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THE STRONG <f> TOPOLOGY ON SYMMETRIC 
SEQUENCE SPACES 

WILLIAM H. RUCKLE 

J 

1. Introduction. The strong 0 topology. Let S be a linear space of real 
sequences written in functional notation 

S = (S(J)) = (5(1) , 5 ( 2 ) , . . . ) -

There is a natural duality between S and the space <t> of sequences which 
are eventually 0 given by the equation 

(5, 0 = 2 S(j)t(j) S G 5, / G <j>. 
j 

The series has only a finite number of nonzero terms since / is in <f>. 
A subset B of <j> is called S-bounded if 

/>*(*) = sup | 12 Jt/K/)|:f e 5 j < co 

for each s in S. 
The strong <j> (/?<£ — ) topology on S is the locally convex topology 

determined by all seminorms of the form pB as B ranges over all 
S-bounded subsets of <j>. Most familiar sequence spaces bear the /?<f> 
topology, e.g., (j) with the strongest locally convex topology, the /^-spaces 
1 ^ p ^ oo with the BK topology, and co (all sequences) with the topology 
of coordinate-wise convergence, but not V (0 < p < 1) with the FK 
topology. The concept of /?<> topology is related to the concept of norming 
biorthogonal sequence; see, e.g., [11]. 

A space S of sequences is called symmetric if the sequence s„ is in S for 
every s in S and every permutation m on the set of indices. Here sm is the 
sequence given by 

5 , = (5(77(1)), 5(77(2) ) , . . . ) . 

Symmetric sequence spaces are considered in the 1934 paper of Kôthe and 
Toeplitz [3], in the three papers of Garling [4-6] and two papers of the 
author [8, 9]. Besides <£, <o and the /^-spaces, two additional types of 
symmetric sequence spaces, Lorentz sequence spaces and Orlicz sequence 
spaces, have been the object of investigation. See, for example, [7]. 
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SYMMETRIC SEQUENCE SPACES 1113 

The purpose of this paper is to determine whether symmetric sequence 
spaces are barrelled in the /?<£ topology. We shall prove that the answer is 
"yes" for three of the four categories of symmetric spaces, but the answer 
in general is "no." The main positive result in this paper is Theorem 4.3 
which asserts that every symmetric space of bounded sequences which 
contains a nonconvergent sequence is barrelled in its P<f> topology, and the 
fi<j) topology coincides with the relative topology of the BK-space l°° of 
bounded sequences. This is a generalization of a result of Seever [13] for 
the particular space of finitely valued sequences. The main negative result 
is an example of a nonseparable symmetric BK-space which is not 
barrelled in its fi<j> topology. 

For any sequence space S is the a-dual or Kôthe dual of S is the space Sa 

determined by the equation 

Sa = [t Sise/") '*./)! < O O , V S e S J . 

A sequence space S is called perfect if Saa = S. Kôthe and Toeplitz [3] 
showed in 1934 that if S is perfect and symmetric then S = <f>, S = co, 
S = l°° or l] Q S Ç c0. This permits us to classify symmetric sequence 
spaces S which may not be perfect in terms of Sa (which is perfect). 

S is very large if Sa = <j> 
S is large if Sa = Z1 

S is medium if Z1 Ç Sa Ç CQ 

S is small if Sa = l°°. 
If S is a symmetric sequence space and Sa = o) then S c <j> so either S = <j> 
or 

S = [s G <>: 2 s(j) = OJ. 

Henceforth we assume that all sequence spaces mentioned contain <£. Thus 
if Sa = co and S o> <j>, S = <f>; the /?<£ topology on <j> is the strongest locally 
convex topology whose various properties are well known. 

We shall see that for small, large and very large symmetric sequence 
spaces the f}<j> topology is the relative FK topology of / , /°° and co 
respectively, and all of these spaces are barrelled. On the other hand, the 
collection of medium spaces admits a variety of topologies, some of which 
are not barrelled. 

2. Very large symmetric sequence spaces (Sa= </>). It is easy to see that a 
symmetric sequence space is very large if and only if it contains an 
unbounded sequence. The space co is very large, and seems to be the only 
very large space mentioned in the literature. Here is an example which 
shows that many very large symmetric sequence spaces are possible. 
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2.1 Example of a very large sequence space distinct from <o. Let D 
consist of all finite linear combinations of rational sequences. Then D is a 
very large symmetric sequence space. If u is a sequence of real numbers 
which is linearly independent over the rationals, then u is not in D. To see 
this suppose 

k 

u = 2 anvn 
n = \ 

where each vn is a sequence of rationals and each an is a real number 
n = 1, 2 , . . . , k. But this means that each u(j) is a finite rational 
combination of {ax,. . ., ak} contradicting the assumption that u is 
linearly independent over the rationals. 

