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THE STRONG ¢ TOPOLOGY ON SYMMETRIC
SEQUENCE SPACES

WILLIAM H. RUCKLE

1. Introduction. The strong ¢ topology. Let S be a linear space of real
sequences written in functional notation

s = (s()) = (s(1), 5(2), ...).

There is a natural duality between S and the space ¢ of sequences which
are eventually 0 given by the equation

(s,1y = 2 s(j)(j) s €S 1€

J

The series has only a finite number of nonzero terms since ¢ is in ¢.
A subset B of ¢ is called S-bounded if

Pa(s) = sup{ ’2 s(j)t(j)':t S B} < oo
J

for each s in S.

The strong ¢ (Bp—) topology on S is the locally convex topology
determined by all seminorms of the form pg as B ranges over all
S-bounded subsets of ¢. Most familiar sequence spaces bear the [¢
topology, e.g., ¢ with the strongest locally convex topology, the /P-spaces
1 = p = oo with the BK topology, and w (all sequences) with the topology
of coordinate-wise convergence, but not /” (0 < p < 1) with the FK
topology. The concept of B¢ topology is related to the concept of norming
biorthogonal sequence; see, e.g., [11].

A space S of sequences is called symmetric if the sequence s, is in S for
every s in S and every permutation 7 on the set of indices. Here s, is the
sequence given by

Sy = (s(m(1)), s(m(2)),...).

Symmetric sequence spaces are considered in the 1934 paper of Kothe and
Toeplitz [3], in the three papers of Garling [4-6] and two papers of the
author [8, 9]. Besides ¢, w and the /P-spaces, two additional types of
symmetric sequence spaces, Lorentz sequence spaces and Orlicz sequence
spaces, have been the object of investigation. See, for example, [7].
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The purpose of this paper is to determine whether symmetric sequence
spaces are barrelled in the B¢ topology. We shall prove that the answer is
“yes” for three of the four categories of symmetric spaces, but the answer
in general is “no.” The main positive result in this paper is Theorem 4.3
which asserts that every symmetric space of bounded sequences which
contains a nonconvergent sequence is barrelled in its 8¢ topology, and the
Bé topology coincides with the relative topology of the BK-space [ of
bounded sequences. This is a generalization of a result of Seever [13] for
the particular space of finitely valued sequences. The main negative result
is an example of a nonseparable symmetric BK-space which is not
barrelled in its B¢ topology.

For any sequence space S is the a-dual or Kithe dual of S is the space S*
determined by the equation

S = {z: D Is()()| < oo, Vs € S}.
j

A sequence space S is called perfect if S** = S. Kothe and Toeplitz [3]
showed in 1934 that if S is perfect and symmetric then S = ¢, S = o,
S=[orl'csg¢ ¢o- This permits us to classify symmetric sequence
spaces S which may not be perfect in terms of S* (which is perfect).

S is very large if S* = ¢

S is large if §* = /!

S is medium if I' € $* € ¢,

S is small if S* = [*°.
If S is a symmetric sequence space and $*= w then S C ¢ so either S = ¢
or

S = {seqb:Zs(j):o}.
J

Henceforth we assume that all sequence spaces mentioned contain ¢. Thus
if S* = wand S D ¢, S = ¢; the B¢ topology on ¢ is the strongest locally
convex topology whose various properties are well known.

We shall see that for small, large and very large symmetric sequence
spaces the B¢ topology is the relative FK topology of I, I® and w
respectively, and all of these spaces are barrelled. On the other hand, the
collection of medium spaces admits a variety of topologies, some of which
are not barrelled.

2. Very large symmetric sequence spaces (S*= ¢). It is easy to see that a
symmetric sequence space is very large if and only if it contains an
unbounded sequence. The space w is very large, and seems to be the only
very large space mentioned in the literature. Here is an example which
shows that many very large symmetric sequence spaces are possible.
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2.1 Example of a very large sequence space distinct from w. Let D
consist of all finite linear combinations of rational sequences. Then D is a
very large symmetric sequence space. If u is a sequence of real numbers
which is linearly independent over the rationals, then u is not in D. To see
this suppose

k
U= E a,Vy
n=1

where each v, is a sequence of rationals and each g, is a real number
n = 1, 2,...,k. But this means that each u(j) is a finite rational
combination of {a,,...,a,} contradicting the assumption that u is
linearly independent over the rationals.

