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ABSTRACT

We propose a new approach to mortality prediction under survival energy
hypothesis (SEH). We assume that a human is born with initial energy, which
changes stochastically in time and the human dies when the energy vanishes.
Then, the time of death is represented by the first hitting time of the survival
energy (SE) process to zero. This study assumes that SE follows a time-
inhomogeneous diffusion process and defines the mortality function, which is
the first hitting time distribution function of the SE process. Although SEH
is a fictitious construct, we illustrate that this assumption has the potential
to yield a good parametric family of cumulative probability of death, and
the parametric family yields surprisingly good predictions for future mortality
rates.
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1. INTRODUCTION: WHY DOES A HUMAN DIE?

Mortality prediction is an important social problem. The most popular mor-
tality prediction model is the Lee–Carter model (Lee and Carter, 1992), which
is based on death rates. Let τx be the time of death of an individual of age x.
Traditionally, τx is supposed to be the first event of an inhomogeneous Poisson
process with the force of mortality μ(t, x) at time t. Let m(x, t) be the crude
death rate of age x and let the calendar year be t. Then, assuming μ(x, t)
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remains constant over each year of integer age x and over each calendar year t,
we see that μ(t, x)=m(t, x), and the mortality rate is given by

t|qx := P(τx ≤ t+ 1|τx > t)

= 1− exp
(
−

∫ t+1

t
μ(s, x) ds

)
= 1− exp(−m(x, t)).

The Lee–Carter model is a regression type model of this mortality rate:

logm(t, x)= αx + βxκt + εx,t, (1.1)

where αx, βx are time-independent parameters, κ = (κt)t≥0 is a latent time series,
and εx,t is an i.i.d. noise. There are many other extensions or modifications
of this model. For example, Renshaw and Haberman (2003) considered the
multifactor version of the Lee–Carter model, Renshaw and Haberman (2006)
and Cairns et al. (2009) considered cohort effects, and Chen and Cox (2009)
include jump effects. See the review by Cairns et al. (2008) for other studies.

Those models concentrate on “probability” by considering death an acci-
dental event, but they do not explain why a human dies. An analogy can be
seen in credit risk analysis, where τ is considered the time of default of a com-
pany. Such a model is called the reduced-form approach in credit risk analysis;
see, for example, Jarrow and Turnbull (1995). Except for the Lee–Carter type
approaches, there are other reduced-form approaches in mortality prediction,
as in Dahl (2004), Biffis (2005), Biffis et al. (2010), Bauer et al. (2012) (see also
the references therein).

On the other hand, there is a structural approach, where the “firm value” of
the company is modeled by a stochastic process, and where the time of default
is defined as the first passage time of the process to a certain region (theMerton
model), which is initiated by Merton (1974, 1976). There are many extensions
to this stream; see, for example, Schoutens and Cariboni (2009) and references
therein. This is also the same as the probability of ruin in insurance risk theory,
which is originally introduced by Lundberg (1903), where the ruin occurs if an
insurance surplus reaches the negative region. Moreover, there is also a similar
idea in the analysis of a system failure in engineering, where the “failure time τ”
appears if accumulating “damages” exceed a certain level; for example, Ye and
Chen (2014), among others.

In our study, we will use the same idea as those “structural approach”
in mortality forecasting. That is, we assume that there is an underlying sur-
vival energy (SE) for human beings, and that a human dies when that energy
vanishes: survival energy hypothesis (SEH); see also Ito and Shimizu (2019).
The flow of energy would depend on the cohort in which a human was born
because it would depend on the period: natural, economic, and social envi-
ronments, technology and medical care levels, and so on. Therefore, we will
consider cohort-wise SE dynamics.
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Mathematically, we suppose that SE at time t in a cohort c is given by a
random variable Xc

t with initial energy Xc
0 = xc. The sample space� is a family

in the corresponding cohort, and each sample ω ∈� corresponds to a person.
That is, for a person ω, his/her energy has a different flow Xc

· (ω), but the law
is governed by an underlying probability law P on the σ -field F of �. In this
way, (�,F , P) becomes a probability space and Xc = (Xc

t )t≥0 is a stochastic SE
process in that space.

Later, we will assume that the SE process follows a stochastic differential
equation with an unknown parameter, which means that every human in the
fixed cohort follows the same SE model but has a different path due to ran-
domness. Therefore, we cannot separate the individual SE processes, but we
can compare the mortality changes in one cohort with that of the others.

