonal flow {𝑔𝑡 }.
Proof. Clearly, (b) =⇒ (c) =⇒ (d) =⇒ (a). We assume that the 𝑍0-flow is ergodic. To see that it is
mixing, it is enough by [P, Chap. 2, Prop. 5.9] to prove that it has countable Lebesgue spectrum, and
for this, use [KT, Prop. 1.23 & Prop. 2.2]. The proof of mixing of all orders follows verbatim from an
argument of Mozes [Mo] for mixing actions of Lie groups which are ‘Ad-proper’. Since our group 𝐹
is not Ad-proper, we cannot cite [Mo] directly, so we sketch the proof. For notational convenience, we
deduce 3-fold mixing from mixing (the proof that ‘k-fold mixing =⇒ 𝑘 + 1-fold mixing’, for 𝑘 ≥ 3, is
identical but requires more cumbersome notation).

We use additive notation in the group 𝑍0 and denote the action of 𝑍0 on X by (𝑧, 𝑥) ↦→ 𝑧.𝑥. Let (𝑏𝑛)𝑛∈N
and (𝑐𝑛)𝑛∈N be sequences in 𝑍0 such that each of the sequences (𝑏𝑛)𝑛∈N , (𝑐𝑛)𝑛∈N , (𝑏𝑛 + 𝑐𝑛)𝑛∈N
eventually leaves every compact set, and let 𝑓1, 𝑓2, 𝑓3 be in 𝐿2

0 (𝜇). We need to prove that∫
𝑋

𝑓1(𝑥) 𝑓2 (𝑏𝑛.𝑥) 𝑓3((𝑏𝑛 + 𝑐𝑛).𝑥) 𝑑𝜇(𝑥)
𝑛→∞
−→

∫
𝑋

𝑓1 𝑑𝜇

∫
𝑋

𝑓2 𝑑𝜇

∫
𝑋

𝑓3 𝑑𝜇.

For each n, define a measure 𝜇𝑛 on 𝑋3 def
= 𝑋 × 𝑋 × 𝑋 by∫

𝑋3
𝑓 𝑑𝜇𝑛

def
=

∫
𝑋

𝑓 (𝑥, 𝑏𝑛.𝑥, (𝑏𝑛 + 𝑐𝑛).𝑥) 𝑑𝜇(𝑥), ∀ 𝑓 ∈ 𝐶𝑐 (𝑋
3).
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That is, 𝜇𝑛 is the pushforward of the diagonal measure on 𝑋3 by the triple (0, 𝑏𝑛, 𝑏𝑛 + 𝑐𝑛). It is easy to
see that 3-mixing is equivalent to the fact that the weak-* limit of 𝜇𝑛 is the measure 𝜇3 def

= 𝜇 × 𝜇 × 𝜇.
The group 𝐹3 def

= 𝐹 × 𝐹 × 𝐹 acts on 𝑋3 by acting separately on each component, and as in [Mo], since
𝑍0 is mixing, it suffices to show that any measure 𝜈 on 𝑋3 which is a weak-* limit of a subsequence of
(𝜇𝑛)𝑛∈N, is invariant under (0, 𝑢, 𝑣) ∈ R3 ⊂ 𝐹3, for some (𝑢, 𝑣) ∈ R2 \ (0, 0). We claim that for any
𝑠 ∈ R, the measure 𝜇𝑛 is invariant under

ℎ𝑛 (𝑠)
def
= (𝑔𝑠 , 𝑏𝑛 · 𝑔𝑠 · (−𝑏𝑛), (𝑏𝑛 + 𝑐𝑛) · 𝑔𝑠 · (−𝑏𝑛 − 𝑐𝑛)) ,

where the multiplication is in the group 𝐹3. Indeed, since 𝜇 is {𝑔𝑠}-invariant,∫
𝑋3

𝑓 𝑑𝜇𝑛 =
∫
𝑋

𝑓 (𝑔𝑠𝑥, 𝑏𝑛.(𝑔𝑠𝑥), (𝑏𝑛 + 𝑐𝑛).(𝑔𝑠𝑥)) 𝑑𝜇(𝑥),

and

ℎ𝑛 (𝑠) · (id𝐹 , 𝑏𝑛, 𝑏𝑛 + 𝑐𝑛) = (𝑔𝑠 , 𝑏𝑛 · 𝑔𝑠 , (𝑏𝑛 + 𝑐𝑛) · 𝑔𝑠).

That is, applying ℎ𝑛 (𝑠) changes one description of 𝜇𝑛 to another.
We embed F as a multiplicative group of matrices in GL2 (R) and let 𝑑𝐹 be the metric on F induced

by some norm on GL2 (R). By a straightforward computation, we have

ℎ𝑛 (𝑠) =
(
𝑔𝑠 , (1 − 𝑒𝜆𝑠)𝑏𝑛 · 𝑔𝑠 , (1 − 𝑒𝜆𝑠) (𝑏𝑛 + 𝑐𝑛) · 𝑔𝑠

)
,

and 𝑑𝐹 (id𝐹 , ℎ𝑛 (𝑠)) is a continuous function of s which goes to 0 as 𝑠 → 0 and for any fixed 𝑠 > 0,
increases to infinity as 𝑛 → ∞. Therefore, we can choose 𝑠𝑛 → 0 so that 𝑑𝐹 (id𝐹 , ℎ𝑛 (𝑠𝑛)) = 1 for all
large enough n. As in [Mo], 𝜈 is invariant under some subsequential limit of ℎ𝑛 (𝑠𝑛) which is of the form
(0, 𝑢, 𝑣) for some (𝑢, 𝑣) ∈ R2 \ (0, 0). This establishes our sufficient condition. �

4. The relatively independent self-joining for a Rel flow

Recall that L̂ ⊂ L is the set of surfaces without horizontal saddle connections, and this is a P-invariant
set of full measure with respect to 𝑚L. We can combine the product action of 𝑍L × 𝑍L on L̂ × L̂ with
the diagonal action of P to obtain an action of the semi-direct product 𝑃 � (𝑍L × 𝑍L) on L̂ × L̂. Since
L̂ ⊂ L is of full measure, and the arguments of this section involve passing to sets of full measure, in
the remainder of this section, we will ignore the distinction between L and L̂.

Proposition 4.1. Let 𝑍 ⊂ 𝑍L be a closed connected subgroup. If 𝜃 is an invariant probability measure
for an action of the semidirect product 𝑃� (𝑍 ×𝑍) on L×L, then any 𝑓 ∈ 𝐿2 (𝜃) which is {𝑔𝑡 }-invariant
is also 𝑍 × 𝑍-invariant.

Proof. For any 𝑧 ∈ 𝑍 × 𝑍 , 𝑔𝑡 𝑧𝑔−𝑡 →𝑡→−∞ 0. So the claim follows from the Mautner phenomenon; see,
for example, [EW, Prop 11.18]. �

Proposition 4.2. Let (L, 𝑚L) be a G-orbit-closure with a fully supported 𝑃-invariant ergodic measure,
let 𝑍 ⊂ 𝑍L be a connected closed subgroup, and let 𝜃 on L × L be the relatively independent joining
over L//𝑍 . Then 𝜃 is P-invariant and {𝑔𝑡 }-ergodic (and hence P-ergodic). Also ΔL ⊂ supp 𝜃.

As we will see in §5, under the conditions of the Proposition, 𝑚L is the so-called ‘flat measure’ on L.

Proof. Let 𝜋 : L × L → L be the projection onto the first factor, and let 𝜈 = 𝜋∗𝜃. We have 𝜈 = 𝑚L by
(3.1) and the properties of the ergodic decomposition. For each 𝑥 ∈ L, let Ω𝑥

def
= 𝜋−1 (𝑥) = {𝑥} × L be

the fiber, and let 𝜃𝑥 be the fiber measure appearing in the disintegration 𝜃 =
∫
L 𝜃𝑥 𝑑𝜈(𝑥). Then Z acts
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on Ω𝑥 via the second factor in 𝑍 × 𝑍 , and 𝜃𝑥 is Z-invariant and ergodic by the definition of the ergodic
decomposition and Proposition 3.1(i) (with 𝐻 = 𝑍).