2.2 THEOREM. If S is a symmetric sequence space which contains an
unbounded sequence, then

(a) S is very large;

(b) the B¢ topology on S is the relative topology of w (the product

topology);
(c) S is barrelled in the B¢ topology.

Proof. We omit the straightforward proof of conclusion (a).

Conclusion (b) follows from the proof of Proposition 2 of [5] which does
not use the fact that (e,) forms a basis for the space.

(c) First we shall prove that if B is an S-bounded subset of ¢ then

(1) For each n

sup{ [x(n) |:x € B} = M, < co.

(11) There is N such that for each x in Bandj > N, x(j) = 0.

Assertion (i) is true since by our standing assumption e, is in S for each
n. To establish (ii), we assume the contrary, for the sake of obtaining a
contradiction. This means we assume there is a sequence (x,) in B and a
sequence of indices (i,) such that i, > i,_, + 1| and x,(i,) is the last
nonzero term in x, for each n. Let v be an unbounded sequence in S. We
define a permutation 8 on the set of indices by induction. For n < i; let
0(n) = n; let 6(i;) be the smallest index A; such that

Wh)x, i) | > 1+ 2 v(6()) M,

J<i

If 6(n) has been defined for n < i, let 6(i, ) be the smallest index &, such
that

W )x i) | >k + 2 v(6()) IM,.

J<iy

Finally, let 6(i, + 1) be the smallest index in the complement of {8(;j); =
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i, } to ensure that 4 is onto. Then we have

2 x,()ve()

= |x, (i, vgli) | —

ZxAﬂMﬂ‘

J<iy

I, (i, (i) | = 2 vg()) 1M

j<in

> n.

This shows v, is not bounded on B, contradicting the fact that B is
S-bounded.

Since the B¢ topology on S is the relative w topology, it follows that the
dual space of S is the space ¢ with the natural duality. If B is an
S-bounded subset of ¢, then it satisfies (i) and (i) so it is w-bounded; see
[3]- But the B¢ topology on w is an FK topology so that it is barrelled.
Therefore, B is equicontinuous. Since S-bounded implies S-equicontin-
uous it follows that S is barrelled.

3. Small symmetric sequence spaces (S = [/®). Examples of small
symmetric sequence spaces are /(0 < p = 1). In [10] it is shown that the
intersection of all small symmetric sequence spaces is ¢. In other words,
for each sequence u not in ¢ there is a small symmetric sequence space
which does not contain u.

3.1 LEMMA. Suppose S is a symmetric sequence space which properly
contains ¢ but is contained in I'. If A is an unbounded subset of I i.e., if

sup{sup/x(j)[:x € A} = oo,

then there is s in S such that

> s(j)x(j)

J

3.1 sup{ x € A} = oo.

Proof. For eachk = 1,2,..., let
M(k) = sup{ |x(k) |:x € 4}.

If for any k, M(k) = oo then we may take s to be ¢, and conclude
the proof. Thus for the remainder of the proof we may assume
M (k) < oo for each k. Of course, since 4 is unbounded in /* it follows
that sup, M (k) = co.

Let ¢ be any sequence in S but not in ¢. Let h; < h, << ... be a sequence
of positive integers such that for each j,

h; — h;,_; > 1and It(hj)l < |t(hj_|) |.

Let 7 be the permutation on the integers which interchanges 4,, | and 4,,
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foralln = 1,2, ... and leaves other integers the same. If v = ¢ — 1 then v
isin S,

v(j) = O0forj & {h, hy,...} and

v(hzn_l) = '_V(hzn) #* 0 fOI‘ n = 1, 2, I

Let {n,, ny, ...} be a sequence of integers for which

(3D X Il )|+ ihy,) | <277 D, )|

j>m

This is possible because S C /'. Denote by 8 the permutation which
interchanges h,, _, and h,, and leaves the remaining integers unchanged.
If ' '

1
u = E(v vﬂ)’

then u i1sin S,
u(j) = 0forj & {hy, 1 hy,j = 1,2...} and
wlhy, ) = —ulhy,) # 0.