In the sequel, we assume a stochastic basis (�,F , P;F) with the usual
conditions, where F= (Ft)t≥0, is given, and that the cohort-wise SE process
Xc = (Xc

t )t≥0 is a F-adapted process. The time of death of a human in the cohort
c is given by the first hitting time of Xc to zero:

τ c = inf{t> 0 : Xc
t < 0}, (1.2)

which can be the F-stopping time under some regularities and the probability
of death up to time t is given by

qc(t)= P(τ c ≤ t), t> 0. (1.3)

We call it the mortality function.
Our setting for the mortality function is similar to those for the default

and ruin probabilities. That is, our analysis is essentially the one for the first
hitting time to zero of the SE process Xc which is the basic structure for human
beings. Therefore, we call this approach a (cohort-wise) structural approach to
mortality prediction after the earlier literatures.

There are many practical advantages of identifying cohort-wise mortality
function (1.3). For example, when we compute life expectancy at age x, say ex,
in practice,

ex = px + 2px + 3px + . . .

=
∞∑
t=1

t|qx +
∞∑
t=2

t|qx +
∞∑
t=3

t|qx + . . .

=
∞∑
n=1

∞∑
t=n

[1− exp(−m(x, t))]

where tpx is the actuarial notation meaning the survival probability of age x
for t years. Since most conventional approaches for estimating m(x, t) give a
graph in x for a fixed t, we would need many graphs of m(x, t) (t= 1, 2, . . .) to
calculate ex.
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However, if we can obtain qc(t) in (1.3) as a closed analytical function of t,
we can obtain ex with a simple (numerical) integral

ex =
∫ ∞

x

1− qc(t)
1− qc(x)

dt.

Moreover, the single premium of an entire life insurance policy at age x (with
δ > 0 interest force) is given by

Ax =
∫ ∞

0
e−δt d

dt
P(x< τ c ≤ x+ t|τ c > x) dt

=
∫ ∞

0
e−δt q

′
c(t+ x)

1− qc(x)
dt,

among others. Only a mortality function can give many cohort-wise actuarial
quantities in simple computations.

The rest of this paper is organized as follows. Section 2 explains the
structural approach for computing cohort-wise probability of death using a
Brownian survival energy model (BSEM) for a simple understanding. We
extend the toy model to a more general time-inhomogeneous diffusion pro-
cess in a natural way and propose a specific model that can give the explicit
form of the hitting time distribution function, which is called the mortality
function. Section 3 gives a method for estimating the model parameters under
restricted data situations that would be unique in our context. Section 4
is devoted to real-life data analysis, where cohort-wise mortality functions
are estimated and predicted based on open data from the Human Mortality
Database (https://www.mortality.org/). Lastly, we conclude with Section 5.

2. SEM: SURVIVAL ENERGY MODELS

2.1. Describing the idea with a toy SEM

To understand the structural approach that we use, let us consider a simple
example of an SE model (SEM).

For simplicity, we assume that the SE of cohort c is a drifted Brownian
motion:

Xt = xc +μct+ σcWt, t≥ 0, (2.1)

where W is a Wiener process and μc, σc, and xc are unknown parameters.
Although this model is too simple for use in practice, it is useful to understand
some of the advantages of the structural approach, which will be described in
the sequel.
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In this model, it is known that the hitting time distribution function (1.3) is
given explicitly as follows:

ψθ
t (xc)= 1−

(
xc +μct

σc
√
t

)
+ e−2μcxc/σ 2

c

(−xc +μct

σc
√
t

)
, t> 0, (2.2)

where θ = (μc, σc) and  are standard normal distribution functions; see
Baukai (1990). If μc < 0, the distribution of τ c is an inverse-Gaussian distri-
bution with mean E[τ c]= xc/|μc| and variance xcσ 2

c /|μc|3. Otherwise, if μc ≥ 0,
it holds that E[τ c]= ∞.

2.1.1. The meaning of the parameters
• Initial SE: xc is the initial SE of cohort c, which is common within the cohort.
• SE drift: μc is the average of increasing rate of SE since E[Xt]= xc +μct.

Then, the life expectancy of that cohort is given by E[τ c]= xc/|μc|.
• SE volatility: σ 2

c can be a measure of a sudden death since the higher the σ 2
c ,

the easier it is for the energy process to hit zero.

2.1.2. Interpretation of the model
By estimating parameters (μc, σ 2

c , xc) and observing those changes year on year
for a fixed cohort, we may be able to interpret “Why does a human die?”

• If the initial SE xc is estimated to be high, then it indicates that the
corresponding cohort has a potential of longevity.

• If the estimated μc is increasing year on year, then it indicates that a human
in that cohort will not die year after year. If it is estimated as μc ≤ 0, then it
implies that P(τ c <∞)= 1, which will be usual. However, it would be inter-
esting if it is estimated to be μc > 0, which means that E[τ c]= ∞: a human
will live forever! Such a belief does exist in some areas of biological phi-
losophy, and if it were to be true, we might be able to “prove” the belief
statistically.

• If σ 2
c is estimated to be high, it implies that there is a probability of a “sudden

death” because the SE process easily hits zero. If the estimated σ 2
c is decreas-

ing year on year, then it indicates that a sudden death is going to decrease,
which might also indicate an improved quality of life (medical care and
lifestyle).