It follows from Proposition 3.1(v) (with G = 𝑃 � (𝑍 × 𝑍)) that 𝜃 is P-invariant. To prove ergodicity,
let 𝑓 ∈ 𝐿2 (L×L, 𝜃) be a P-invariant function. By Proposition 4.1, f is 𝑍 × 𝑍-invariant. For each 𝑥 ∈ L,
let 𝑓𝑥

def
= 𝑓 |Ω𝑥 . There is L0 ⊂ L such that 𝑚L (L0) = 1, and for every 𝑥 ∈ L0, 𝑓𝑥 belongs to 𝐿2 (Ω𝑥 , 𝜃𝑥)

and is Z-invariant. Hence, by ergodicity, there is 𝑓 : L0 → R such that for every 𝑥 ∈ L0, 𝑓 (𝑥) is the
𝜃𝑥-almost-sure value of 𝑓𝑥 . Since f is P-invariant for the diagonal action of P, 𝑓 is P-invariant for the
action of P on L. By ergodicity of 𝑃 � (L, 𝑚L), 𝑓 is 𝜈-a.e. constant, and thus, f is 𝜃-a.e. constant.

The last assertion follows from Proposition 3.4. �

5. An upgraded magic wand theorem

The celebrated ‘magic wand’ Theorem of Eskin and Mirzakhani [EM], and ensuing work of Eskin,
Mirzakhani and Mohammadi [EMM], classified P- and G-invariant probability measures and orbit-
closures on strata of translation surfaces. These results can be summarized as follows (see [EM, Defs.
1.1 & 1.2, Thms. 1.4 & 1.5]):

Theorem 5.1. Let H, Hm, H̄, H̄m be as in §2.1. Any P-invariant ergodic probability measure m has
the following properties:

(i) It is G-invariant.
(ii) There is a complex-affine manifold N and a proper immersion 𝜑 : N → H̄ such that

L def
= supp 𝑚 = H ∩ 𝜑(N ).

(iii) There is an open G-invariant subset 𝑈 ⊂ H̄ satisfying 𝑚(𝑈) = 1, and for any 𝑥 ∈ 𝑈 ∩ L, there is
an open set V containing x such that V is evenly covered by V ⊂ Hm under the map 𝜋 : H̄m → H̄,
and 𝜓

def
= dev ◦ (𝜋 |V )

−1 ◦ 𝜑 coincides on its domain with a C-linear map, with real coefficients.
(iv) The subspace 𝑊

def
= Im(𝜓) satisfies that Res(𝑊) symplectic, and the measure m is obtained via the

cone construction from the Lebesgue measures on Res(𝑊) and on ℜ ∩𝑊 .
(v) The complement L \𝑈 is a finite union of supports of measures satisfying properties (i)–(iv), for

which the manifolds N ′ appearing in (ii) satisfy dimN ′ < dimN .

Any orbit-closure for the P-action is a set L as above.

The description of 𝑚L in item (iv) means that we fix a normalization Leb𝑊 of Lebesgue measure
on W using the symplectic structure on Res(𝑊) and the translation structure on ℜ ∩𝑊 , and for a Borel
subset 𝐴 ⊂ 𝑉 ⊂ L, where 𝑉 = 𝜋(V) is as in item (iii), we have

𝑚(𝐴) = Leb𝑊
({

𝑡 · dev(𝜋 |−1
V (𝑞)) : 𝑞 ∈ 𝐴, 𝑡 ∈ [0, 1]

})
.

We will refer to L as an orbit-closure and to 𝑚 = 𝑚L as a flat measure on L. Orbit-closures are
referred to as affine invariant manifolds and also as invariant subvarieties. The use of an evenly covered
neighborhood in item (iii) is a standard approach for defining period coordinates (see, for example,
[MS]).

It is easy to check, using our convention that singularities are labeled, that ℜL
def
= ℜ ∩ Im(𝜓) is well

defined; that is, it does not depend on the choice of the neighborhood V used in (iii) (see, for example,
[CWY, §2.3]). The statement in item (iv) that Res(𝑊) is symplectic is proved in [AEM]. We refer to
[Wr1] for a survey containing more information on orbit-closures.

In a forthcoming work of Brown, Eskin, Filip and Rodriguez-Hertz, the same conclusion is obtained
for the diagonal actions of P and G on a product of strata H ×H′. Namely, the following is shown:
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Statement A. Let H,H′ be strata of translation surfaces, and let Pand Gact on H × H′ via their
diagonal embeddings in 𝐺 × 𝐺. Then all of the conclusions of Theorem 5.1 hold for this action (with
H̄ × H̄′ replacing H̄).

We refer to this as a ‘Statement’ rather than a ‘Theorem’ since it has not yet appeared in print. For
further discussion of this result and related statements, see [MiWr, Conj. 2.10] and [ChWr, §7].

6. Proof of main result

Using Statement A and further work of Wright [Wr2], we can prove our main result.

Proof of Theorem 1.2. Let 𝑍0 = spanR (𝑧0) be a one-dimensional connected real Rel subgroup. Assume
that (1) fails, so that the action of 𝑍0 on (L, 𝑚L) is not mixing of all orders. Then, by Proposition 3.6,
it is not ergodic. Let 𝜃 be the relatively independent self-joining over L//𝑍0. Applying Propositions 3.3
and 3.4, we have that 𝜃 ≠ 𝑚L × 𝑚L and ΔL ⊂ supp 𝜃. Applying Proposition 4.2 and Statement A, we
have that there is a G-invariant open subset U of full 𝜃-measure such that 𝑈 ∩ supp 𝜃 is contained in
the isomorphic image of an affine complex-linear manifold whose (real) dimension is strictly smaller
than 2 dim H̄, and 𝜃 is obtained from Lebesgue measure on this complex-linear manifold by the cone
construction.

We claim that the set

𝑈1
def
= {𝑞 ∈ H : (𝑞, 𝑞) ∈ 𝑈}

is of full measure for (𝜋1)∗𝜃, where 𝜋1 : L × L → L is the projection onto the first factor. Indeed, the
measure 𝜃 is invariant under 𝑍0 × {Id}, and hence, so is its support. Since 𝑍0 acts by homeomorphisms
where defined, and using property (v) in Theorem 5.1 and Statement A, we have that the set U is also
𝑍0 × {Id}-invariant. Thus, for any 𝑍0-ergodic measure, it is either null or conull. Thus, if 𝑞 ∉ 𝑈1 and q is
generic for the measure 𝜇𝑇 (𝑞) appearing in (3.1), then 𝜇𝑇 (𝑞) ,𝑞 assigns measure zero to U, where 𝜇𝑇 (𝑞) ,𝑞

is the measure on supp 𝜃 defined by 𝜇𝑇 (𝑞) ,𝑞 (𝐴) = 𝜇𝑇 (𝑞) ({𝑞
′ : (𝑞′, 𝑞) ∈ 𝐴}). If this were to happen for

a positive measure of q, it would follow from (3.1) and the fact that 𝜇𝑇 (𝑞) × 𝜇𝑇 (𝑞) =
∫

𝜇𝑇 (𝑞′) ,𝑞′𝑑𝜇𝑇 (𝑞)

that U does not have full measure for 𝜃.
For 𝑞 ∈ 𝑈1, let 𝑁𝑞 denote the connected component of 𝑈 ∩ 𝜋−1

1 (𝑞) ∩ supp 𝜃 containing (𝑞, 𝑞). Recall
from item (ii) of Theorem 5.1 that L is locally the intersection of L̄ = 𝜑(N ), a C-linear subset of H̄,
with the quadric hypersurface H consisting of surfaces of unit area. In this proof, we will call such a
subset an affine submanifold of H. Similarly, we will say that a subset of L×L is an affine submanifold
if it is locally the intersection of a C-linear subset of H̄× H̄ with H×H. Since the fibers 𝜋−1

1 (𝑞) are also
affine submanifolds of L ×L, we have that the 𝑁𝑞 are affine submanifolds contained in 𝜋−1

1 (𝑞) � L, so
we can identify them with invariant submanifolds in L (which we continue to denote by 𝑁𝑞). With this
notation, we have 𝑞 ∈ 𝑁𝑞 .

The mapping 𝑞 ↦→ 𝑇𝑞 (𝑁𝑞) is locally constant; that is, letting 𝑉 ⊂ H̄ and V ⊂ H̄m be open sets such
that 𝜋 |V : V → 𝑉 is a homeomorphism and 𝑞 ∈ 𝑉 , the map 𝑞 ↦→ dev ◦ 𝜋 |−1

V (𝑞) sends a neighborhood of
q in 𝑁𝑞 to an affine subspace 𝑊 = 𝑊𝑞,V of 𝐻1 (𝑆, Σ;R2), and the linear subspaces tangent to W are the
same for all 𝑞 ∈ 𝑉 . Since 𝑚L × 𝑚L is the unique P-invariant ergodic measure on L ×L of full support,
we have dim 𝑁𝑞 < dimL for every 𝑞 ∈ 𝑈1.