Denote |u(hy, )| by a;. Then because of (3.2)

2 a; < 2_mam.
k>m

We shall now define a sequence s which is a permutation of u and
satisfies (3.1). Let x; be any sequence in 4 such that

[lx,|| > max{1/a;, M(1), M(2) } + 1.

Here || || denotes the norm in /°°, the sup-norm. Let m, be the smallest
positive integer such that

bxy(mp) | > [lx|| — 1/2.
Since |x,(m;) | is larger than M(1) and M(2) it follows that m, > 2. Let
s(1) = —(sgn x)(m)) )a,
sy =0 1<j<m
s(my) = (sgn x,(m,) )a;.

Suppose we have defined x;, m, for h < n and s(j) forj = m, . Let x,,
in A be such that

lIx,l > 1 + max{a;'(l - 2"‘)“‘(2" + X Is() M)

j<mn—l
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+aM(@m, | + 1)), MM,....M(m,_, + 2)}.
Let m, be the smallest positive integer such that
x, (m,) | > lx, |l — 27"
Note that m, > m,_, + 2. Let
s(m,_; + 1) = (—sgn x,(m,) )a,
s(y=0 m,_, +1<j<m,
s(m,) = (sgn x,(m,) )a,

Then s is a permutation of u since it exhausts the nonzero elements
=+a, and contains infinitely many 0’s as well. This implies s € S. For each
n we have

> S(j)xn(j)‘ = |s(m, )x,(m,) |

J

— 2 sGHx,) 1 = 2 IsGx,()

j<m, i>m,

v

a,(llx,)l — 27 — 2 Is() M)

j<"1,,—|

—a,M(m,_, + 1) — lIx,]l 2 Is()

j>mll

=z a,(lx)l — 27 = X Is()IM()

J<m

n—1

—a,M(m,_, + 1) — |Ix,lI27 "a,

Za,((1—27"x,)l — 27"
- 2 () IM() — a,M(m,_, + 1)
J<my,—,

=2"— 27",

Consequently we conclude that (3.1) holds for s.

3.2 THEOREM. If S is a small symmetric sequence space then
(a) The B¢ topology on S is the relative topology of the BK space I
(b) S is barrelled in the Bé topology.
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Proof. If B is an S-bounded subset of ¢ then by Lemma 3.1 B is
absorbed by the set

U, = {x € ¢:sup,lx(n)| = 1}.

Since S is contained in 1', U, is S-bounded. Therefore, the 8¢ topology on
S is determined by the norm

Py, (W) sup{ IE u(j)x(j)|:x € Uoo}
J

I

2 lu(j) .

J

This confirms conclusion (a).

Conclusion (b) now follows from Lemma 3.1 just as (¢) of Theorem 2.2
follows from (i) and (ii) in the proof of that Theorem. Since the B¢
topology on S is the relative topology of /', the dual space of Sis [°. If B
is an S-bounded subset of m then by Lemma 3.1 it is uniformly bounded
hence equicontinuous. Therefore, S is barrelled.

4. Large symmetric sequence spaces (S = / ). There are three classes of
large symmetric sequence spaces
IS Cg¢
II § € ¢ convergent sequences, but S ¢ ¢,
II1 S c [*, but S contains a nonconvergent sequence.
We first consider large symmetric sequence spaces of the first class. An
example of such a space not ¢ is ¢y N D where D is given by 2.1.

4.1 LEMMA. Suppose S is a large symmetric sequence space. A subset B of
I' is S-bounded if and only if

4.1) sup{z ly(Hly € B} < oo.
J

Proof. Condition (4.1) implies B is bounded in the BK topology of /!
hence /*°-bounded. Since S* = I', s ¢ $** = [® s0 B is S-bounded. This
shows (4.1) is sufficient.

If x is in S then the set {(x) consisting of all sequences x,, where 7 ranges
over all permutations is /'-bounded because (x) is uniformly bounded.
Since (x) is bounded, by Satz 1, Section 5 of [3] it is completely
bounded. Hence, if B is an S-bounded subset of l', SO 1S

(B) = {y,:y € B, wis a permutation}.