2.2. A practical point of view

It would not be realistic to assume that the parameters μc and σ 2
c are constant

throughout life as in the previous model. Intuitively speaking, in the first stage
of life, childhood and teenage years, death rate and survival rate are unstable
due to high volatility. In the middle stage, 20–40 years of age, μc may not be
that high though σ 2

c is somewhat high. In the last stage after retirement, μc
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FIGURE 1: An image of the survival energy (SE) process.

and σ 2
c decrease simultaneously; see Figure 1. Actually, the curve (2.2) cannot

follow the empirical mortality function, which increases significantly in the last
stage. Considering this, we shall consider a stochastic model where the drift
and volatility depend on time.

2.3. Inhomogeneous diffusion SEM: Id-SEM

Hereafter, we assign a certain cohort as c and omit the index c.
On a filtered probability space (�,F , P, F= (Ft)t≥0) with usual conditions,

we assume that the SE process of a certain cohort, say Xc = (Xc
t )t≥0 satisfies a

stochastic differential equation

dXc
t =U(t,μc) dt+V (t, σc) dWt, Xc

0 = xc, (2.3)

where W is a Wiener process, U : [0,∞)×�, V : [0,∞)×� are measurable
functions, with �⊂R

p,�⊂R
q for p, q ∈N and we set θ = (xc,μc, σc) ∈� with

�=�×�×�, where �⊂ (0,∞).
We will be using such a time-inhomogeneous diffusion (Id) process for the

SE model (SEM) in this study, and we shall call this model Id-SEM. More
specifically, we shall consider some change point models, where the parameters
in U and V have several change points in time.

2.3.1. Brownian SEM with 1 change point (1-BSEM)
Ito and Shimizu (2019) consider the following SEM, say,Xc,1 = (Xc,1

t )t≥0, which
satisfies the SDE (2.3) with

U(t,μc)=μc,01(0,T ](t)+μc,11(T ,∞)(t),
V (t, σc)= σc,01(0,T ](t)+ σc,11(T ,∞)(t),
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where μc = (μc,0,μc,1) and σc = (σ0,c, σc,1). This model is equivalent to the
following piecewise drifted Brownian motion:

Xc,1
t =

{
Xc,1
t := x+μc,0t+ σc,0Wt, t ∈ [0,T ]

Xc,0
T +μc,1(t−T)+ σc,1(Wt −WT ), t ∈ (T ,∞)

.

That is, the process X has a change point T , and it has parameters θ0 =
(μc,0, σc,0), θ1 = (μc,1, σc,1) and the initial value x.

In particular, this path is continuous since X 1
T1

=X 0
T1
. This mortality func-

tion is the same as the hitting time distribution function computed in Baukai
(1990).

2.3.2. Brownian SEM with N change points
Consider a generalization of 1-BSEM into the N-change point Brownian SEM
(N-BSEM).

For a sequence 0=T0 <T1 < · · ·<TN <TN+1 = ∞ for N ∈N, let⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
U(t,μc)=

N−1∑
k=0

μc,k1(Tk ,Tk+1](t);

V (t, σc)=
N−1∑
k=0

σc,k1(Tk ,Tk+1](t),

(2.4)

where μc = (μc,k)k=0,...,N and σc = (σc,k)k=0,...,N , and consider that (TN ,TN+1]=
(TN ,∞). Then the corresponding SE process, say, Xc,N , follows a piecewise
(drifted) Brownian motion.

This is equivalent to XN = (XN
t )t≥0 defined as the following recurrence

system of stochastic equations: for k= 1, 2, . . . ,N,

X 0
t = x+μc,0t+ σc,0Wt, t ∈ [0,T1]; X 0

t ≡X 0
T1
, t>T1;

Xk
t =

⎧⎪⎪⎨⎪⎪⎩
Xk−1
t t≤Tk;

Xk−1
Tk +μc,k(t−Tk)+ σc,k(Wt −WTk ), t ∈ (Tk,Tk+1];

Xk
Tk+1

, t>Tk+1 (if k<N).

(2.5)

The mortality function of N-BSEM is given by a recurrence-type formula
for the mortality functions for the process Xk’s (k= 1, 2, . . . ,N); see Ito and
Shimizu (2019) but it is difficult to implement in practice since the mortality
function is not explicit. In reality, 1- and 2-BSEMs are fitted to real-life mor-
tality data, and an ad hoc modification is used for the mortality function due
to theoretical and practical difficulties. To overcome these difficulties, we shall
use a model as a limiting process of the N-BSEM.
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2.3.3. As a limit process of the N-BSEM
In the N-BSEM with (2.4), suppose that there exist some functions μc(t) and
σc(t) such that

n∑
k=0

μk1(Tk ,Tk+1](t)→μc(t);
n∑

k=0

σk1(Tk ,Tk+1](t)→ σc(t)

for each t> 0 as N → ∞ while sup1≤k≤N |Tk −Tk−1| → 0. As is well known in
stochastic analysis, it holds that

XN
t

P−→X∞
t := x+

∫ t

0
μc(u) du+

∫ t

0
σc(u) dWu, N → ∞,

uniformly on any compact set for t (ucp-topology). See Protter (2004).
Although there are many studies on the hitting time distribution for such

a general diffusion process, only a few models give explicit formulas for the
corresponding mortality functions.