Let �̄�1 : H̄ × H̄ denote the projection on the first factor, let �̄�𝑞 denote the connected component of
𝑈 ∩ �̄�−1

1 (𝑞) ∩ L̄ containing (𝑞, 𝑞), and let

𝔑𝑞
def
= 𝑇𝑞 (�̄�𝑞)

(the tangent space to �̄�𝑞 at q, thought of as a subset of the tangent space 𝑇𝑞 (L̄)). That is, surfaces in
�̄�𝑞 are obtained by moving locally in the affine space W defining 𝜃, as in item (iv) of Theorem 5.1,
without requiring that the surfaces in �̄�𝑞 have area one. Then we either have dim �̄�𝑞 = dim 𝑁𝑞 or
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dim �̄�𝑞 = dim 𝑁𝑞 + 1, depending on whether or not moving in W can change the area of a surface. The
assignment 𝑞 ↦→ 𝔑𝑞 defines a proper flat sub-bundle of the tangent bundle 𝑇 (L̄). Flat sub-bundles of
𝑇 (L̄) were classified in [Wr2]. According to [Wr2, Thm. 5.1], 𝔑𝑞 ⊂ ℜL for each q, and 𝔑𝑞 is a complex
linear subspace which is locally constant. Since ℜL is acted on trivially by monodromy, we in fact have
that 𝔑𝑞 is independent of q, and we denote it by ℜ1. The leaves ℜ1(𝑞) coincide with �̄�𝑞 for each q
since �̄�𝑞 is connected and of the same dimension. Since Rel deformations do not affect the area of the
surface, we see that �̄�𝑞 = 𝑁𝑞 . In particular, ℜ(𝑞) is closed for each q.

By (3.1), for a.e. q, 𝑁𝑞 is a connected component of the support of the ergodic component (𝑚L)𝑞 ,
which is a probability measure, and in particular,

(𝑚L)𝑞 (𝑁𝑞) < ∞, for a.e. 𝑞.

Since 𝑍0 acts ergodically with respect to (𝑚L)𝑞 , we have that almost surely 𝑁𝑞 = ℜ(𝑞). Since the
measure (𝑚L)𝑞 is affine in charts, it is a scalar multiple of the translation-invariant measure on ℜ(𝑞),
and thus, the volume 𝑉𝑞 of ℜ(𝑞) (with respect to its translation-invariant measure) is almost surely
finite. It is clear that the function 𝑞 ↦→ 𝑉𝑞 is U-invariant, and by ergodicity, it is constant almost surely.
Thus, assertion (2) of Theorem 1.2 holds, with 𝑍1 = ℜ1 ∩ 𝑍L. �

Remark 6.1. We note that the above argument works under much weaker conclusions than those given
in Statement A. Indeed, in the first step of the argument, Statement A was used simply to extract a
G-invariant assignment 𝑞 ↦→ 𝑁𝑞 , where 𝑁𝑞 is a subspace of 𝑇𝑞 (L), which is proper if 𝜃 is not the
product joining. A fundamental fact about such G-invariant assignments is that they are very restricted
– besides [Wr2], see [EFW] and [Fi]. In particular, [Fi] gives strong restrictions on assignments that are
only assumed to be defined almost everywhere and measurable.

7. A topological condition for Rel ergodicity

Let 𝑍0 ⊂ 𝑍 be a subspace. We say that a translation surface x is 𝑍0-stably periodic if it can be
presented as a finite union of horizontal cylinders and the 𝑍0-orbit of x is well defined. Recall that a
horizontal separatrix is a horizontal leaf whose closure contains at least one singularity, and it is a
horizontal saddle connection if its closure contains two singularities. Then the condition of being 𝑍0-
stably periodic is equivalent to requiring that all horizontal separatrices starting at singular points are
on horizontal saddle connections, and 𝑍0 preserves the holonomy of every horizontal saddle connection
on x. In case 𝑍 = 𝑍0 is the full real Rel group, we say that x is fully stably periodic. This is equivalent
to saying that all horizontal separatrices starting at singular points are on saddle connections, and all
horizontal saddle connections start and end at the same singularity. In particular, for any cylinder C on
a fully stably periodic surface, each boundary component of C is made of saddle connections starting
and ending at the same singular point 𝜉; we say that the boundary component only sees singularity 𝜉.
For more information on the real Rel action on surfaces which are horizontally completely periodic, see
[HW, §6.1].

Proposition 7.1. Suppose x is a surface which is 𝑍0-stably periodic, and 𝑣 ∈ 𝑍0 moves two singularities
p and q with respect to each other. Suppose that x contains two cylinders 𝐶1 and 𝐶2 that both only see
singularity p on one boundary component and only see singularity q on another boundary component.
Finally, suppose the circumferences 𝑐1, 𝑐2 of these cylinders satisfy 𝑐1

𝑐2
∉ Q. Then Case (2) of Theorem 1.1

does not hold for x.

Proof. Since 𝑐1
𝑐2

∉ Q, the trajectory {Rel𝑡 𝑣 (𝑥) : 𝑡 ∈ R} is not closed, let L denote its closure. We claim
that the tangent space to L is not contained in Z. Let 𝜎1 denote a saddle connection from p to q in 𝐶1
and let 𝜎2 denote a saddle connection from q to p in 𝐶2. Let 𝜎 be the concatenation. Then 𝜎 represents
an absolute homology class because it goes from p back to p, and it is nontrivial because the vertical
component of its holonomy on x is nonzero. If we consider the restriction of the rel-action to 𝐶1 ∪ 𝐶2,
then it only affects the twist parameters, which is a 2-dimensional space. This space can be generated by
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the horizontal holonomy of 𝜎1 and the horizontal holonomy of 𝜎2. Since 𝑐1
𝑐2

∉ Q, this restricted action
does not give a closed orbit. So the tangent space to L contains directions, which continuously affect
the holonomy of 𝜎. Since 𝜎 is an absolute period, we see that the tangent space to L is not contained
in Z. �

8. Checking the condition for strata

Let H = H(𝑎1, . . . , 𝑎𝑘 ), and for 𝑖, 𝑗 ∈ {1, . . . , 𝑘}, let 𝜉𝑖 , 𝜉 𝑗 be the corresponding singular points of a
surface in H. Let 𝑧 ∈ ℜ be a Rel cohomology class. We say that z moves 𝜉𝑖 , 𝜉 𝑗 with respect to each
other if for some (equivalently, every) 𝛼 ∈ 𝐻1 (𝑆, Σ) represented by a path starting at 𝜉𝑖 and ending at
𝜉 𝑗 , we have 𝑧(𝛼) ≠ 0. Below, when we discuss a stratum H(𝑎1, . . . , 𝑎𝑘 ); we allow 𝑎𝑖 = 0; that is, we
allow marked points. We call points with cone angle 2𝜋 (that is, with 𝑎 = 0) removable singularities,
and otherwise, we call them non-removable. The following result, which clearly implies Theorem 1.1,
allows strata with removable singularities.
Theorem 8.1. Let H be a connected component of a stratum H(𝑎1, . . . , 𝑎𝑘 ). Let 𝑚H be the Masur-
Veech measure on H, let Z be the corresponding real Rel foliation, and let 𝑍0 ⊂ 𝑍 be a one-dimensional
connected subgroup of Z. Suppose that there are 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 with corresponding singular points
𝜉𝑖 , 𝜉 𝑗 , such that 𝑎𝑖 > 0, 𝑎 𝑗 > 0 and such that some element of 𝑍0 moves 𝜉𝑖 , 𝜉 𝑗 with respect to each
other. Then the 𝑍0-flow on (H, 𝑚H) is mixing of all orders (and in particular, ergodic).

Clearly, Theorem 8.1 follows from Theorem 1.2, Proposition 7.1 and the following result.
Proposition 8.2. Let H ⊂ H(𝑎1, . . . , 𝑎𝑘 ) be a connected component of a stratum of translation surfaces
with at least two non-removable singular points. If 𝑝 ≠ 𝑞 is any pair of non-removable singularities,
then there exists 𝑀 ∈ H, which has cylinders 𝐶1, 𝐶2 with circumferences 𝑐1, 𝑐2 so that
(1) M is fully stably periodic.
(2) 𝑐1

𝑐2
∉ Q.

(3) Both 𝐶1 and 𝐶2 only see singularity p on one boundary component and only see singularity q on
the other boundary component.