This is because for x in S
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sup{ lZ x(j)y,,m‘:y S B}
J

= sup{‘z u(jy(j)|u € {(x),y € B} < oo.
J

Now assume, for the sake of obtaining a contradiction, that B is an
S-bounded subset of /' which does not satisfy (4.1). For each n let x,, in B
satisfy

2 lx,() >4+ 1
J

Since each x, is in /' we can find a sequence (m,) of permutations and a
sequence (M,) of disjoint subsets of indices such that

2 ), <1

JEM,

It follows that

2 ), ()] >4

JEM,

n

for each n. Each (x,), is a member of the set (B) which is S-bounded.
Therefore, the partial sums of

2 27x,),,

form a Cauchy sequence in the a(/', S) topology on /'. By Satz 2, Section 4
of [3] there is x in I' such that

> 27 %x,), = x
in the o(/', S) topology. Since ¢ C S,

> 2_"(x,,),,"(j) = x(j) for eachj,

we have
DI z27" 2.l - 227" 2 1 x)n 0D
JEM, JEM, m¥#n JEM,
=2"— 1.

This contradicts the fact that x is in /'.

The following theorem follows from Lemma 4.1 very much as Theorem
3.2 follows from 3.1. Therefore, we omit the proof.
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4.2 THEOREM. If S is a large symmetric sequence space which is contained
in ¢, then

(a) The B¢ topology on S is the relative topology of the BK space cy;

(b) S is barrelled in the B¢ topology.

If S is of class II then S = [e] the span of e = (1, 1,...) or
S = T @ [e] where T is a symmetric sequence space which is small,
medium or large of class I. This S is barrelled if and only if T is. This
essentially reduces the study of large symmetric sequence spaces of class 11
to those which are small, medium, or large, class I.

For symmetric sequence spaces of class III we have the following
result.

4.3 THEOREM. If S is a large symmetric sequence space which contains a
divergent sequence then

(a) The B¢ topology on S is the relative topology of [°°;

(b) S is dense in I°;

(c) S is barrelled in the B¢ topology.

The remainder of this section is devoted to the proof of 4.3. First we
establish several lemmas.

4.4 LEMMA. Suppose S is a symmetric space of sequences which contains ¢
and also contains a divergent sequence. For each subset M of indices and
€ > 0 there is a sequence ey, in S such that

(@) ley ()| <€ forj& M,
() leyj) — Ul <€ forje M,

(c) ey — ey € ¢g where ey (j) = 1forj € M and
ey(j) = 0forj & M.

Proof. We first prove the lemma under the assumption that M is infinite
and has an infinite complement. Let s be a bounded nonconvergent
sequence in S. Let hy < h, < ...and k; < k, < ... be two sequences of
indices such that h, < k, < h, ., for each n while lim,s(h,) = a and
lim,s(k,) = b exist and are distinct. Let 7 be the permutation which
interchanges A(n) and k(n) for n = 1, 2, ... and leaves the other integers
the same. Let ¢+ = 5 — s_; then

t(h,) = —t(k,), lim,(h,) = a — b, lim,t(k,) = b — a.
If u = (a — b)” 't we have

lim,u(h,) = 1 and lim,u(k,) = —1.
Given € > 0, let N be such that

lu(h,) — 1| < €/2 and |u(k,) + 1| < €/2
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if h, or k, > N. Let v be the sequence for which v(j) = 0 forj = N and
v(j) = u(j) forj > N. Since S contains ¢, v is in S. For simplicity we shall
assume that 4, and k| are greater than N. Let 6 be a permutation on the
indices which (1) leaves each index in ~( {h,} U {k,} ), the complement
of {h,} U {k,}, the same; (2) maps h,, onto k, foreachn = 1,2,...; (3)
maps k, onto h,, foreachn = 1, 2,...; (4) leaves each h,,_, unchanged.
If w = (v + vg)/2 then w(j) = O forjin ~({h,} U {k,});

W) | = vk,) + v(hy) 172 = v(k,) + 1/2 + [v(hy,) — 1]/2
< e/2forj = k,;
W) = luthy,) + u(k,) /2 < /2 forj = hy,;
while for j = h,, |,
V() = 1 = v(hy,—y) — 1] < /2.

Since {h,,_,} is an infinite subset of indices with an infinite
complement, there is a permutation p which takes {h,, ;} onto M and
the complement of {h,,_,} onto the complement of M. If ey, = w,,
ey satisfies (a), (b) and (c).