2.2 THEOREM. If S is a symmetric sequence space which contains an 
unbounded sequence, then 

(a) S is very large; 
(b) the /3<f> topology on S is the relative topology of <o (the product 

topology); 
(c) S is barrelled in the /?<£ topology. 

Proof. We omit the straightforward proof of conclusion (a). 
Conclusion (b) follows from the proof of Proposition 2 of [5] which does 

not use the fact that (en) forms a basis for the space. 
(c) First we shall prove that if B is an S-bounded subset of <f> then 
(i) For each n 

sup{ \x(n) \:x e B) = Mn < oo. 

(ii) There is N such that for each x in B and j > N, x(j) = 0. 
Assertion (i) is true since by our standing assumption en is in S for each 

n. To establish (ii), we assume the contrary, for the sake of obtaining a 
contradiction. This means we assume there is a sequence (xn) in B and a 
sequence of indices (in) such that in > in_x + 1 and xn(in) is the last 
nonzero term in xn for each n. Let v be an unbounded sequence in S. We 
define a permutation 0 on the set of indices by induction. For n < ix let 
6(n) = n; let 0(ix) be the smallest index hx such that 

\v(hx)xx(ix) | > 1 + 2 |v(0O'))|My. 

If 0(n) has been defined for n < ik let 6(ik) be the smallest index hk such 
that 

|v(A*)x*(i*)| > * + 2 |v(0(y))|M7, 

Finally, let 0(ik + 1) be the smallest index in the complement of {6(j):j = 
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ik } to ensure that 0 is onto. Then we have 

2 xn{j)ve(j) = KOn^eOn) I ~ 2 xnU)veU) 
j<*n 

^ \xndMin)\ ~ 2 \véU)\Mj 
J<in 

> n. 

This shows ve is not bounded on B, contradicting the fact that B is 
S-bounded. 

Since the P<f> topology on S is the relative <o topology, it follows that the 
dual space of S is the space <#> with the natural duality. If B is an 
S-bounded subset of <£, then it satisfies (i) and (ii) so it is co-bounded; see 
[3]. But the /?<£> topology on co is an FK topology so that it is barrelled. 
Therefore, B is equicontinuous. Since S-bounded implies S-equicontin-
uous it follows that S is barrelled. 

3. Small symmetric sequence spaces (Sa = /°°). Examples of small 
symmetric sequence spaces are lp(0 < p ^ 1). In [10] it is shown that the 
intersection of all small symmetric sequence spaces is <J>. In other words, 
for each sequence u not in <j> there is a small symmetric sequence space 
which does not contain u. 

3.1 LEMMA. Suppose S is a symmetric sequence space which properly 
contains <j> but is contained in I . If A is an unbounded subset of l°° i.e., if 

sup{sup-|A:(7) \:x e A } = oo, 

then there is s in S such that 

(3.1) sup (I? s(j)x(j) :x G A oo. 

Proof For each k = 1, 2 , . . . , let 

M(k) = sup{ |JC(A:)|:JC G A}. 

If for any k, M(k) = oo then we may take s to be ek and conclude 
the proof. Thus for the remainder of the proof we may assume 
M(k) < oo for each k. Of course, since A is unbounded in /°° it follows 
that supkM(k) = oo. 

Let t be any sequence in S but not in <j>. Let hx < h2 < . . . be a sequence 
of positive integers such that for each j , 

hj - hj_i > 1 and k(^) | < k(/*7_,)|. 

Let 77 be the permutation on the integers which interchanges h2n _ \ and h2n 
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for all n = 1 ,2 , . . . and leaves other integers the same. If v = t — t„ then v 
is in 5, 

v(j) = 0 for y £ {hx, /z2, . . . } and 

v(*2*-i) = ~v(h2n) * Ofor* = 1 , 2 , . . . . 

Let {«,, «2» • • •• } be a sequence of integers for which 

(3.2) 2 |v(/>2„._,) I + \v(h2„) | < 2 - ( w + ,)|v(A„J |. 
j>m J J 

This is possible because 5 c / 1 . Denote by 0 the permutation which 
interchanges h2n -\ and A2w. and leaves the remaining integers unchanged. 
If 

u = ~(v ~ vo), 

then u is in 5, 

u(j) = 0 for y £ {A2iiy.-i» *2V 7 = 1 , 2 , . . . } and 

«(A2Wy-i) = -«(A2Wy) ^ 0. 

Denote |«(/z2w - i ) I by ak. Then because of (3.2) 

2 ** < 2~"V 
A:>m 

We shall now define a sequence 5 which is a permutation of u and 
satisfies (3.1). Let x} be any sequence in A such that 

||JC,|| > max{l/fl„ M(l), M(2) } 4- 1. 

Here || || denotes the norm in /°°, the sup-norm. Let mx be the smallest 
positive integer such that 

l * i K ) l > lUill " 1/2. 