For the proof of Proposition 8.2, we will also need the following:
Proposition 8.3. Let H = H(𝑎1, . . . , 𝑎𝑘 ) be a stratum of translation surfaces with at least two singular
points (that is 𝑘 ≥ 2). If 𝑝 ≠ 𝑞 is any pair of distinct singularities (possibly removable), then there exists
𝑀 ∈ H, so that M is fully stably periodic and there exists a cylinder on M that only sees singularity p
on one boundary component, and only sees singularity q on the other boundary component.

Propositions 8.2 and 8.3 will both be proved by induction, after some preparations.
Lemma 8.4 (The basic surgery – gluing in a torus). Let H = H(𝑏1, . . . , 𝑏ℓ) be a stratum of translation
surfaces, and let 𝑀 ∈ H, with singularities labeled by 𝜉1, . . . , 𝜉ℓ , so that the order of 𝜉𝑖 is 𝑏𝑖 . Suppose
M has a horizontal cylinder C, with circumference c, where one boundary component is made of saddle
connections that begin and end at 𝜉𝑖 , and the other is made of saddle connections that begin and
end at 𝜉 𝑗 , where 𝑏𝑖 ≥ 0 and 𝑏 𝑗 ≥ 0 (so that 𝜉𝑖 , 𝜉 𝑗 might be removable). Then for all 𝑤 > 0, there
exists 𝑀 ′ ∈ H(𝑏1, . . . , 𝑏𝑖 + 1, . . . , 𝑏 𝑗 + 1, . . . , 𝑏ℓ), with singularities labeled 𝜉 ′1, . . . , 𝜉

′
ℓ , which has

two horizontal cylinders 𝐶 ′
1, 𝐶 ′

2, where 𝐶 ′
1 has circumference 𝑐 + 𝑤 and 𝐶 ′

2 has circumference w. The
complements 𝑀 \ 𝐶 and 𝑀 ′ \ (𝐶1 ∪ 𝐶2) are isometric by an isometry mapping 𝜉 ′𝑖 to 𝜉𝑖 for all i. The
cylinders 𝐶1 and 𝐶2 only see singularity 𝜉 ′𝑖 on one boundary component, and 𝜉 ′𝑗 on another. Moreover,
if M is fully stably periodic, then so is 𝑀 ′.
Proof. It will be easier to follow the proof while consulting Figures 1 (before) and 2 (after). Given a
polygonal presentation for M, we give a polygonal presentation for 𝑀 ′. Let M be a polygon representation
for M in which the cylinder C is represented by a parallelogram P (in Figure 1, the large rectangle in
the center of the presentation), with two horizontal sides of length c, nonhorizontal sides identified to
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� �𝑐

Figure 1. The surface M has a cylinder of circumference c, and its boundary components see only the
singularities 𝜉𝑖 and 𝜉 𝑗 (denoted by ◦ and •). The edges not labeled by � are connected to 𝑀 \ 𝐶.

Figure 2. To obtain 𝑀 ′ from M, glue in a torus (rectangle on the right). This transforms C into a
cylinder 𝐶 ′

1 of circumference 𝑐 + 𝑤, and adds a horizontal cylinder 𝐶 ′
2 of circumference w. Edges not

labeled by �, �, / or the color green are attached to 𝑀 ′ \ (𝐶 ′
1 ∪ 𝐶 ′

2).

each other, and the singular points 𝜉𝑖 , 𝜉 𝑗 on adjacent corners of P. Thus, the nonhorizontal sides of P
represent a saddle connection 𝜎 on M connecting 𝜉𝑖 to 𝜉 𝑗 . We consider the two nonhorizontal sides of
P as distinct and label them by 𝜎1, 𝜎2. Let 𝑃′ be a parallelogram with sides parallel to those of P, where
the horizontal sides have length w and the nonhorizontal sides are longer than the ones on P (in Figure
2, 𝑃′ is to the right of P).

Label the two horizontal sides of 𝑃′ by ℎ′
1 and ℎ′

2, and identify them by a translation. Partition the
nonhorizontal sides of 𝑃′ into two segments. The segments 𝜎′

1, 𝜎
′
2 are parallel to each other and have

the same length as 𝜎1, 𝜎2 and start at a corner of P. The segments 𝛾′
1, 𝛾

′
2 comprise the remainder of the

nonhorizontal sides of 𝑃′ (and in particular, have the same length). Identify 𝛾′
1 to 𝛾′

2 by a translation,
and identify 𝜎′

1, 𝜎
′
2 to 𝜎1, 𝜎2 by a translation so that each 𝜎′

𝑖 is attached to the 𝜎𝑗 with the opposite
orientation. Let 𝑀 ′ be the translation surface corresponding to this presentation. It is clear that 𝑀 ′ has
the required properties. �

Proof of Proposition 8.3. The proof is by induction on
∑

𝑎𝑖 .
Base of induction: The base case is the stratum H(𝑎1, 0𝑠) – that is, one singular point (removable

or non-removable) of order 𝑎1, and some number 𝑠 ≥ 1 of removable singular points. In this case, we
take a surface in H(𝑎1) which is made of one horizontal cylinder. We label the singular point by 𝜉1 and
place additional removable singular points 𝜉2, . . . , 𝜉𝑠+1 in the interior of the cylinder, at different heights
(so that the resulting surface has no horizontal saddle connections between distinct singularities) and so
that 𝜉𝑖 and 𝜉 𝑗 are on opposite sides of a cylinder.
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Figure 3. First option for 𝑀 ′ in Lemma 8.5. Attaching the subsurface on the right increases the genus
by 2. Unlabeled edges are attached to 𝑀 ′ \ (𝐶1 ∪ 𝐶2 ∪ 𝐶3).

Inductive step: Suppose H′ = H(𝑎1, . . . , 𝑎𝑘 ) is our stratum, where at least two of the singularities
are non-removable. Let 𝑝′, 𝑞′ be labels of singular points for surfaces in H′, corresponding to indices
𝑖 ≠ 𝑗 . To simplify notation, assume 𝑖 = 1, 𝑗 = 2. There are three cases to consider: 𝑎𝑖 = 𝑎 𝑗 = 0, or one
of 𝑎𝑖 , 𝑎 𝑗 are positive, or both are positive.

If 𝑎𝑖 = 𝑎 𝑗 = 0, then by assumption, 𝑘 ≥ 4. We take a cylinder C on a fully stably completely
periodic surface M in H = H(𝑎1, . . . , �̂�𝑖 , . . . , �̂� 𝑗 , . . . , 𝑎𝑘 ). The notation �̂�𝑖 means that the symbol
should be ignored – that is, on a stratum of the same genus with 𝑘 − 2 ≥ 2 singular points obtained
by removing two removable singular points. We place two singular points marked 𝑝′, 𝑞′ in the interior
of C at different heights. If 𝑎𝑖 > 0 and 𝑎 𝑗 = 0 is zero, we take a fully stably periodic surface M in
H(𝑎1, . . . , 𝑎𝑖 , . . . , �̂� 𝑗 , . . . , 𝑎𝑘 ), find a cylinder C on M whose boundary component is made of saddle
connections starting and ending at 𝜉𝑖 , and place a marked point labeled 𝜉 𝑗 in the interior of C. If 𝑎𝑖 and
𝑎 𝑗 are both positive, we use the induction hypothesis to find a surface 𝑀 ∈ H(𝑎1, . . . , 𝑎𝑖 − 1, . . . , 𝑎 𝑗 −

1, . . . , 𝑎𝑘 ) with a cylinder whose boundary components see 𝜉𝑖 and 𝜉 𝑗 , and we perform the surgery in
Lemma 8.4 to this cylinder. �

Lemma 8.5 (Two surgeries involving genus two surfaces). Let H = H(𝑏1, . . . , 𝑏𝑘 ) be a stratum
of translation surfaces, and let 𝑀 ∈ H have a horizontal cylinder C, with circumference c. Let
p and q be singular points with order 𝑏𝑖 , 𝑏 𝑗 , respectively, such that one boundary component of
C only sees singularity p and the other only sees singularity q. Then for any 𝑤1, 𝑤2 > 0, there
exists 𝑀 ′ ∈ H′ = H(𝑏1, . . . , 𝑏𝑖 + 2, . . . , 𝑏 𝑗 + 2, . . . , 𝑏𝑘 ) which has three cylinders 𝐶1, 𝐶2, 𝐶3 with
circumferences 𝑐 +𝑤1 +𝑤2, 𝑤1 and 𝑤2, respectively. The complements 𝑀 \𝐶 and 𝑀 ′ \ (𝐶1 ∪𝐶2 ∪𝐶3)
are isometric by an isometry preserving the labels of singular points, and 𝐶1, 𝐶2, 𝐶3 all have one
boundary component that sees only p, and another that sees only q. Thus, if M is fully stably periodic,
so is 𝑀 ′. Moreover, if the 𝑏𝑖 are all even, so that H′ has even and odd spin components, we can choose
𝑀 ′ to be in either the even or odd connected component.