If M is a finite set of indices then ey, € ¢ C S. If M has a finite
complement let o be the permutation of indices which maps {h,,_,} onto
~{hy,_} and let

epe = W +w, — e_g

The following lemma is found on p. 108 of [12] as well as in the book of
Kothe [2] and the works of Bourbaki [1].

4.5 LEMMA. Let (f,) be a sequence of continuous linear functions on [
and let (M) be a sequence of finite subsets of indices. There is a set M of
indices which is a union of a subsequence of (M) such that whenever s is a
member of m with support on M we have

fs) = 2 s()f(e).
JEM

Conclusion of the proof of Theorem 4.3. Let I° be the space of finitely
valued sequences. It is well known (see, e.g., [15] ) that 180 is dense in /°°.
It is clear that /;” is the linear span of all sequences e), as M ranges over
all over sets of indices. By Lemma 4.4 if S is a large symmetric sequence
space which contains a divergent sequence, e,, is in the closure of S in /*°
for each M. Therefore, S must be dense in /°°. This establishes conclusion
(b).

In order to verify conclusions (a) and (c) we shall prove that if B is a
subset of (/°°)*, the dual space of /°°, which is S-bounded, then B is
[°°-bounded. Then (a) and (c) will follow by the same argument that works
for small symmetric sequence spaces.
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Suppose, for the sake of obtaining a contradiction, that B is a subset of
(I°°)* which is S-bounded but not /°-bounded. Then there is a subset
M of indices such that

sup{ |f(ey) |:f € B} = oo.
See Lemma 7.2 of [14]. By Lemma 4.4 there is e);,,, in S such that
ey ~ ey =V E .
Since
sup{ |f(ep) |:f € B} = o0
and
sup{ |f(er1,2) |f € B} < o0
it follows that
sup{ |/(v) |if € B} = oo,

But since v € ¢,

f) = 2v()/f(e)

J

for each f'in B. This implies that

SUP{; If(e) :f € B} = oo.

However, since ey, is in ¢ C S for each finite subset M of indices we
conclude that

SUP{ > If(e) :f € B} = b(M) < oo
JEM
for each finite M.

Let f, be any member of B such that

2 1file)] > 2
J
and let N, be any integer such that

2 )l >2 2 Ifie)l <12

JEN, J>N,

If fi,....f, in B and integers N,, ..., N, have been constructed, let
/. +1 be any member of B such that

2 fyie) | >2"" + 1+ 4b({1,2,...,N,}).
J
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Let N, be any integer such that

E |fn+|(e_',')| <2
J

Then it follows that

(4.2) 2 e >2""" + 3b({1,2,...,N,}).

Ni<JEN, -

By induction we construct functionals (f,) and indices (N, ) which satisfy
(4.2) for all n.
For each k let M, = {j:N,_, <j = N,} and suppose

(e )
h=1 " K

satisfies the conclusion of Lemma 4.3. Let w be a sequence in S such
that

oo
w(j) =20,/ ehgl Mkh, w()| < 1/2,j € Mkh, h even,

Isgnfkh(ej) —w() I <1/2,j € M, h odd.

Here we use Lemma 4.4 and the fact we can find in S a sequence with
finitely many zeros and transfer them to the complement of M. Then if h

is odd,
i, = | Z filew()
jEM
=(1/2) 2 Ifife)] — 32 2 1fife)]
JEM,, JEM,
= (/)" 4+ 3b6({1,2,..., N, 1}))
—(32) 2 file)| = (3/2) 2 If(e)]
JEN, - J>Ny
=" — 3.2
Therefore,
suplfy, (W) | = o0

contradicting the fact that B is S-bounded.
5. Medium symmetric sequence spaces (l3 C S§% € ¢y). Most interesting

symmetric sequence spaces are medium; e.g., /” (1 = p < o0), Lorentz
spaces, Orlicz spaces.
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If x is a sequence in ¢, then by X we denote the sequence consisting of

nonzero members of {|x(1)|, |x(2)|,...} in decreasing order with
repetitions allowed. If x and y are in ¢, then for any permutations 7 and ¢
we have

2 e | = 2 RGPG);
J

J

here we understand that if the left hand side of the inequality is infinite
the right hand side is also.

5.1 LEMMA. Let S be a medium symmetric sequence space. A subset B of
S is S-bounded if and only if for each x in X

(5.1) sup{E x(w()ly € B} < oo.