2.4. Explicit mortality functions

Suppose Xc satisfies

Xc
t = xc +

∫ t

0
U(s,μc) ds+

∫ t

0
V (s, σc) dWs, (2.6)

and that there exists a constant κc �= 0 such that

M(t,μc)
S(t, σc)

≡ κc, for all t≥ 0, (2.7)

where

M(t,μc)=
∫ t

0
U(s,μc) ds; S(t, σc)= 1

2

∫ t

0
V 2(s, σc) ds.

This special SEM gives us an explicit form of the mortality function as follows.

Theorem 2.1 (Molini et al., 2011). Consider the mortality function of an Id-SEM
satisfying the condition (2.7) and put

qc(t, θ) := P(τ c ≤ t), t≥ 0,

where θ = (xc,μc, σc, κc) is the unknown parameter. Then, it holds that

1− qc(t, θ)=
∫ ∞

0
f (z, t|θ) dz, t≥ 0,

where

f (z, t|θ)=Gθ (z− xc, t)− e−κcxcGθ (z+ xc, t)
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FIGURE 2: Curves of the unconditional (S= 0, left) and conditional (S= 20, right) mortality functions of an
inhomogeneous diffusion process with (2.9).

and

Gθ (y, t) := 1

2
√
πS(t, σc)

exp
(

− (y−M(t,μc))2

4S(t, σc)

)
.

Consequently, we can construct a parametric family of mortality func-
tions as

Pc = {qc(t, θ) | θ ∈�}, (2.8)

where qc is the function given in Theorem 2.1 and �⊂R
m with m := dim�.

Figure 2 shows the examples of (conditional) mortality functions

qc(t, θ |S) := P(S< τ c ≤ t)
P(τ c > S)

, t≥ 0,

of an inhomogeneous diffusion process (2.6) with coefficients

U(t,μc)= αc + βc(t−T)γc1{t>T}, (2.9)

with parameters μc = (αc, βc, γc)= (− 7.6,−0.009, 2.7) and κ = −0.002. The
left curve is the unconditional version (S= 0) and the right one is condi-
tional with S= 20, which will be used in the data analysis later. Compare it
to, for example, Figure 3, the empirical mortality function of Swedish 1830
birth-cohort.

3. STATISTICAL INFERENCE FOR ID-SEM

3.1. Empirical conditional mortality function

Since we cannot observe the path of Xc in reality, estimating the unknown
parameters in the SE process will not be straight forward. However, we can see
“in principle” the many observations of the time of death τ c:

τ c1 , τ
c
2 , . . . , τ

c
nc ,
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FIGURE 3: The unconditional S= 0, left) and a conditional (S= 20, right) empirical mortality functions of
the 1830-birth-cohort in Sweden.

where τ ci is the time of death of the ith human and nc is the population in
cohort c. Let

qc(t|S) := P(τ c ≤ t|τ c > S)= qc(t)
1− qc(S)

be the true conditional mortality function for a S year old in cohort c. If we
observe the actual time of death: τi (i= 1, 2, . . . , nc), we could compute the
empirical version of qc( · |S) as follows:

q̂c(t|S) :=

nc∑
i=1

1{S<τ ci ≤t}

nc∑
i=1

1{τ ci >S}

, (3.1)

Although it might be hard to obtain such individual data, we can make an
empirical version q̂c(t|S) using life tables from the Human Mortality Database
(HMD) (https://www.mortality.org/) as follows: Let q(c)x be the mortality rate
for 1 year of age x in “calendar year” c, and let qcx be the mortality rate for 1
year of age x with “birth year” c (cohort). We note that, in the life table of the
calendar year c (from HMD), q(c)0 = qc0, q

(c)
1 = qc−1

1 , . . . , q(c)ω = qc−ωω , where ω is
the final age in the life table. Then, we have that qck = q(c+k)k for k= 2, 3, . . . ,ω
(e.g., ω= 110 in HMD). From these, we can compute the empirical mortality
function

q̂c(t|S)= 1− P(τ c > t|τ c > S)= 1−
t−1∏
k=S

pck, (3.2)

for t= S+ 1, S+ 2, . . . , ω.
We show in Figure 3 an example of the unconditional/conditional

mortality functions of the Swedish 1830-birth-cohort made from HMD
(https://www.mortality.org/). We see that the unconditional curve seems to
have two points of inflection, which is hard to fit by our parametric family
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in (2.8). However, if we take, for example, S= 20, we get a conditional curve
with one point of inflection, which could be fitted with a mortality function
generated by our diffusion models.