Proof. Once again, we encourage the reader to consult Figures 3 and 4.
In Lemma 8.4, we made a slit in M, running through P from top to bottom, and glued in a torus with

a slit. In this case, we make an identical slit, this time gluing in a genus two surface with a slit. This
surface is presented in Figures 3 and 4 as made up of three rectangles. It is straightforward to check
that 𝑀 ′ ∈ H′ and that it has cylinders satisfying the desired properties. It remains to check the final
assertion about the parity of the spin structure.

Recall from [KZ, eqn. (4)] that where defined, the spin structure of a surface M of genus g can
be computed as follows. Let 𝛼𝑖 , 𝛽 𝑗 (where 1 ≤ 𝑖, 𝑗 ≤ 𝑔) be a symplectic basis for 𝐻1 (𝑀), realized
explicitly as smooth curves on M. This means that all of these curves are disjoint, except for 𝛼𝑖 and 𝛽𝑖
which intersect once. For each curve 𝛾, let ind(𝛾) be the turning index – that is, the total number of
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Figure 4. Second option for 𝑀 ′, with a different spin.

Figure 5. Modifying the symplectic basis. Gluings as in Figure 3.

circles made by the tangent vector to 𝛾, as one goes around 𝛾. The parity of M is then the parity of the
integer

∑𝑔
𝑖=1(1+ ind(𝛼𝑖)) (1+ ind(𝛽𝑖)). It is shown in [KZ] that this number is well defined (independent

of the choice of the symplectic basis) when all the singular points have even order.
Suppose M has genus g and is equipped with a symplectic basis. Since any non-separating simple

closed curve can be completed to a symplectic basis, we can assume that 𝛼1 is the core curve of C, and
the other curves in the basis do not intersect the saddle connection from p to q passing through C. We
construct a symplectic basis for 𝑀 ′ in both cases, by modifying 𝛼1, keeping 𝛼2, . . . , 𝛼𝑔, 𝛽1, . . . , 𝛽𝑔, and
adding new curves 𝛼𝑔+1, 𝛼𝑔+2, 𝛽𝑔+1, 𝛽𝑔+2. The modified curves are shown in Figures 5 and 6, and the
reader can easily check that these new curves still form a symplectic basis and that these two choices
add two numbers of different parities to the spin structure. �

Note that in Proposition 8.2, we care about all connected components of strata. We need to record
some information about the classification of connected components of strata, due to Kontsevich and
Zorich. A translation surface is hyperelliptic if it admits an involution which acts on absolute homology
as −Id (see [FM] or [KZ, §2.1] for more details). A connected component of a stratum is hyperelliptic
if all surfaces in the component are hyperelliptic.

Proposition 8.6 ([KZ], Theorems 1 & 5 and Corollary 5 of Appendix B). Let H(𝑎1, . . . , 𝑎𝑘 ) be a
stratum with 𝑎𝑖 > 0 for all i. The following holds:

• H has three connected components in the following cases:
– 𝑘 = 1, 𝑎1 = 2𝑔 − 2, 𝑔 ≥ 4.
– 𝑘 = 2, 𝑎1 = 𝑎2 = 𝑔 − 1, 𝑔 ≥ 5 is odd. One is hyperelliptic, and the two non-hyperelliptic strata are

distinguished by the spin invariant.
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Figure 6. Modifying the symplectic basis, second case. Gluings as in Figure 4. Note the change in the
rotation number of 𝛽𝑔+2.

• H has two connected components in the following cases:
– All of the 𝑎𝑖 are even, 𝑔 ≥ 4, and either 𝑘 ≥ 3 or 𝑎1 > 𝑎2. The components are distinguished by

their spin.
– 𝑎1 = 𝑎2 and g is either 3 or is even. One of the components is hyperelliptic and the other is not.

When 𝑔 = 3, the hyperelliptic component is even, and the other one is odd.
• H is connected in all other cases.

Proof of Proposition 8.2. The proof will be case-by-case. Here are the cases:

(i) H(1, 1).
(ii) All the 𝑎𝑖 are nonzero, and H is connected.

(iii) All the 𝑎𝑖 are nonzero, and H has two connected components distinguished by spin.
(iv) All the 𝑎𝑖 are nonzero, and H has two connected components distinguished by hyperellipticity.
(v) All the 𝑎𝑖 are nonzero, and H has three connected components.

(vi) Some of the 𝑎𝑖 are zero.

Case (i). There is just one connected component, and the desired surface is a Z-shaped surface, with
three horizontal cylinders 𝐶1, 𝐶2, 𝐶3 of circumferences 𝑐1, 𝑐1 + 𝑐3, 𝑐3, where 𝐶1, 𝐶3 are simple. We put
all of the removable singular points in the interior of 𝐶3 and choose 𝑐1, 𝑐3 so that 𝑐1/(𝑐1 + 𝑐3) ∉ Q. It
is clear that with these choices, the conditions are satisfied.

Case (ii). The stratum H is connected, and we have at least two singularities of positive order. So
with no loss of generality, they are labelled 1 and 2. The result follows from Lemma 8.4, applied to a
surface in H(𝑎1 − 1, 𝑎2 − 1, 𝑎3, . . . , 𝑎𝑘 ) and taking 𝑤 ∉ 𝑐Q, so that 𝑤/(𝑐 + 𝑤) ∉ Q.

Case (iii). We apply the surgery in Lemma 8.5, with 𝑤1/𝑤2 ∉ Q. Namely, if p and q are labelled 𝑖, 𝑗 ,
we let 𝑏𝑖 = 𝑎𝑖 − 2, 𝑏 𝑗 = 𝑎 𝑗 − 2 and 𝑏ℓ = 𝑎ℓ for ℓ ≠ 𝑖, 𝑗 .

Case (iv). There are two connected components. One is hyperelliptic; one is not. This means that
𝑎1 = 𝑎2 and either 𝑔 = 3 (in which case 𝑎1 = 𝑎2 = 2) or 𝑔 ≥ 4 is even (in which case 𝑎1 = 𝑎2 = 𝑔 − 1).
In this case, we give explicit surfaces, one in each connected component. The first surface (the H(2, 2)
case is shown in Figure 7) is a ‘staircase’ surface made of gluing 2𝑔 rectangles to each other. The
rectangles are labelled (𝑘, 𝐵) and (𝑘, 𝑇) for 𝑘 = 1, . . . , 𝑔. The top (respectively, bottom) of (𝑘, 𝐵) is
glued to the bottom (resp., top) of (𝑘, 𝑇) for 𝑘 = 1, . . . , 𝑔, and the left (resp., right) of (𝑘, 𝑇) is glued
to the right (resp., left) of (𝑘 + 1, 𝐵) for 𝑘 = 1, . . . , 𝑔 − 1. The horizontal sides of (1, 𝐵) are glued to
each other, as are the horizontal sides of (𝑔, 𝑇). This surface is hyperelliptic since it has a hyperelliptic
involution rotating each rectangle around its midpoint, and this involution swaps the singularities (see
[KZ, Remark 3]). The second surface is obtained as follows. We first construct a hyperelliptic surface in
H(𝑎1 − 2, 𝑎2 − 2) as in the previous paragraph. Then we perform the surgery described in Lemma 8.5.
The resulting surface has a horizontal cylinder intersecting three vertical cylinders and thus, by
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Figure 7. A surface in Hℎ𝑦𝑝 (2, 2).

[Li, Lemma 2.1], is not hyperelliptic. See Figure 8 for an example in H(2, 2). In both of these construc-
tions, there are no restrictions on the sidelengths of the rectangles, and we can easily arrange that two
of the circumferences are incommensurable.

Case (v). In this case, 𝑎1 = 𝑎2 = 𝑔 − 1 for 𝑔 ≥ 5 odd. Applying the argument in Case (iii), we obtain
the required surfaces in the odd and even connected components. To obtain the required surface in the
hyperelliptic component, we use the ‘staircase surface’ described in Case (iv).