J

Proof. If x is in S then the set (x) of all permutations of x is
S%bounded. To demonstrate this, let y be any member of S$*. Let x, be any
permutation of «a such that

(D | = x| = |x5) [ = ...

and

2 (2| < V(suply(i) | + 1.
J

Let z be the sequence for which (z(1), z(3), .. . ) are the nonzero members
of (|y(1)l, [¥(3)1,...) in descending order and y(2j) = 0 for each j. It
is not hard to verify that z is in S* since S* is symmetric and normal. For
eachj =1,2,... let

u(j) = sgn xq4(Jj);

then uz = (u(j)z(j)) is also in S*. For any permutation 7 of indices
‘2 x,,(j)y(j)l = 2 GOl
J J

= 2 x()z(Guj) + 1 < oo.

J

Therefore,

2 xﬁu)y(j)‘ < oo,

sup,

If B is an S-bounded subset of s* so is (B) consisting of all y, as y
ranges over B since
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sup{ \2 x(j)y,,(,-)\;y S B}
J

= sup{\E u(y()u € (x),y € B} < co.
J

The last inequality follows from Satz 1, Section 5 of [3] since (x) must be
completely bounded.

Suppose now for the sake of obtaining a contradiction that B is an
S-bounded subset of $* for which (5.1) does not hold. Then there is x in S
for which

(5.2) SUP{Z XU ly € B} = oo.
J

Since ¢ C S,
sup{ [y(J) |:y € B} < oo for all j

so that if M is any finite set of indices
SUP{ 2 xGy() iy € B} = oo.
JEM

We define by induction a sequence y, in B and a sequence {M, } of disjoint
finite subsets of indices such that

(53) 2 Ix(w,() ] > 4"
JEM,

(5.4) U M, has an infinite complement.
H

Since each y, is in ¢, we can find an infinite subset K, of indices such
that

2 1y,() | < 47"/sup)lx())|.
JEK,

n

Using the fact that the complement of U, M, is infinite we can determine
sequences z, and a partition (H,,) of the set of indices such that (a) each z,
is a permutation of y,; (b) z,(j) = y,(j) forj € M,; (c) M, C H, for each
n; (d) each H, is infinite; (e) forj € H,, z,(j) = y,(i) for some i € K,
The series

> 27"z,

converges in the (S, S) topology since {z,} is bounded, being a part of
(B) and S is o(S“, S) complete by Satz 2 of Section 4 of [3]. If
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we have
X () z 2 27Dz, () |
JEM, JEM,
— 227" X x(zU) |
m#*n JEM,

=2'— X2 "4 > L

m#*n

This contradicts the assumption that z is in S% Therefore (5.1) must be
valid.

5.2 THEOREM. If S is a medium symmetric sequence space then the B¢
topology on S coincides with the topology B(S, S*) on S determined by the
polars in S of S-bounded subsets of S°.

Proof. Since ¢ C S, B(S, §%) is a stronger topology than B(S, ¢).
Suppose B is an S-bounded subset of S®. The normal cover C of B
defined by

C = {u:y € B, lu(j)| = 1 for each}

1s also S-bounded by Lemma 5.1. Therefore, D = C N ¢ is an S-bounded
subset of ¢. For x in S

Pp(x) = sup{ lZ x(j)y(j)i:y S D}
J

= Sup{z GG Iy € D}
J

= sup{E Gy ly € C}
J

= pc(x) = pp(x).
Therefore pg is B(s, ¢) continuous.
A topological sequence space S containing ¢ is said to have AD if ¢ is

dense in S; S is said to have AK if for each x in S

h
lim,[x = n] = lim, 2 x(j)¢; = x:
j=1
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S is said to have UAK if Zj x(j)e; converges unconditionally to x.

5.3 THEOREM. If S is a medium symmetric sequence space which has AD
in the B topology then
(a) S has UAK in the B¢ topology,
(b) the dual space S’ of S is represented by S“ with the usual duality
Sy
fx) = 2 x(jp(). feS.yesixes:

J
(c) S is barrelled in the B¢ topology.