Since |x,(wj) | is larger than M(l) and M(2) it follows that mx > 2. Let 

s(\) = -(sgnx](m]))a] 

s(j) = 0 1 < y < m, 

•s(/w,) = (sgn x](m]))al. 

Suppose we have defined xh, mh for h < n and s(j) for y ^ m„_ j . Let JCW 

in A be such that 

HxJI > 1 + m a x L ^ O " 2~n)~X(ln + 2 \s(j)\M(j) 
V V J<mn-\ 
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+ anM(mn_x + l ) j , M ( l ) , . . . , A f K _ , + 2 ) } . 

Let mn be the smallest positive integer such that 

\x„(m„)\ >\\xH\\ - 2~". 

Note that mn > mn_x +2. Let 

s(mn_} + 1) = (-sgnxw(ww))flw 

s(y') = 0 mn__x + \ <j < mn 

s(mn) = (sgnxn(mn))an. 

Then s is a permutation of u since it exhausts the nonzero elements 
±an and contains infinitely many O's as well. This implies s e S. For each 
n we have 

2 s(j)xn(j) 
j 

= \s(m„)x„(mn)\ 

- 2 kOX(7)l - 2 1*0X0') I 

^ ^(IWI - 2"") - 2 1*0)1^0) 

- flnM(mw_, + 1) - \\xn\\ 2 1*0)1 

an( \\xH\\ 

a„M{mn_x + 1) - ||x„||2-"a„ 

2"") - 2 \s(j)\M(j) 
j<m„-l 

^ „ ( d - 2 - " ) I K | | - 2"") 

- 2 ka)IM(y') - a„M{mn_x + 1) 

s 2" - 2 " V . 

Consequently we conclude that (3.1) holds for s. 

3.2 THEOREM. If S is a small symmetric sequence space then 
(a) The fify topology on S is the relative topology of the BK space I . 
(b) S is barrelled in the /?</> topology. 

https://doi.org/10.4153/CJM-1985-060-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-060-x


1118 WILLIAM H. RUCKLE 

Proof. If B is an S-bounded subset of <J> then by Lemma 3.1 B is 
absorbed by the set 

^oo = {* e *:supjjc(/i) | ^ 1}. 

Since S is contained in /', U^ is S-bounded. Therefore, the /3<j) topology on 
S is determined by the norm 

:x e £/«, / ^ J " ) = sup i 2 u(j)x(j) 
oo ^ ^. 

= 2 \u(j) I. 

This confirms conclusion (a). 
Conclusion (b) now follows from Lemma 3.1 just as (c) of Theorem 2.2 

follows from (i) and (ii) in the proof of that Theorem. Since the fi<t> 
topology on S is the relative topology of / , the dual space of S is /°°. If B 
is an 5-bounded subset of m then by Lemma 3.1 it is uniformly bounded 
hence equicontinuous. Therefore, S is barrelled. 

4. Large symmetric sequence spaces (Sa = Z1). There are three classes of 
large symmetric sequence spaces 

1 S c c0 

US c c convergent sequences, but S <£ c0 

III S c /°°, but S contains a nonconvergent sequence. 
We first consider large symmetric sequence spaces of the first class. An 

example of such a space not c0 is c0 Pi D where D is given by 2.1. 

4.1 LEMMA. Suppose S is a large symmetric sequence space. A subset B of 
I is S-bounded if and only if 

•{? (4.1) s u p { 2 , \y(j)ly e Bj < oo. 

Proof Condition (4.1) implies B is bounded in the BK topology of /] 

hence /°°-bounded. Since Sa = l\ s c Saa = l°° so B is ^-bounded. This 
shows (4.1) is sufficient. 

If x is in S then the set (x) consisting of all sequences xm where IT ranges 
over all permutations is / -bounded because (JC> is uniformly bounded. 
Since (JC) is bounded, by Satz 1, Section 5 of [3] it is completely 
bounded. Hence, if B is an ^-bounded subset of / \ so is 

(B) = {y^'.y G B, IT is a permutation}. 

This is because for x in S 
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s u p | | 2 x O X a ) | : y e BJ 

= supj 2 u(j)y(j) :u e (JC),>> G 5 ? < oo. 

Now assume, for the sake of obtaining a contradiction, that B is an 
S-bounded subset of l] which does not satisfy (4.1). For each n let xn in B 
satisfy 

2 k , 0 ' ) l > 4 " + 1. 
y 

Since each xM is in /] we can find a sequence (irn) of permutations and a 
sequence (Mn) of disjoint subsets of indices such that 

2 \(x„)AJ)\ < i-

It follows that 

2 I (xH)wJLj) I > 4" 

for each H. Each (x^ is a member of the set (B) which is S-bounded. 
Therefore, the partial sums of 

form a Cauchy sequence in the o(l\ S) topology on ll. By Satz 2, Section 4 
of [3] there is x in lx such that 

2 2-"(x„)w. = x 

in the a(/ \ S) topology. Since <j>c5, 

2 2 - " ( x „ U y ) = x(y) for each j9 

we have 

2 IJCO') I ^ 2 " " 2 1 ( ^ ) ^ ( 7 ) 1 - 2 2~m 2 1 ( ^ ) ^ ( 7 ) 1 

^ 2" - 1. 