Case (vi). Assume with no loss of generality that the removable singularities are labelled 𝑘 ′+1, . . . , 𝑘
for some 𝑘 ′ ≥ 2, and letH′ = H(𝑎1, . . . , 𝑎𝑘′ ). Note that the singularities p and q have label in {1, . . . , 𝑘 ′}.
Apply the preceding considerations to obtain a surface in H′ with the required cylinders. By examining
the proof in all preceding cases, one sees that the number of horizontal cylinders on this surface is at least
three; that is, there is at least one cylinder 𝐶3 which is distinct from the cylinders 𝐶1, 𝐶2, and we modify
M by adding 𝑘 − 𝑘 ′ points in general position in the interior of 𝐶3, to obtain the desired surface. �

9. Zero entropy

In this section, we prove the following result:

Theorem 9.1. Let H be a stratum for which dim 𝑍 > 0, let 𝑧 ∈ 𝑍 \ {0}, and let 𝜇 be a probability
measure on H such that Rel𝑧 (𝑞) is defined for 𝜇-a.e. q. Assume that 𝜇 is Rel𝑧-invariant and ergodic,
and assume in addition that

there is 𝑡𝑛 → ∞ so that (𝑔−𝑡𝑛 )∗𝜇 converges to a probability measure (9.1)

(in the weak-* topology). Then the entropy of Rel𝑧 acting on (H, 𝜇) is zero.
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Figure 8. A surface in H𝑛𝑜𝑛ℎ𝑦𝑝 (2, 2).

For the proof of Theorem 9.1, we will need an estimate showing that points stay close to each other
for times up to L, provided their initial distance is polynomially small (as a function of L). To make
this precise, we will use the sup-norm Finsler metric on H, which was introduced by Avila, Gouëzel
and Yoccoz [AGY] and whose definition we now recall. For 𝑞0, 𝑞1 belonging to the same connected
component of a stratum H, we write

dist(𝑞0, 𝑞1) = inf
𝛾

∫ 1

0
‖𝛾′(𝑡)‖𝛾 (𝑡)𝑑𝑡, (9.2)

where 𝛾 : [0, 1] → Hm ranges over all 𝐶1 curves with 𝛾(0) ∈ 𝜋−1 (𝑞0), 𝛾(1) ∈ 𝜋−1 (𝑞1), and ‖ · ‖q is a
pointwise norm on the tangent space to Hm at q, identified via the developing map with 𝐻1 (𝑆, Σ;R2).
Below, balls, diameters of sets and 𝜀-neighborhoods of sets will be defined using this metric. We can
now state our estimate.

Proposition 9.2. Let H be a stratum of translation surfaces with at least two singularities, let Z be its
real Rel space, let 𝑧0 ∈ 𝑍 , and let T be the map of H defined by applying Rel𝑧0 (where defined). Then
for every compact subset 𝐾 ⊂ H, there is 𝐿0 > 0, such that if 𝑞 ∈ H, 𝐿 ∈ N, 𝐿 > 𝐿0 satisfy

𝑞 ∈ 𝐾 and 𝑔−ℓ𝑞 ∈ 𝐾, where ℓ
def
= 2 log 𝐿, (9.3)

then the maps 𝑇, . . . , 𝑇𝐿 are all defined on 𝐵
(
𝑞, 1

𝐿5

)
, and we have

max
𝑗=1,...,𝐿

diam
(
𝑇 𝑗

(
𝐵

(
𝑞,

1
𝐿5

)))
→𝐿→∞ 0.

We have made no attempt to optimize the power 5 in this statement.
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Our proof of Proposition 9.2 will use some properties of the sup-norm metric. They are proved in
[AGY]; see also [AG] and [CSW, §2]. Our notation will follow the one used in [CSW].

Proposition 9.3. The following hold:

(a) For all 𝑞0, 𝑞1 and all 𝑡 ∈ R, dist(𝑔𝑡𝑞0, 𝑔𝑡𝑞1) ≤ 𝑒2 |𝑡 |dist(𝑞0, 𝑞1).
(b) The metric dist is proper; that is, for any fixed basepoint 𝑞0, the map 𝑞 ↦→ dist(𝑞, 𝑞0) is proper. In

particular, the 𝜀-neighborhood of a compact set is pre-compact, for any 𝜀 > 0.
(c) The map q ↦→ ‖ · ‖q is continuous and hence bounded on compact sets. This means that for any

compact 𝐾 ⊂ Hm, there is 𝐶 > 0 such that for any q0, q1 in K, the norms ‖ · ‖q0 , ‖ · ‖q1 are
bi-Lipschitz equivalent with constant C.

(d) The infimum in (9.2) is actually a minimum that is attained by some curve 𝛾.

With these preparations, we can give the following:

Proof of Proposition 9.2. Write 𝐵
def
= 𝐵

(
𝑞, 1

𝐿5

)
, 𝐴

def
= 𝑔−ℓ (𝐵) (note that A and B both depend on L and

q, but we suppress this from the notation). Let 𝐾 ′ be the 1-neighborhood of K, which is a pre-compact
subset of H by Proposition 9.3(b). Since diam(𝐵) ≤ 2

𝐿5 , Proposition 9.3(a) implies that

diam(𝐴) ≤
2
𝐿3 . (9.4)

It follows from (9.3) that 𝐴 ∩ 𝐾 ≠ ∅, and therefore, 𝐴 ⊂ 𝐾 ′. Since

max
𝑗=1,...,𝐿

‖ 𝑗 𝑒−ℓ 𝑧0‖ ≤
1
𝐿
‖𝑧0‖ →𝐿→∞ 0, (9.5)

for all large enough L (depending on 𝐾 ′), we have that Rel 𝑗𝑒−ℓ 𝑧0 (𝑞
′) is defined for 𝑞′ ∈ 𝐾 ′. Since

𝑞′
1

def
= Rel 𝑗𝑒−ℓ 𝑧0 ◦ 𝑔−ℓ (𝑞1) is defined for 𝑞1 ∈ 𝐵, we have from (2.3) that 𝑇 𝑗 (𝑞1) = Rel 𝑗𝑧0 (𝑞1) = 𝑔ℓ (𝑞

′
1)

is also defined. This proves that the maps 𝑇, 𝑇2, . . . , 𝑇𝐿 are all defined on B.
Furthermore, this computation shows that 𝑇 𝑗 (𝐵) = 𝑔ℓ (Rel 𝑗𝑒−ℓ 𝑧0 (𝐴)), and so by Proposition 9.3(a),

it suffices to show that

𝐿2 · diam
(
Rel 𝑗𝑒−ℓ 𝑧0 (𝐴)

)
→𝐿→∞ 0.

Taking into account (9.4) and (9.5), it suffices to show that for any compact 𝐾 ′, there are positive 𝜀, 𝐶
such that for any 𝑞0, 𝑞1 ∈ 𝐾 ′ with dist(𝑞0, 𝑞1) < 𝜀, and any 𝑧 ∈ 𝑍 with ‖𝑧‖ < 𝜀, we have

dist(Rel𝑧 (𝑞0, 𝑞1)) ≤ 𝐶 dist(𝑞0, 𝑞1). (9.6)

Informally, this is a uniform local Lipschitz estimate for the family of maps defined by small elements
of Z.

To see (9.6), let 𝜀1 be small enough so that for any 𝑞 ∈ 𝐾 ′, the ball 𝐵(𝑞, 2𝜀1) is contained in a
neighborhood which is evenly covered by the map 𝜋 : Hm → H, and let C be a bound as in Proposition
9.3(c), corresponding to the compact set which is the 2𝜀1-neighborhood of 𝐾 ′. Let 𝜀 < 𝜀1 so that for any
𝑧 ∈ 𝑍 with ‖𝑧‖ < 𝜀 and any 𝑞 ∈ H, dist(𝑞, Rel𝑧 (𝑞)) < 𝜀1. If dist(𝑞0, 𝑞1) < 𝜀, then the path 𝛾 realizing
their distance (see Proposition 9.3(d)) is contained in a connected component V of 𝜋−1 (𝐵(𝑞0, 𝜀1)). Let

�̄� : [0, 1] → 𝐻1(𝑆, Σ;R2), �̄�(𝑡)
def
= dev(𝛾(𝑡)) − dev(𝛾(0)),

let

𝛾1
def
= Rel𝑧 ◦ 𝛾,
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and analogously define

�̄�1 : [0, 1] → 𝐻1 (𝑆,Σ;R2), �̄�1 (𝑡)
def
= dev(𝛾1 (𝑡)) − dev(𝛾1 (0)).