Proof. (a) Suppose x is in S and p is a continuous seminorm on S of the
form

p(x) = sup{ ‘2 x(j)y(j)I:y S B}
J

where B is an S-bounded subset of ¢. By Lemma 5.1 the seminorm ¢ given
by

q(x) SUp{E XUyl € B}
J

sup{ ‘E x(j)y(j)‘:y e C}

where C is the normal cover of B is also continuous in the 8¢ topology.
Since S has AD thereisu € ¢ such that g(x — u) = 1. If M = {j:u(j) #
0*} then for all y in B

X xGyi! = 2 1xG) — u() wO) | = 1
jeM J

Therefore, if K N M =0
p(x[K]) = q(x[K]) = 1,

which implies Ej x(J)e; converges unconditionally to x.
(b) Foreach fin §” and x in S

fx) = 2 x()f(e)

J

and (f(e;)) is in S* since the series converges absolutely. On the other
hand if y is in $* the linear functional defined by

fx) Z xGw)
J
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is continuous with respect to the seminorm

n

> x(,-)yml

j=1

p(X) = sup,

which is continuous in the B¢ topology.
(¢) If B is an S-bounded subset of S’ then B corresponds to an
S-bounded subset of S*. Therefore B is equicontinuous by Theorem 5.2.

6. An example. In this section we describe an example of a symmetric
sequence space which is not barrelled in the B¢ topology. Such a space
must be a medium symmetric sequence space which does not have AD.

6.1 LEMMA. There exists a sequence (u,) in cy such that (a) each u, is
positive and decreasing with u,(1) = 1 for each n; (b) Ej u,(j) = oo for
each n; (c) for each n there is an increasing sequence m, of indices such

that
m,(p)
u (J)
. J=1 .
lim, ) =0 ifk #n
u,(Jj)
j=1
and
m,(p)
<~ i (J)
j=
=1 forallk.
m,(p)
2 u,())
j=1

Proof. Note that we are using functional notation m,(p) to describe
sequences of indices.

We first establish the existence of a sequence (u,,) in ¢, which satisfies
(a), (b) and (¢’): for each n there are increasing sequences m,, ., m, , ;, . . .
of indices such that

(i) m, 1 is a subsequence of m, , for each r;

Mpn(p)

] u, (J)
j=
6.1) (i) i
(6.1) (i1) im, -
u,(J)
j=1
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My 41(P)
< Uy 41(J)
(62) lim)———————— =0 h=12....
My 41 P)
u,(J)
Jj=1
Each quotient in (6.1) and (6.2) is no greater than 1.

We proceed by induction. Let u,(j) = 1/j forj = 1, 2,.... Suppose
that u,, ..., u,_, have been defined which satisfy (a), (b) and (c¢’). We
must now define a sequence u,, in ¢, that satisfies (a) and (b), an increasing
sequence m, , of indices and subsequences m, , of m, ,_, for k = 1,
2,...,n — 1, such that (6.1) and (6.2) are satisfied and each quotient is
= l.Foreachrand k = n — 1 let

r

Upr) = 2 u ()

j=1
and let
V(r) = maxk Uk(r)

We define u,, m,, and m,, inductively. Let u,(1) = 1. Since each u,
k < nis in ¢, there is an index m, ,(1) such that

m, (1) > 2V(m, (1)).
Let u,(j) = 1forj = m, (1). Since

2 u(j) =

J

there is an index m , _(h) such that

'nl.n—l(h) mnn(l)
w(j) > dm (1) = 4 2 u,()).
j=1 j=1
Let
mn,n(l)
c=3 21 t, (J)/(my -y () = m, (1),
iz

Define m, (1) to be m,,_(h) and u,(j) = c for m, (1) <j = m (1).
Suppose we have defined

my (1) < mz’n(l) < ...<m_ (D

and u, () forj = m;_, ,(1). Let m,_, ,(h) be an index > m,,, (1) such
that
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iy — 1 u(h) my, . — (1)

() >4 X u,())
Jj=1 Jj=1

Let m, (1) = m,_ 1(h); let

"y, — I( 1 )

c=3 21 () (g (1) = my i (1))
=

and let u,(j) = c form, ; (1) <j = m, ,(1).
Now suppose we have defined m, ,(q) < m ,(q) < ... < m,_|,(q)
and u, (j) forj = m (g) such that

n—1l,n

Mynlq) My n(q)

63 X ukm/ 2 u,(j) < l/q
j=1 Jj=1

and
ik n(q) mgn(q)

64) X u,,(j)/ 2 w()<l/g
Jj=1 Jj=1

k=1,2,...,n — 1

We accomplished this for ¢ = 1 in the preceeding paragraph. Let
m, (g + 1) be an index which is greater than

(q + I)V(m)hn—l(q + 1) )/un(mn—]‘n(q))
and let
u(j) = u,(m,,(q)) form, ,,(q) <j =m,, (¢ + 1.

