OBJECTIVES/SPECIFIC AIMS: To identify cardiac structural and function parameters, obtained on usual stroke-care TTE evaluation, associated with cardioembolic stroke (CE) in patients without AF. Hypothesis—left atrial (LA) size and valve dysfunction will be strongly associated with incident CE. METHODS/STUDY POPULATION: Inclusion criteria: July 1, 2013 to July 1, 2015 admission with imaging-confirmed ischemic stroke, no AF, TTE within 1st 7 days. TTE structure/ function parameters were recorded. Stroke subtype (CE vs. other) defined using TOAST criteria, blinded to TTE. New AF definition: AF on ECG, telemetry or event monitor ECG. CE if AF identified on TTE, AF not identified. RESULTS/ANTICIPATED RESULTS: Participants (n = 332) were ~60 years hypertensive black males with moderate NIHSS and normal ejection fraction. In adjusted models, odds of CE increased with increasing LA systolic diameter (per 0.1 cm), mitral E point velocity (cm/s), mitral valve dysfunction, wall motion abnormality. New AF also associated with increasing LA systolic diameter. DISCUSSION/SIGNIFICANCE OF IMPACT: These findings may suggest cardiac structural changes independent of AF that are on the CE causal pathway. Understanding the relationship between such TTE parameters and stroke subtype would impact clinical practice, as such TTE data is underutilized when considering stroke mechanism and management.

Augmenting perception through direct electrical stimulation of adult somatosensory cortex
Yohannes Ghenbot, Andrew Richardson, Xilin Liu, Han Hao, Sam DeLuccia, Greg Boyek, Jan Van der Spiegel and Timothy Lucas

OBJECTIVES/SPECIFIC AIMS: Our main objectives are to study sensory encoding in the adult cortex and quantify rodents’ ability to use intracranial microstimulation and guidance behavior. METHODS/STUDY POPULATION: Three rats were implanted with unilateral bipolar stimulating electrodes. The electrodes were connected to a wireless neural stimulator housed in the rat’s backpack. The rat’s swim path was tracked by a video camera above the circular pool, and stimulation parameters were updated in real-time based on distance from the platform. Stimulation was delivered as the distance from the platform increased. Stimulation amplitude was determined through behavioral threshold testing, and parameters ranged from 15–75 μA with 100-Hz pulse trains and 0.2-ms pulses. Rats were first challenged with the 4-platform task in which the submerged platform was randomized across 4 possible locations. This dissociated visual cues from the platform location, as rats had knowledge of the 4 possible locations, but had to use stimulation to guide them efficiently. Next, rats were tasked with the more challenging random-platform task. Visual cues were completely dissociated from the platform location by randomizing the platform location across the entire pool. Performance using the neuroprosthetic device was assessed by comparing trials when the device was on (stimulation trial) Versus off (no-stim trial) for the 2 tasks. RESULTS/ANTICIPATED RESULTS: 4-platform task: Rats visited less potential platform locations when the neuroprosthetic was on Versus off. Rats were also more likely to visit the correct platform location on their first swim trajectory when brain stimulation was delivered. When artificial cues were not available, rats had a greater chance of visiting the platform location from the previous trial. This indicated that rats relied on visuospatial memory without the neuroprosthetic. Random platform task: Performance was measured by taking the ratio of the rat’s actual path length to the optimal path length. When the neuroprosthetic was on, rats demonstrated superior performance through a smaller path length ratio compared with when the device was off. The platform locations of catch trials were matched to a random subset of stimulation trials, permitting a paired sample t-test. Both rats had significantly shorter path lengths when the device was on. DISCUSSION/SIGNIFICANCE OF IMPACT: Rodents have excellent navigational skills that have been well studied. They have been shown to rely on multimodal sensory information from visual, olfactory, auditory, and idiothetic cues to navigate through their environment. The importance of these cues depends on both their environmental presence and task relevance. In the original Morris water maze experiment, rats use vision to form a visuospatial map of the platform location for allocentric navigation. Here, we have shown that contrary to expectations, rats can pick up on novel sensory information delivered through ICMS to efficiently find a hidden platform when visual cues are made irrelevant. Our results have implications for the design of the bi-directional sensorimotor neuroprosthetic. We have demonstrated that mammals can interpret artificial sensory information to guide behavior. Future directions include investigating sensory encoding in other primary sensory areas and downstream targets along the somatosensory neuraxis.

Beyond diagnosis: Using ultrasound to affect tumor vasculature for hepatocellular carcinoma (HCC) therapy
Julia D’Souza, Laith Sultan, Sean Carlin, Terence Gade, Stephen Hunt and Chandra Sehgal
School of Medicine, University of Pennsylvania

OBJECTIVES/SPECIFIC AIMS: Preliminary animal studies showed that low-intensity ultrasound (US) coincident with intravascularly administered microbubbles locally disrupts tumor vasculature. This study translates the novel therapy of antivascular ultrasound (AVUS) into an autochthonous model of hepatocellular carcinoma (HCC). The differential effects produced by AVUS at low and high doses are evaluated. METHODS/STUDY POPULATION: HCC was induced in 12 Wistar rats by injection of 0.01% diethylnitrosamine in drinking water for 12 weeks. Rats received AVUS treatment at low and high doses. Low dose group (n = 6) received 1 W/cm² for 1 minute with 0.2 mL microbubbles injected IV.