3.2. Least squares estimation for hitting time distribution

Consider a parametric model of the mortality function qc(t)= P(τ c ≤ t):

Pc = {qc(t, θ) | θ ∈�},
where �⊂R

m is a bounded open set and suppose that there exists a true value
of the parameter θ0 ∈� such that

qc(t, θ0)= qc(t),

for all t≥ 0. Moreover, let,

qc(t, θ |S) := qc(t, θ)− qc(S, θ)
1− qc(S, θ)

,

which is a parametric model for P(τ c ≤ t|τ c > S).
By the Glivenko–Cantelli theorem in the classical theory of statistics, it is

easy to see for q̂c(t|S) with the expression (3.1) that

sup
t∈[0,∞)

|̂qc(t|S)− qc(t, θ0|S)| → 0 a.s., nc → ∞, (3.3)

if qc(S)< 1. Therefore, we shall estimate the parameter θ0 by fitting our
parametric model to the empirical version in terms of the least squares error.

Definition 3.1. For a given S with 0< qc(S)< 1, and S< t1 < t2 < · · ·< td ≤ω,

θ̂n := arg min
θ∈�

d∑
i=1

|qc(ti, θ |S)− q̂c(ti|S)|2 ,

where � is an open bounded subset of Rm and � is the closure. The index n := nc
is actually implicit in the estimator since (3.1) is computed the same way as in
(3.2) in practice.

Theorem 3.1. Suppose qc(t, ·|S) belongs to C1(�) for each t and S. Moreover, for
a given S> 0, suppose the following identifiability condition holds true:

qc(ti, θ |S)= qc(ti, θ0|S) for i= 1, 2, . . . , d ⇒ θ = θ0. (3.4)

Then, we have a weak consistency of the least square error θ̂n:

θ̂n
P−→ θ0, n→ ∞.
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Proof. Note that θ̂n is anM-estimator for the contrast function

�n(θ) :=
d∑
i=1

|qc(ti, θ |S)− q̂c(ti|S)|2 ,

and that, by (3.3), it holds for each θ ∈� that

�n(θ)→ �(θ) :=
d∑
i=1

|qc(ti, θ |S)− qc(ti, θ0|S)|2 a.s., n→ ∞.

According to theM-estimation theory (e.g., van der Vaart 1998, Theorem 5.7),
the proof of consistency is complete if we show the following (a) and (b). There
is a function � :�→R such that

(a) sup
θ∈�

|�n(θ)− �(θ)| P−→ 0, n→ ∞;

(b) For any ε > 0, inf
θ :|θ−θ0|>ε

|�(θ)|> �(θ0).
Note that (b) is clear with �(θ0)= 0 by the identifiability condition, so we will
now show (a).

We consider �n as a random map �n :�→ (C(�), ‖ · ‖), where ‖ · ‖ is the
sup norm over �, by extending the domain of �n to � by its continuity on �.
Then, the uniform tightness of the C(�)-valued random element �n implies a

weak convergence �n
D−→ � in C(�), which is equivalent to (a). A well-known

tightness criterion is given by

sup
n

E

[
sup
θ∈�

|∂θ�n(θ)|
]
<∞,

and this is clear since qc and q̂c are bounded by 1 and ∂θqc is bounded on � by
the assumption. Hence, the proof is complete. �

Theorem 3.2. Suppose the same assumptions as in Theorem 3.1. Moreover,
suppose qc ∈C2(�) and � is a convex subset of Rm. Then,

√
n(θ̂n − θ0)

D−→R−1
d Qd ·Nd(0,�), nc → ∞

where

Qd = (∂θqc(t1, θ0|S), . . . , ∂θqc(td , θ0|S) ∈R
m ⊗R

d ,

Rd =
d∑
i=1

[
(∂�
θ qc)(∂θqc)(ti, θ0|S)+ qc(ti, θ)∂2θ qc(ti, θ0|S)

] ∈R
m ⊗R

m,
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and the variance-covariance matrix � = (σij)1≤i,j≤m is given by

σij = 1

q2c(S)
�(ti, tj)+ qn(ti)

q4c(S)
�(S, S)+ qc(ti)

q3c(S)
�(ti, S)+ qc(tj)

q3c(S)
�(tj, S)

with �(x, y)= qc(x∧ y)− qc(x)qc(y) and qc = 1− qc.

Proof. We use the notation ∂θ = (∂θ1 , . . . , ∂θm)
� and ∂2θ = ∂θ∂

�
θ .