If we have defined m, (¢ + 1) <m (¢ + 1)... <my_, (g + 1)so that
(6.3) and (6.4) are satisfied forg + land k = h — 1, let

mh,n*l(r) = mh*],n(q + 1)
be such that

mp—1.a4(q+1) my , —(r)
2w+ 2w < 2 w0
J= J=
Let
mh,n(q + 1) = mh,n—l(r);
let
rm.—1,:.(4+‘)
e=2 2 wUVomq+ D = m,g+ D),
j=
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and let

u,(j) = min(c, u,(my, (¢ + 1)))

for m,_, (¢ + 1) <j = my,(q + 1). Then we have
my ,(q+1) mp—1a(qg+1)
u(HN=2 2 u())
j=1 j=1
my ,(g+1)

<(/g) 2 )
j=1
This completes the proof of a sequence which satisfies (a), (b) and (c’).
To complete the proof of the lemma we define sequences m,, for each n.
Let

m"(J) = mn.n+j—l(j) for eaChj~

Then m,[j = h] is a subsequence of m _, for all h so that (c) follows

from(c’).

nn+tj

6.2 Example. A symmetric sequence space which is not barrelled in the
B¢ topology. Let (u,) be a sequence in ¢, which satisfies the conclusion of
Lemma 6.1. Let (v,) be the collection of all finite sections of the u,. That
is. each v, is equal to u,[= k] for some p and some k. Let w, = u,/n for
each n. Let S consist of all sequences

s:zsn+2t"
n n

such that

206, + 2 g,(t,) <
n n
where

k k
pt) = sup, 2 3~(j)/ § w,(j)

j=1 j
k k

q,(t) = sup, 21 §(/’)/2} v, ().
J= J=

Then S is a BK-space with the norm
Isl] = inf{zpn(sn) + > q,,(t,,)IE s, + > t, = s}.
n n h n

We omit the proof that S is a BK space as well as the proof that S is
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symmetric and normal.
For each n and each k, u,[ = k] is some v,, so it is in the unit ball U of §.
On the other hand if

2 Sn + E tn =
then for all m

2 2s50)+ 2 2050) = 2 ul))

Jj=1 n Jj=1 n j=1

m

> 2 s,(j) + 2 2 t,(j) = 2 e (j)-

n j=1 n j=1 Jj=1

Thus for each m, (r)

(6.5) 2(

my(r) my(r)

S 50/ 2 wm)( S n<f>/§) ukU))

=1 _

my(r)

+ %( z,,(J)/MkE(r) v (J))(";k_(:) V,,(])/"IAE(:) uk(j)) I

Jj=1

If X, p(s,) and =, g,(z,) are finite the limit on the left hand side of (6.5)
as k — oo is

2 pn(sn )hmk (

my(r)

my(r)
wn(n] 2 uk(j))

j-‘l

my(r) my (r)
+ 2 q,,(tn)limk( 2 ] 2, uk(j)).

Because of Lemma 6.1

nmy(r) my(r) .

1k ifn =k

hmk( W,,(j)/ 2 uk(.])) {0 if n # k

=y .

Since v, (/) is eventually 0 and 3, 4, (j) = oo for each k

my(r)

my(r)
limk( Vu(J )/ ZI

j“]

w (J) ) =
for all n. Therefore, we conclude that if

Esn+2tn=uk,
n n
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Py (s,) is at least equal to k. This implies that
[lu |l = k for each k.

If S were barrelled in the B¢ topology there would be an S-bounded
subset B of ¢ and positive numbers m and M such that

mp(s) = |lsll = Mp(s)

for s in § where
p(s) = sup{ ‘2 s(j)t(j)‘:t e B}.
J

Since |lu,[= n]|| = 1 for each n and each k it follows that p(u,[= n])
= M for each n and each k. But because of the form of p it results that
p(u,) = M for all k contradicting the fact that (u,) is unbounded in

(S, 111D).
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