This contradicts the fact that x is in Z1. 

The following theorem follows from Lemma 4.1 very much as Theorem 
3.2 follows from 3.1. Therefore, we omit the proof. 
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4.2 THEOREM. If S is a large symmetric sequence space which is contained 
in c0 then 

(a) The /?<f> topology on S is the relative topology of the BK space c0; 
(b) S is barrelled in the /?</> topology. 

If S is of class II then S = [e] the span of e = (1, 1, . . . ) or 
S = T © [e] where T is a symmetric sequence space which is small, 
medium or large of class I. This S is barrelled if and only if T is. This 
essentially reduces the study of large symmetric sequence spaces of class II 
to those which are small, medium, or large, class I. 

For symmetric sequence spaces of class III we have the following 
result. 

4.3 THEOREM. If S is a large symmetric sequence space which contains a 
divergent sequence then 

(a) The p<f> topology on S is the relative topology of l°°\ 
(b) S is dense in /°°; 
(c) S is barrelled in the fi<f> topology. 

The remainder of this section is devoted to the proof of 4.3. First we 
establish several lemmas. 

4.4 LEMMA. Suppose S is a symmetric space of sequences which contains <f> 
and also contains a divergent sequence. For each subset M of indices and 
€ > 0 there is a sequence eMe in S such that 

(a) \eM€(j) | < € forj £ M\ 

(b) \eMe(j) - 1| < € forj e M; 

(c) eM ~ eMe G co where eAfU) = lf°rJ G M and 
eMU) = Oforj € M. 

Proof We first prove the lemma under the assumption that M is infinite 
and has an infinite complement. Let 5 be a bounded nonconvergent 
sequence in S. Let hx < h2 < . . . and kx < k2 < . . . be two sequences of 
indices such that hn < kn < hn + ] for each n while \imns(hn) = a and 
\imns(kn) = b exist and are distinct. Let 77 be the permutation which 
interchanges h(n) and k(n) for n = 1, 2, . . . and leaves the other integers 
the same. Let t = s — s^\ then 

t(h„) = -t(kn), limnt(hn) = a - b, limnt(kn) = b - a. 

If u = (a — b)~]t we have 

l im^w^) = 1 and \imnu(kn) = — 1. 

Given c > 0, let N be such that 

\u(hn) - 1| < c/2 and \u(kn) + 1| < e/2 
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if hn or kn > N. Let v be the sequence for which v(j) = 0îovj^N and 
v(j) = u(j) for j > N. Since S contains <f>, v is in S. For simplicity we shall 
assume that h] and kx are greater than N. Let 0 be a permutation on the 
indices which (1) leaves each index in ~ ( {hn} U {kn} ), the complement 
of {hn} U {kn}, the same; (2) maps h2n onto kn for each n = 1, 2 , . . . ; (3) 
maps kn onto h2n for each n = 1, 2, . . . ; (4) leaves each h2n-\ unchanged. 
If w = (v 4- Vfl)/2 then w(y) = 0 for y in —( {hn} U {£„} ); 

K / ) l = \v(kn) + v(A2w)|/2 â |v(/c,7) + l|/2 + |v(/i2w) - l|/2 

< €/2fOTJ = kn\ 

Hj) I = W(h2n) + w(/cj |/2 < €/2 for y = hln\ 

while for j = h2n_], 

\v(j) - 1| = |v(A2/I_,) - 1| < € / 2 . 

Si nee {^2«-i) ^s a n infinite subset of indices with an infinite 
complement, there is a permutation p which takes {h2n-\} onto M and 
the complement of { / ^ - I } onto the complement of M. If eMe = w , 
^^€ satisfies (a), (b) and (c). 

If M is a finite set of indices then eM e <j> c 5. If M has a finite 
complement let o be the permutation of indices which maps {h2n_}} onto 
~{h2„-\} and let 

**/,« = w + wa - e_K. 

The following lemma is found on p. 108 of [12] as well as in the book of 
Kôthe [2] and the works of Bourbaki [1]. 

4.5 LEMMA. Let (fn) be a sequence of continuous linear functions on l°° 
and let (M'•) be a sequence of finite subsets of indices. There is a set M of 
indices which is a union of a subsequence of (M •) such that whenever s is a 
member of m with support on M we have 

Us) = 2 s(j)Mej). 