For the proof, we shall use the same notation as the previous proof of
Theorem 3.1. Moreover, for simplicity, we suppose the M-estimator θ̂n belongs
to the interior of the parameter space � as usual. Then, we can assume, by the
usual argument, that ∂θ�n(θ̂n)= 0, and that det ∂2θ �n(θ) �= 0 around θ0 without
loss of generality because the probability of those becomes zero when nc → ∞.

Under the above assumptions, we see from the mean value theorem that
√
n(θ̂n − θ0)=

[
∂2θ �n(θ

∗
n )

]−1 · √n∂θ�n(θ0),

where we note that

√
n∂θ�n(θ0)= 2

d∑
i=1

√
n ( q̂c(ti|S)− qc(ti, θ0|S)) ∂θqc(ti, θ0|S),

∂2θ �n(θ)= 2
d∑
i=1

[
(∂�
θ q)(∂θq)(ti, θ |S)+ q(ti, θ)∂2θ q(ti, θ |S)

]
.

Note that q̂c(ti|S) is the empirical distribution that is consistent with qc(ti|S):

q̂c(ti|S)= F̂n(ti)− F̂n(S)

1− F̂n(S)
, qc(ti|S)= F(ti)− F(S)

1− F(S)
,

where F is the distribution function of τ ci and

q̂n(t) := 1
nc

nc∑
i=1

1{τ ci ≤t}

and that it follows from the Donsker-type theorem that, for any xi ∈R,(√
n(̂qn(x1)− qc(x1)), . . . ,

√
n(̂qn(xK)− qc(xK))

) D−→ (Zx1 , . . . ,Zxk )∼NK (0,�),

as nc → ∞, where�= (�(xi, xj))1≤i,j≤K with�(xi, xj)= qc(xi ∧ xj)− qc(xi)qc(xj)
(see van der Vaart 1998, Theorem 19.3). Hence, it follows that

√
n(̂qc(ti|S)− qc(ti|S))=

√
n(̂qn(ti)− qc(ti))− √

n(̂qn(S)− qc(S))
1− q̂n(S)

+ (qc(ti)− qc(S))
√
n

(
1

1− q̂n(S)
− 1

1− qc(S)

)
D−→ 1

qc(S)
Zti +

qc(ti)

q2c(S)
ZS
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jointly for i= 1, 2, . . . , d, and therefore,

√
n∂θ�n(θ0)

D−→ 2
d∑
i=1

[
1

qn(S)
Zti +

qn(ti)

q2n(S)
ZS

]
∂θqc(ti, θ0|S)

= 2Qd ·Nd(0,�),

where � = (σij)1≤i,j≤m is given by

σij = 1

q2n(S)
�(ti, tj)+ qn(ti)

q4n(S)
�(S, S)+ qc(ti)

q3c(S)
�(ti, S)+ qc(tj)

q3c(S)
�(tj, S)

Moreover, since θ∗
n

P−→ θ0 by the consistency of θ̂n, we see from the continuous
mapping theorem that

∂2θ �n(θ
∗
n )

P−→
d∑
i=1

[
(∂�
θ qc)(∂θqc)(ti, θ0|S)+ qc(ti, θ0)∂2θ qc(ti, θ0|S)

] =Rd .

This completes the proof. �

Remark 3.1. Our structural approach meets the consistency and asymptotic nor-
mality for a suitable parametric SEM. This is a significant advantage over the
Lee–Carter type reduced form model of mortality rate, where the consistency of
the estimator is difficult to establish (see Leng and Peng 2016 for details).

4. DATA ANALYSIS WITH ID-SEM

4.1. Id-SEM with the exact mortality function

Here, we try the inhomogeneous diffusion process (2.6) with the (2.7) condition
for the Id-SEM process to specify the mortality functions. We use life tables
of several countries from HMD (https://www.mortality.org/) and estimate the
model parameters as described in Section 3.

We choose the three models A–C as candidates of coefficientU(t,μc) in the
diffusion model with parameter μc = (αc, βc, γc):

Model A: U(t,μc)= αc (toy: drifted Brownian motion);
Model B: U(t,μc)= αc + βc(t−T)γc1{t>T} (polynomial);
Model C: U(t,μc)= αc + βc exp(γc(t−T))1{t>T} (exponential);

and the diffusion coefficient is given by V 2(t)= 2
κc
U(t,μc). We try the least

squares method described in the previous section with S= 20 in each model.
Here, Model A is the toy model described in Section 2.1. We can expect that
the mortality function of Model A will not have a rapid increase in old age
after, say, 50 years. Model B can improve the disadvantage of Model A with a
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polynomial growth function after change point T . Model C is an exponential
growth model.