By choice of 𝜀 and 𝜀1, the curve 𝛾1 also has its image in V . Since Rel𝑧 is expressed by dev|V as
a translation map, the curves �̄�, �̄�1 are identical maps. When computing dist(Rel𝑧 (𝑞0), Rel𝑧 (𝑞1)) via
(9.2), an upper bound is given by computing the path integral along the curve 𝛾1. We compare this path
integral along 𝛾1, with the path integral along 𝛾 giving dist(𝑞0, 𝑞1). In these two integrals, for any t, the
tangent vectors 𝛾′(𝑡), 𝛾′

1 (𝑡) are identical elements of 𝐻1(𝑆, Σ;R2)) for all t, but the norms are evaluated
using different basepoints. Since these basepoints are all in the 2𝜀1-neighborhood of 𝐾 ′, by choice of
C, we have ‖𝛾′

1 (𝑡)‖𝛾1 (𝑡) ≤ 𝐶‖𝛾′(𝑡)‖𝛾 (𝑡) for all t. This implies (9.6). �

We now list a few additional results we will need. The first is the following weak Besicovitch-type
covering Lemma for balls of equal size.

Proposition 9.4. For any compact 𝐾 ⊂ H, there is 𝑁 ∈ N so that for any 𝑟 ∈ (0, 1), for any
𝐺 ⊂ 𝐾 , the collection C def

= {𝐵(𝑞, 𝑟) : 𝑞 ∈ 𝐺} contains N finite subcollections F1, . . . ,F𝑁 satisfying
𝐺 ⊂

⋃𝑁
𝑖=1

⋃F𝑖 , and each collection F𝑖 consists of disjoint balls.

Proof. The argument is standard; we sketch it for lack of a suitable reference.
We first claim that given a compact K, there is N so that for any 𝑟 ∈ (0, 1), the largest r-separated

subset of any ball of radius 2𝑟 has cardinality at most N. Indeed, this property is true for Euclidean
space (for any r) by a simple volume argument and is invariant under biLipschitz maps (up to changing
the constant N). For any compact K, let 𝐾1 be the 1-neighborhood of K in H, which is also compact by
Proposition 9.3(b) and contains all balls in H which are centered in K and have radius 𝑟 < 1. Now the
claim holds by Proposition 9.3(c).

We now inductively choose the F𝑖 . Let F1 be a maximal collection of disjoint balls of radius r with
centers in G. For 𝑖 ≥ 2, suppose F1, . . . ,F𝑖−1 have been chosen, let 𝐺𝑖

def
= 𝐺 \

⋃𝑖−1
𝑗=1

⋃F 𝑗 , and let F𝑖 be
the maximal collection of disjoint balls of radius r with centers in 𝐺𝑖 . Clearly, 𝐺 ⊃ 𝐺1 ⊃ · · · ⊃ 𝐺𝑁 ,
and we need to show that 𝐺𝑁+1 = ∅. Since F𝑖 is maximal, for any 𝑥 ∈ 𝐺𝑖 there is 𝑥 ′ which is the
center of one of the balls of F𝑖 , so that 𝑑 (𝑥, 𝑥 ′) < 2𝑟 . If 𝑥 ∈ 𝐺𝑁+1 ≠ ∅, then the ball 𝐵(𝑥, 2𝑟) contains
𝑥1, . . . , 𝑥𝑁 such that 𝑥𝑖 is the center of one of the balls of F𝑖 . For 𝑖′ > 𝑖, 𝑑 (𝑥𝑖 , 𝑥𝑖′ ) ≥ 𝑟 since 𝑥𝑖′ ∈ 𝐺𝑖′ .
This contradicts the property of N from the preceding paragraph. �

We will need to know that volumes of balls do not decay exponentially:

Lemma 9.5. For any probability measure 𝜇 on H, for any n, for 𝜇-a.e. x, we have

lim
𝑟→0+

−𝑟 log(𝜇(𝐵(𝑥, 𝑟𝑛)) = 0. (9.7)

Sketch of proof. We fix n. Observe that (9.7) says that for almost every point x, for all 𝜀 > 0, 𝑒−𝜀𝑟
− 1
𝑛 is

𝑜(𝜇(𝐵(𝑥, 𝑟))), as 𝑟 → 0. Let K be a compact subset of H, and let 𝑑 = dimH. For all small enough r,
we can cover K by 𝑂

(
𝑟−𝑑

)
balls of radius r; we let B𝑟 = {𝐵(𝑥𝑖 , 𝑟)} denote such a finite collection of

balls. If 𝐵 = 𝐵(𝑥, 𝑟), then any element of B 𝑟
3

that contains x is contained in B and hence has measure at
most 𝜇(𝐵). For 𝑘 ∈ N, let

E𝑘 =
{
𝐵 ∈ B 2−𝑘

3
: 𝜇(𝐵) < 𝑒−2𝑘/(2𝑛)

}
,

so that

𝜇

( ⋃
𝐵∈E𝑘

𝐵

)
= 𝑂

(
2𝑘𝑑𝑒−2𝑘/(2𝑛)

)
. (9.8)
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Since K was arbitrary, it suffices to show that a.e. 𝑥 ∈ 𝐾 belongs to at most finitely many of the sets E𝑘 ;
this follows from (9.8) and Borel-Cantelli. �

We also need some standard facts about entropy. In the following proposition, X is a standard Borel
space, 𝑇 : 𝑋 → 𝑋 is a measurable map, Prob(𝑋)𝑇 denotes the T-invariant Borel probability measures
on X, 𝜇 is a measure in Prob(𝑋)𝑇 , P is a measurable partition of X, and ℎ𝜇 (𝑇,P) is the entropy of T
with respect to 𝜇 and P . Then the entropy of T with respect to 𝜇 is supP ℎ𝜇 (𝑇,P), where the supremum
ranges over all finite P . For 𝑥 ∈ 𝑋 , P𝑛 (𝑥) is the atom of the finite refinement

∨𝑛
𝑖=0 𝑇−𝑖P containing x.

Proposition 9.6. We have the following:

(1) [Shannon-McMillan-Breiman Theorem.] If 𝜇 is ergodic, then for 𝜇-a.e. x, we have

lim
𝑛→∞

− log(𝜇(P𝑛 (𝑥)))

𝑛
= ℎ𝜇 (𝑇,P).

(2) [Entropy and convex combinations.] If 𝜇 =
∫

Prob(𝑋 )𝑇
𝜈 𝑑𝜃, for some probability measure 𝜃 on

Prob(𝑋)𝑇 , then

ℎ𝜇 (𝑇,P) =
∫

Prob(𝑋 )𝑇
ℎ𝜈 (𝑇,P) 𝑑𝜃.

(3) [Partitions with small boundary.] Let X be a locally compact, separable metrizable space. Then
ℎ𝜇 (𝑇) = supP ∈Part0 ℎ𝜇 (𝑇,P), where Part0 denotes the finite partitions of X into sets 𝑃𝑖 satisfy
𝜇(𝜕𝑃𝑖) = 0 for all i.

For items (1) and (2), see, for example, [Gl, Thms. 14.35 & 15.12] or [ELW, Chaps. 2 & 3]. Item (3)
is left as an exercise (see [ELW, Pf. of Thm. 2.2]).

Proof of Theorem 9.1. We assume that the entropy ℎ = ℎ𝜇 (𝑇) satisfies ℎ > 0, and we will derive a
contradiction. Using Proposition 9.6(3), we choose a partition P = {𝑃𝑖}

𝑘
𝑖=1 so that 𝜇(𝜕𝑃𝑖) = 0 for each

i and ℎ𝜇 (𝑇,P) > ℎ
2 . Choose K compact so that 𝜇(𝐾) > 3

4 and

lim sup
𝑡→∞

𝜇 (𝑔𝑡 (𝐾)) >
3
4
. (9.9)

A compact set with this property exists by the nondivergence assumption (9.1). Let N and 𝑟0 be as in
Proposition 9.4 for this choice of K. Using the Shannon-McMillan-Breiman theorem, let 𝐿0 be large
enough so that for all 𝐿 > 𝐿0, the set

𝑊
def
=

{
𝑞 :

− log(𝜇(𝑃𝐿 (𝑞)))

𝐿
≤

ℎ

2

}

satisfies

𝜇(𝑊) <
1

6𝑁
. (9.10)

Our goal will be to choose some 𝐿 > 𝐿0 for which we have a contradiction to (9.10).
Below, we will simplify notation by writing 𝐵

(
𝑞, 1

𝐿5

)
as 𝐵𝑞,𝐿 or simply as B. Let

𝐺𝐿
def
=

{
𝑞 : 𝜇

(
𝐵𝑞,𝐿 ∩𝑊

)
>

𝜇(𝐵𝑞,𝐿)

2

}
.
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We will show below that

there are arbitrarily large 𝐿 for which 𝜇(𝐾 ∩ 𝐺𝐿) >
1
3
. (9.11)

We first explain why (9.11) leads to a contradiction with (9.10). Let 𝐿 > 𝐿0 be large enough so that
diam(𝐵) ≤ 2

𝐿5 < 𝑟0 and 𝜇(𝐾 ∩ 𝐺𝐿) > 1
3 , and let

C def
=

{
𝐵𝑞,𝐿 : 𝑞 ∈ 𝐺𝐿

}
.