Conclusion of the proof of Theorem 4.3. Let /^° be the space of finitely 
valued sequences. It is well known (see, e.g., [15] ) that /^° is dense in /°°. 
It is clear that /^° is the linear span of all sequences eM as M ranges over 
all over sets of indices. By Lemma 4.4 if S is a large symmetric sequence 
space which contains a divergent sequence, eM is in the closure of S in /°° 
for each M. Therefore, S must be dense in /°°. This establishes conclusion 
(b). 

In order to verify conclusions (a) and (c) we shall prove that if B is a 
subset of (/°°)*, the dual space of /°°, which is S-bounded, then B is 
/°°-bounded. Then (a) and (c) will follow by the same argument that works 
for small symmetric sequence spaces. 
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Suppose, for the sake of obtaining a contradiction, that B is a subset of 
(/°°)* which is S-bounded but not /°°-bounded. Then there is a subset 
M of indices such that 

sup{ ! / (*„) | : / e B) = oo. 

See Lemma 7.2 of [14]. By Lemma 4.4 there is eM U2
 m $ s u c n t n a t 

Since 

s u p { | / ( e w ) | : / e 5 } = oo 

and 

sup{ 1 / ( ^ / 2 ) h / e 5 } < oo 

it follows that 

s u p { | / ( v ) | : / e B) = oo. 

But since v e C0, 

/ ( v ) = 2 vO-)/(ey) 

for e a c h / i n B. This implies that 

s u p ( 2 l / ( e ; . ) | : / e B ] = OO. 

However, since eM is in <j> c 5 for each finite subset M of indices we 
conclude that 

supl 2 | / ( e y ) | : / e / ? ] = 6(M) < oo 
VGA/ ' 

for each finite M. 
Let / j be any member of 5 such that 

2 !/,(<?,•) I > 2 
7 

and let Nx be any integer such that 

2 l/i(e,.)l > 2 , 2 17,(^)1 < 1/2. 
7 ^ . j>Nx 

If / j , . . . ,/w in 5 and integers Nn, . . . 9 Nn have been constructed, let 
/w + j be any member of B such that 

2 !/„ + ,(<?,-) I > 2 " + l 4- 1 + 4Z>({1,2,... ,JV„}). 
7 
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Let Nn +, be any integer such that 

2l/B + ,(e,) |<2- f l . 
J 

Then it follows that 

(4.2) 2 |/„ + 1 ( e , ) | > 2 " + 1 + 3fc({l, 2 JVW>). 

By induction we construct functional (fn) and indices (Nn) which satisfy 
(4.2) for all n. 

For each k let Mk = {j\Nk_] <j ^ Nk} and suppose 

oo 

M = U Mk 

satisfies the conclusion of Lemma 4.3. Let w be a sequence in S such 
that 

oo 

Mj) = 0,7 « ^ M v kO' ) I < 1/2,7 e M^, /* even, 

|sgn/^(e,) - w(7) | < 1/2,7 e M^, /i odd. 

Here we use Lemma 4.4 and the fact we can find in S a sequence with 
finitely many zeros and transfer them to the complement of M. Then if h 
is odd, 

! / * » ! = 2 fkli(ejMj) 
JZLM 

^(1/2) 2 \fk[ej)\ -(3/2) 2 | / ^ y ) | 

^(\/2)(2"-] + 3ft({l, 2 , . . . , ^ _ , } ) ) 

- (3/2) 2 |/, (*,) | - (3/2) 2 l/(*y) I 

^2" - 3 • 2 " w " 1 . 

Therefore, 

suPj/*A(w) I = °° 

contradicting the fact that B is S-bounded. 

5. Medium symmetric sequence spaces (l3 Ç Sa Ç c0). Most interesting 
symmetric sequence spaces are medium; e.g., lp (1 ^ p < oo), Lorentz 
spaces, Orlicz spaces. 
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If x is a sequence in c0 then by x we denote the sequence consisting of 
nonzero members of { |JC(1) |, |x(2) |, . . . } in decreasing order with 
repetitions allowed. If x and y are in c0 then for any permutations ir and 8 
we have 

2 K(j)ye(j) I ^ 2 x(j)y(j)\ 
j j 

here we understand that if the left hand side of the inequality is infinite 
the right hand side is also. 

5.1 LEMMA. Let S be a medium symmetric sequence space. A subset B of 
Sa is S-bounded if and only if for each x in X 

•{? (5.1) suP^2, \x(j)y(j)\'.y e Bj < oo. 