Throughout the analyses in this section, we fix the initial value xc = 1000 to
satisfy the identifiability condition (3.4) in Theorem 3.1. Although we can take
xc arbitrarily, we chose xc = 1000 tomake the order of estimated values of other
parameters be numerically appropriate. We note that, for any xc, there is some
μc that gives the same fitting in terms of the least squared error in our model.
That is, the initial value xc is not that important in this SEM. Thus, the param-
eter θ = (αc, βcγc, κc) is to be estimated and predicted for the future model.

4.1.1. Swedish mortality data
Swedish mortality data are good for testing the prediction for the distant future
because the HMD (https://www.mortality.org/) has the long-term life tables of
20–110 years from 1751 to 2016. We apply our Id-SEM to the data from 1801
to 1830 birth-cohort and try to predict the mortality functions of the cohort
after 10, 30, 50, and 70 years.

First, we shall try to estimate the parameters from the historical mortality
functions with the change point T = 50. That is, assuming that we are now in
1940, we estimate the parameters of

• 1801-birth-cohort by life tables of 1821–1911;
• 1802-birth-cohort by life tables of 1822–1912;

...
• 1830-birth-cohort by life tables of 1850–1940,

Figure 4 shows an example of the estimated curves and the least squared error
in models A–C for the c=1830 birth-cohort. As expected, Model A does not
follow the empirical curves. Model B performs better thanModel A but Model
C is the best in terms of the mean squared error of all cohorts (1801–1830).
Hence, we use the exponential growth model (Model C) to predict the future
mortality functions.

The results of all the parameter estimates in Model C are given in Figure 5.
From the plots of the estimated values, we use linear regression for predicting
the value of γ , and the exponential functions for αc, βc, and κc because they
seem to be increasing but their sign should be negative. We predict the future
parameters using these regression functions and show the prediction curves
after 10, 30, 50, and 70 years in Figure 6 with the prediction (LSE) errors in
Table 1.

From the results, we observe that our Id-SEM can predict future mortality
very well even after 50 years though there is a small gap after 70 years.

4.1.2. Dutch mortality data
Next, we apply our Models A–C to Dutch data of 1841–1870 birth-cohorts. In
this example, we chose S= 20 and change point T = 60, which is selected so
that the least square error fitting of the models is as good as possible.
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TABLE 1

SWEDEN: THE MEAN SQUARED PREDICTION ERRORS BETWEEN THE EMPIRICAL
AND THE PREDICTED MORTALITY FUNCTIONS.

Cohort Model A Model B Model C

1840 (10 years) 0.457803 1.26366 0.0091356
1860 (30 years) 0.670725 3.3604 0.0382479
1880 (50 years) 1.0998 5.28708 0.0180587
1900 (70 years) 1.1654 6.20919 0.1786

(a) (b)

(c)

FIGURE 4: Swedish mortality function of 1830-birth-cohort: estimated curve (solid), empirical curve
(dashed), and the least squared error of each estimated curve.

According to Figure 7 with the table of mean squared errors, we see
that Model C is the best in 1870-cohort; it was the same as in the other
cohorts of 1841–1869. From the results of estimated parameters in 1841–1870
birth-cohorts, see Figure 8, we predict the future parameters using nonlinear
regression as in the previous section and show the mortality functions of 10, 20,
and 30 years after 1870 with the obtained (empirical) mortality data in Figure 9
and the prediction errors in Table 2. We also see in this example that our model
can predict future mortality very well.
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(a) (b)

(c) (d)

FIGURE 5: Parameter estimates for (a) αc, (b) βc, (c) γc, and (d) κc in Model C from Swedish mortality data
for 30 years (c= 1801–1830) with results of (non) linear regressions. The horizontal axis is t, for which

c= 1800+ t.

(a) (b)

(c) (d)

FIGURE 6: Predicted Swedish mortality functions and the obtained mortality curves.
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(a) (b)

(c)

FIGURE 7: Dutch mortality function of 1870-birth-cohort: the estimated curve (solid) and empirical
(dashed), and the mean squared error (MSE) of each estimated curve.

(a) (b)

(c) (d)

FIGURE 8: Parameter estimates for (a) αc, (b) βc, (c) γc, and (d) κc in Model C from Dutch mortality data for
30 years (c= 1841–1870) with results of (non) linear regressions. The horizontal axis is t, for which

c= 1840+ t.
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TABLE 2

THE NETHERLANDS: THE MEAN SQUARED PREDICTION ERRORS BETWEEN
THE EMPIRICAL AND THE PREDICTED MORTALITY FUNCTIONS.

Cohort Model A Model B Model C

1880 (10 years) 0.330259 0.0197578 0.0220831
1890 (20 years) 0.329853 0.0261606 0.0623656
1900 (30 years) 0.256442 0.0287624 0.0995795

(a) (b)

(c)

FIGURE 9: Predicted Dutch mortality functions and the realized mortality curves.