By Proposition 9.4, there is a subcollection F ⊂ C, consisting of disjoint balls, so that

𝜇
(
𝐾 ∩ 𝐺𝐿 ∩

⋃
F

)
≥

1
𝑁

𝜇(𝐾 ∩ 𝐺𝐿) >
1

3𝑁
.

Then we have

𝜇(𝑊) ≥ 𝜇
(
𝑊 ∩

⋃
F

)
=

∑
𝐵∈F

𝜇(𝑊 ∩ 𝐵) >
∑
𝐵∈F

𝜇(𝐵)

2
≥

𝜇 (
⋃F)

2
≥

1
6𝑁

,

where the equality follows from the disjointness ofF and the strict inequality follows from the definitions
of 𝐺𝐿 and C . This gives the desired contradiction to (9.10).

It remains to show (9.11). Choose 𝜀 > 0 so that

21 𝜀 log(𝑘) <
ℎ

2
. (9.12)

Given any 𝐿1, let 𝐿 > 𝐿1, and let 𝑋0 = 𝑋0(𝐿) ⊂ 𝐾 such that 𝜇(𝑋0) ≥
1
2 , and so that for any 𝑞 ∈ 𝑋0, we

have (9.3). Such L and 𝑋0 exist by (9.9). Using Lemma 9.5 with 𝑛 = 5, we can take L large enough so that

𝜇 (𝑋1) >
99

100
, where 𝑋1

def
=

{
𝑞 : 𝜇

(
𝐵𝑞,𝐿

)
> 𝑘−𝜀𝐿

}
, (9.13)

and by making L even larger, we can assume that

𝑘−10𝜀𝐿 <
1
2
. (9.14)

Now choose 𝑟 > 0 so that

𝜇(𝑉) < 𝜀, where 𝑉
def
=

{
𝑦 : dist

(
𝑦,

𝑘⋃
𝑖=1

𝜕𝑃𝑖

)
< 𝑟

}
. (9.15)

This is possible because 𝜇 (
⋃

𝑖 𝜕𝑃𝑖) = 0.
We claim that

𝜇(𝑋2) >
2
5
, where 𝑋2

def
=

{
𝑞 ∈ 𝑋0 : |{0 ≤ 𝑖 ≤ 𝐿 : 𝑇 𝑖𝑞 ∈ 𝑉}| < 10𝜀𝐿

}
. (9.16)

To see this, define

𝐸
def
= {𝑞 : |{0 ≤ 𝑖 ≤ 𝐿 : 𝑇 𝑖𝑞 ∈ 𝑉}| ≥ 10𝜀𝐿},
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and let 1𝑉 denote the indicator function of V. Using (9.15), and since 𝜇 is T-invariant,

𝜀𝐿 > 𝐿𝜇(𝑉) =
𝐿∑
𝑖=1

∫
1𝑉

(
𝑇 𝑖𝑞

)
𝑑𝜇 ≥ 10𝜀𝐿𝜇(𝐸).

Dividing through by 10𝐿𝜀, we have 𝜇(𝐸) < 1
10 , giving (9.16).

Let

𝛽
def
= 𝑘−20𝜀𝐿 , and write P (𝐿) def

=
𝐿∨
𝑖=1

𝑇−𝑖 (P).

For each q, we let P (𝐿,𝐵) be the elements of P (𝐿) which intersect 𝐵 = 𝐵𝑞,𝐿 and partition P (𝐿,𝐵) into
two subcollections defined by

P (𝑞,𝐿)
big

def
=

{
𝑃 ∈ P (𝐿,𝐵) : 𝜇(𝑃) ≥ 𝛽𝜇(𝐵)

}
and P (𝑞,𝐿)

small
def
= P (𝐿,𝐵) \ P (𝑞,𝐿)

big .

We claim that if 𝑞 ∈ 𝑋2, then

𝜇
(
𝐵 ∩

⋃
P (𝑞,𝐿)

big

)
>

(
1 − 𝑘−10𝜀𝐿

)
𝜇 (𝐵)

(9.14)
>

𝜇(𝐵)

2
. (9.17)

To see this, we note that for q satisfying the conclusion of Proposition 9.2, the cardinality of P (𝐿,𝐵) is
at most 𝑘 | {0≤𝑖≤𝐿 :𝑇 𝑖𝑞∈𝑉 } | . Indeed, for such q, whenever 𝑇 𝑖𝑞 ∉ 𝑉 , 𝑇 𝑖 (𝐵) is contained in one of the 𝑃𝑖

(and for the other i, we use the obvious bound that 𝑇 𝑖𝑞 ∈ 𝑉 , 𝑇 𝑖 (𝐵) could intersect all of the 𝑃𝑖). For
𝑞 ∈ 𝑋2, we also have that 𝛽−1/2 ≥ 𝑘 | {0≤𝑖≤𝐿 :𝑇 𝑖𝑞∈𝑉 } | , and this implies that

𝜇
(
𝐵 ∩

⋃
P (𝑞,𝐿)

small

)
< 𝛽−1/2𝛽𝜇(𝐵) = 𝑘−10𝜀𝐿𝜇(𝐵),

and this proves (9.17).
If 𝑞 ∈ 𝑋1 ∩ 𝑋2 and 𝑞′ ∈ 𝐵𝑞,𝐿 ∩

⋃P (𝑞,𝐿)
big , then we have

𝜇(𝑃𝐿 (𝑞
′)) ≥ 𝛽𝜇(𝐵𝑞,𝐿) ≥ 𝑘−21𝜀𝐿 ,

and this implies via (9.12) that 𝑞′ ∈ 𝑊. This and (9.17) shows that 𝑋1 ∩ 𝑋2 ⊂ 𝐺𝐿 . Thus,

𝜇(𝐺𝐿) ≥ 𝜇(𝑋1 ∩ 𝑋2) ≥
2
5
−

1
100

>
1
3
, (9.18)

and we have shown (9.11). �

Proof of Theorem 1.6. Denote by T the map defined by Rel𝑧0 (where defined). Since 𝑚L is G-invariant,
it is rotation invariant, and thus 𝑚L-a.e. q has no horizontal saddle connections. In particular, for such
q, Rel𝑧 (𝑞) is defined for all 𝑧 ∈ 𝑍 .

Assume first that 𝑚L is ergodic. By G-invariance of 𝑚L, we have (9.1), so the hypotheses of
Theorem 9.1 are satisfied for 𝜇 = 𝑚L. Now suppose 𝑚L is not ergodic, and let 𝜇 =

∫
Prob(𝑋 )𝑇

𝜈 𝑑𝜃 be the
ergodic decomposition of 𝜇, where 𝜃 is a probability measure on Prob(𝑋)𝑇 such that 𝜃-a.e. 𝜈 is ergodic
for T. By Proposition 9.6(2), it suffices to show that the entropy of 𝜈 is zero for 𝜃-a.e. 𝜈, and thus, we
only need to show that assumption (9.1) holds for 𝜃-a.e. 𝜈. This follows from the 𝑔𝑡 -invariance of 𝑚L.
Indeed, by invariance and regularity of 𝑚L, for any 𝜀 > 0, there exists a compact K, so that for all t,
𝑚L (𝑔𝑡 (𝐾)) = 𝑚L (𝐾) > 1 − 𝜀2. Thus, for every t,

𝜃 ({𝜈 : 𝑔−𝑡∗𝜈(𝐾) ≥ 1 − 𝜀}) ≥ 1 − 𝜀.

https://doi.org/10.1017/fmp.2024.6 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.6


24 J. Chaika and B. Weiss

Thus, for any 𝜀 > 0, there is K so that the set of 𝜈, for which (𝑔−𝑡𝑖 )∗𝜈(𝐾) ≥ 1−𝜀 for a sequence 𝑡𝑖 → ∞,
has 𝜃-measure at least 1 − 𝜀. Since 𝜀 was arbitrary, we have (9.1) for 𝜃-a.e. 𝜈. �
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