Proof If x is in S then the set (x) of all permutations of x is 
^-bounded. To demonstrate this, let ^ be any member of Sa. Let xe be any 
permutation of a such that 

\xe{\)\ ^ | ^ ( 3 ) | ê | ^ ( 5 ) | è . . . 

and 

2 \xe{2j)\ < l/(supp(j)\ + 1). 
J 

Let z be the sequence for which (z(l), z(3), . . . ) are the nonzero members 
of ( 1^(1) |, | j>(3) |, . . . ) in descending order and y(2j) = 0 for eachy. It 
is not hard to verify that z is in Sa since Sa is symmetric and normal. For 
each y = 1, 2, . . . let 

u(j) = sgn xe(j)\ 

then uz = (u(j)z(j) ) is also in Sa. For any permutation 77 of indices 

y j 

^ 2 x^j)z(j)uU) + 1 < oo. 
j 

Therefore, 

sup J 2 ^ 0 ) ^ 0 ) < °°-

If B is an ^-bounded subset of sa so is (B) consisting of all ym as y 
ranges over B since 
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sup 
J 

sup I 1 2 "O'My) I :u G <x>, j G 5 j < oo. 

The last inequality follows from Satz 1, Section 5 of [3] since (x) must be 
completely bounded. 

Suppose now for the sake of obtaining a contradiction that B is an 
^-bounded subset of Sa for which (5.1) does not hold. Then there is x in S 
for which 

•{? (5.2) s u p | 2 k 0 > 0 ' ) l : j e B] = oo. 

Since <f> a S, 

sup{ b O ) |:.y G 5 } < oo for ally 

so that if M is any finite set of indices 

[ 2 \x(j)y(j)\:y e B) = 

We define by induction a sequence^ in i? and a sequence {M„ } of disjoint 
finite subsets of indices such that 

(5.3) 2 \x(J)y„U) I > 4" 

(5.4) U Mn has an infinite complement. 

Since each yn is in c0 we can find an infinite subset Kn of indices such 
that 

2 1^0') i < 4-"/sup7uo') i. 

Using the fact that the complement of Un Mn is infinite we can determine 
sequences zn and a partition (Hn) of the set of indices such that (a) each zn 

is a permutation of yn\ (b) zn(j) = yjj) for j <E Mn\ (c) Mw c //„ for each 
n\ (d) each Hn is infinite; (e) for j £ Hn, zn(j) = yn(i) for some z e Kn. 
The series 

2 2-% 
n 

converges in the o(Sa, S) topology since {zn} is bounded, being a part of 
(B) and Sa is 0(5", S) complete by Satz 2 of Section 4 of [3]. If 
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= 2 2-% 

we have 

2 \x(j)z(j)\ §= 2 2-"\x(j)zn(j)\ 
j G A/„ / e A/rt 

- 2 i~m 2 i*o>mo)i 

â 2" - 2 2 ~ m - 4 _ " > 2 " - 1. 

This contradicts the assumption that z is in Sa. Therefore (5.1) must be 
valid. 

5.2 THEOREM. If S is a medium symmetric sequence space then the fi<$> 
topology on S coincides with the topology fi(S, Sa) on S determined by the 
polars in S of S-bounded subsets of Sa. 

Proof Since <()CS, /J(S, Sa) is a stronger topology than /}(S, 4>). 
Suppose B is an 5-bounded subset of Sa. The normal cover C of B 

defined by 

C = {uy.y G B, \u(j) | ^ 1 for each j} 

is also S-bounded by Lemma 5.1. Therefore, D = C n <j> is an ^-bounded 
subset of <j>. For JC in S 

pD(x) = supi 2 x(j)y(j) [\2 x(j)y(j)\:y G D j 

= s u p { 2 \x(j)y(j)\:y G Z)J 

= s u p [ 2 \x(j)y(j)\:y G c j 

= pc(x) ^ pB(x). 

Therefore pB is fi(s, <£) continuous. 

A topological sequence space S containing <j> is said to have AD if <£ is 
dense in S; S is said to have AK if for each x in S 

n 

limjx ^ n] = lim^ 2 *(./>; = x\ 
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S is said to have UAK if 2y x(j)ej converges unconditionally to x. 

5.3 THEOREM. If S is a medium symmetric sequence space which has AD 
in the P<j> topology then 

(a) S has UAK in the /?</> topology, 
(b) the dual space S' of S is represented by Sa with the usual duality 

f**y 

fix) = 2 x{j)y(j\ f^S\y^Sa,x^ S; 
j 

(c) S is barrelled in the P<j> topology. 

Proof (a) Suppose x is in S and p is a continuous seminorm on S of the 
form 

p(x) = s u p | | 2 x 0 > ( 7 ) | : ^ e B J 

where 5 is an abounded subset of <j>. By Lemma 5.1 the seminorm q given 
by 

«TOO = sup j 2 U t / M » Iy e #} 

•{is supf 2 , x(j)y(j) y&C 

where C is the normal cover of B is also continuous in the /?</> topology. 
Since S has AD there is u e <£ such that #(JC — w) ^ 1. If M = {j'.u(j) # 
0*} then for all y in 5 

2 ko>o)i tk 2 i(jca) - na)My)i ^ l. 

Therefore, if K n M = 0 

^ [ f l ) S ^ [ X ] ) g 1, 

which implies 2 , x(j)e: converges unconditionally to x. 
(b) For each / in 5" and x in S 

fix) = 2 *(./)/(*,•) 
j 

and (/(£.-) ) is in Sa since the series converges absolutely. On the other 
hand if y is in Sa the linear functional defined by 

7 
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is continuous with respect to the seminorm 

I n 

p(x) = sup J 2 x(j)y(j) 
7 = 1 

which is continuous in the /?<£ topology. 
(c) If B is an S-bounded subset of Sf then B corresponds to an 

S-bounded subset of Sa. Therefore B is equicontinuous by Theorem 5.2. 

6. An example. In this section we describe an example of a symmetric 
sequence space which is not barrelled in the /?<#> topology. Such a space 
must be a medium symmetric sequence space which does not have AD. 

6.1 LEMMA. There exists a sequence (un) in c0 such that (a) each un is 
positive and decreasing with un(\) = 1 for each n\ (b) 2 , un(j)

 = ° ° for 

each n\ (c) for each n there is an increasing sequence mn of indices such 
that 

mn(P) 

2 uku) 
7 = 1 

lim = 0 if k ¥= n 
F ™„(P) 

2 unu) 
7 = 1 

and 

mn(P) 

2 uku) 
— ^ 1 for all lc. 
mn(P) 

2 unu) 
7 = 1 

Proof Note that we are using functional notation mn(p) to describe 
sequences of indices. 

We first establish the existence of a sequence (un) in c0 which satisfies 
(a), (b) and (cr): for each n there are increasing sequences mnn, mnn + x,. . . 
of indices such that 

(i) mnr+\ is a subsequence of mnr for each r\ 

MnAP) 

2 uku) 
7 = 1 

(6.1) (ii) lim. = 0 k < n 
2 U„(j) 

7 = 1 

https://doi.org/10.4153/CJM-1985-060-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-060-x


SYMMETRIC S E Q U E N C E SPACES 1129 

mn,n + h(P) 

2 %+hU) 

(6.2) lim_ —— = 0 A = 1 , 2 , . . . . 

2 u„u) 
7 = 1 

Each quotient in (6.1) and (6.2) is no greater than 1. 
We proceed by induction. Let ux{j) = \/j for j = 1, 2, . . . . Suppose 

that « j , . . . , w„_, have been defined which satisfy (a), (b) and (c'). We 
must now define a sequence un in c0 that satisfies (a) and (b), an increasing 
sequence mnn of indices and subsequences mkn of mkn_x for k = 1, 
2, . . . , n — 1, such that (6.1) and (6.2) are satisfied and each quotient is 
^ 1. For each r and k ^ n — 1 let 

r 

£/*(r) = 2 uk(j) 
7 = 1 

and let 

K(r) = max^ £/*(/•). 

We define un, mnn and mkn inductively. Let un(\) = 1. Since each uk, 
k < n is in c0 there is an index m„„(l) such that 

mnn(\)>2V(mnn(\)). 

Let w„0) = 1 for j =- mnn(\). Since 

2 «iO') = oo 
7 

there is an index mXn_x(h) such that 

2 M,0') > 4iw (1) = 4 2 / un(j\ 
7 = 1 7 = 1 

Let 

w«,«(i) 

c = 3 2 u„U)/(mx }(h) - mnn(\)). 
7 = 1 

Define /w1/f(l) to be mXn_x(h) and w„(7) = c for mnn(\) < j ^ wliW(l). 
Suppose we have defined 

mXn(\) < m2n{\) < ... < mk_Xn(\) 

and unn(j) for; ^ w*_U/1(l). Let mn_xk(h) be an index > mnk_x{\) such 
that 
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2 uku) > 4 2 unu). 
7 = 1 7 = 1 

Let mnk{\) = mn_xk(h)\ let 

^ = 3 2 w„0')/("w(l) ~ m^_,(l)) 
7 = 1 

and let un(j) = c for mnk_](\) <j^ mnk(\). 
Now suppose we have defined mnn(q) < m]n(q) < . . . < rnn_Xu{q) 

and un(j) for y ^ mn-\,„(q) such that 

W/I,/I(<7) / m„,„(</) 

(6.3) 2 ^ 0 ) / 2 ^0) < Mq 
7 = 1 7 = 1 

and 

(6.4) 2 ^ 0 ) / 2 uk(j) < \lq 
7 = 1 7 = 1 

k = 1, 2 , . . . ,w - 1. 

We accomplished this for g = 1 in the preceeding paragraph. Let 
m (q + 1) be an index which is greater than 

(q + \)V{mnn_x{q + \) )/un(mn_Un(q) ) 

and let 

" ( 7 ) = Un(mn-\M)) f ° r mn-\M) <J = mnM + ! ) ' 

If we have defined mnn(q + 1) < mXn{q + 1). . . < fnk_} n(q + 1) so that 
(6.3) and (6.4) are satisfied for g + 1 and k ^ h — 1, let 

(r) > mh_hn(q + 1) 

be such that 

w/,-i,„(<7+l) / w M _ , ( r ) 

2(<? + 1 ) 2 nw0") < 2 W/,0')-
7 = 1 7 = 1 

Let 

mhM + l) = mh,n-\(r)> 

let 

mh-\Aq+\) 

c = 2 2 un(j)/(mhn{q + 1) - mh_xJLq + 1)), 
7 = 1 

https://doi.org/10.4153/CJM-1985-060-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-060-x


SYMMETRIC S E Q U E N C E SPACES 1131 

and let 

un(j) = min(c, un(mh_Un(q + 1 ) ) ) 

for mh_]n(q + 1) <j: = mhn{q + 1). Then we have 

2 u„(j) ^ 2 2 un(j) 

»W<7+1) 

< (i/«) 2 t/,o). 

This completes the proof of a sequence which satisfies (a), (b) and (c'). 
To complete the proof of the lemma we define sequences mn for each n. 

Let 

m nU) = mn,n+j-\(J) f o r e a c h J • 

Then rajy ^ /Î] is a subsequence of mnn+j_] for all /z so that (c) follows 
from(c'). 

6.2 Example. A symmetric sequence space which is not barrelled in the 
ft<!> topology. Let (un) be a sequence in c0 which satisfies the conclusion of 
Lemma 6.1. Let (vw) be the collection of all finite sections of the un. That 
is, each vn is equal to u [^ k] for some/? and some k. Let wn = unln for 
each n. Let S consist of all sequences 

* = 2 *„ + 2 *„ 
n n 

such that 

2/>„(•*/!) + 2 ?„(*„) < oo 

where 

A: i k 

pn(t) = sup^ 2 5 ( y ) / 2 ww0") 
7 = 1 7 = 1 

A: , it 

?„(/) - sup^ 2 5 ( 7 ) / 2 vw(7). 
A: , it 

. =1 7 = 1 

Then S is a BK-space with the norm 

H4I = inf{ 2/>„(*„) + 21 «„('„):2 J„ + 2 ' „ = 4 
* « « n n ' 

We omit the proof that S is a BK space as well as the proof that S is 
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symmetric and normal. 
For each n and each k, un[tà k] is some vm so it is in the unit ball Uof S. 

On the other hand if 

2 sn + 2 tn = uk 
n n 

then for all m 

m m m 

2 2 snu) + 2 2 tnu) = 2 uku) 
7 = 1 « 7 = 1 n j=\ 

m m m 

2 2 s„u) + 2 2 f„o') = 2 uku). 
n j' = 1 n j =\ j'= 1 

Thus for each m^(r) 

(6.5) 2 2 5na)/ 2 w,o) 2 %o)/ 2 ^o) 
« v

7 = i 7 = 1 7 V 7 = i 7 = 1 7 

(mA(r) / ™k(r) \/mk(r) I mk(r) \ 

2 ?„0)/ 2 v„o)l( 2 v„o)/ 2 uku)) = î. 
If ^npn(sn) and 2 „ #„('„) are finite the limit on the left hand side of (6.5) 
as k —> oo is 

/mk{r) ,mk{r) x 

2 ^ J l i m J 2 wn(j)l 2 "*(./)) 
V 7 = l 7 = 1 7 

/mA(r) /WA(r) x 

+ 2 qn(tn)limk[ 2 v^O')/ 2 uk(j)\. 
\ ,• = i , — i / 

2 wnu)l 2 
' 7 = 1 7 = 1 

2 v,o)/ 2 
' 7 = 1 7 = 1 

Because of Lemma 6.1 

* it. limA| 2 w„0)/ 2 «*(./)] = [ 0 i f / | 

Since vw(y) is eventually 0 and 2y uk(j) = oo for each k 

/mk(r) imk{r) \ 

limJ 2 vn(j)l 2 ^ 0 ) ) = 0 
V 7 = l 7 = 1 J 

for all n. Therefore, we conclude that if 

2 *„ + 2 *„ = uk, 
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pk(sk) is at least equal to k. This implies that 

|\uk\| ^ k for each k. 

If S were barrelled in the /?<j> topology there would be an S-bounded 
subset B of <p and positive numbers m and M such that 

mp(s) ^ |H| ^ M/K$) 

for s in S where 

(I? />($) = supj 2 s(j')tU). B 

Since ||w^[= n]\\ = 1 for each n and each /c it follows i\ia\ p(uk[^ w] ) 
^ M for each « and each k. But because of the form of p it results that 

p(uk) ^ M for all fc contradicting the fact that (uk) is unbounded in 
(SJIII). 
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