4.1.3. Japanese mortality data
We next apply our models to Japanese mortality data.

As Japan currently has a rapidly aging population, it is very important to
predict the future mortality function, especially in old age. Since there is not
much Japanese mortality data in the HMD (https://www.mortality.org/), we
cannot confirm the accuracy of our predictions for the distant future. However,
from the good prediction results for the Swedish and Dutch data, we expect
that our model would yield good predictions for the Japanese data too.

We use the Japanese mortality data from 1947 to 2017. First, we estimate
the parameters in 1897–1907 birth-cohort (for 11 cohorts) with S= 50 and
T = 70 up to 90 year old, and predict the mortality of age 50 years in the cohort
of 10–40 years after 1907.
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(a) (b)

(c)

FIGURE 10: Japanese mortality function of 1907-birth-cohort: the estimated curve (solid), empirical curve
(dashed), and the mean squared error (MSE) of each estimated curve.

(a) (b)

(c) (d)

FIGURE 11: Parameter estimates for (a) αc, (b) βc, (c) γc, and (d) κc in Model C from Japanese mortality
data for 11 years (c= 1897–1907) with the results of (non) linear regressions. The horizontal axis is t, for

which c= 1896+ t.
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TABLE 3

JAPAN: THE MEAN SQUARED PREDICTION ERRORS BETWEEN THE EMPIRICAL
AND THE PREDICTED MORTALITY FUNCTIONS.

Cohort Model A Model B Model C

1917 (10 years) 0.0289017 0.00893398 0.00682046
1927 (20 years) 0.0186373 0.0279498 0.00422352
1937 (30 years) 0.00564805 0.00286146 0.00194083
1947 (40 years) 0.00849966 0.00242087 0.000961335

(a) (b)

(c) (d)

FIGURE 12: Predicted Japanese mortality functions and the obtained mortality curves.

Figure 10 shows the least square error fitting of SEMs A–C for old age in
the 1907 birth-cohort. We also observe that Model C always gives a better fit
to the empirical data for 1897–1906. The results of parameter estimation and
nonlinear regression in each cohort are given in Figure 11. Based on these,
the predicted mortality functions are plotted in Figure 12 and the prediction
errors in Table 3. The predicted curve in each cohort seems to fit the obtained
mortality although the actual (data) are up to 2017. We observe that the death
rate at each age is decreasing in each cohort, which indicates that Japanese
society is going to age more and more.

4.1.4. English and Welsh mortality data
Lastly, we use data from England andWales. In this respect, we find a different
feature for the transition of the parameters. We tried a preliminary analysis
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(a) (b)

(c) (d)

FIGURE 13: Parameter estimates for (a) αc, (b) βc, (c) γc, and (d) κc in Model C from the English and Welsh
mortality data for 80 years (c= 1841–1920). The horizontal axis is t, for which c= 1840+ t. There is a

“structural change” around c= 1890 (t= 50).

(a)

(c)

(b)

FIGURE 14: English and Welsh mortality function of 1920-birth-cohort: the estimated curve (solid),
empirical curve(dashed), and the mean squared error (MSE) of each estimated curve.
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(a) (b)

(c) (d)

FIGURE 15: Parameter estimates for (a) αc, (b) βc, (c) γc, and (d) κc in Model C from English and Welsh
mortality data for 20 years (c= 1901–1920) with the results of (non) linear regressions. The horizontal axis is

t, for which c= 1900+ t.

with Model C for the data of the birth-cohorts 1841–1920; see Figure 13. We
observed a “structural change” around 1890 though we do not know the reason
for it.

Therefore, we will use the data from 1901 to 1920 birth-cohort (for 20
cohorts) in the least square error fitting of the mortality function with S= 20
and T = 50 up to 90 year old, and predict the mortality of age 20 years in the
cohort of 10–30 years after 1920.

The results of fitting Models A–C for the 1920 birth-cohort are given in
Figure 14. We also observe that Model C again gave a better fit to the data for
1901–1920, and the results of its parameter estimation and nonlinear regression
for each cohort are given in Figure 15.

Remark 4.1. In order to capture the “structural change” around 1890 birth-
cohort, we had also tried to predict parameter changes by time series ARIMA
model (with the model selection by AIC) including whole the term 1841–1920.
However, the predicting results were very poor. Hence we will only show the
results by nonlinear regression in this paper. How to predict such a structural
change is an important issue in the future.

We predict the mortality function of 20 years old of the future cohort
c=1930 (10 years later), 1940 (20 years later), and 1950 (30 years later). The
mean squared errors for the prediction are given in Table 4.We find thatModel
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TABLE 4

ENGLAND AND WALES: THE MEAN SQUARED PREDICTION ERRORS BETWEEN
THE EMPIRICAL AND THE PREDICTED MORTALITY FUNCTIONS.

Cohort Model A Model B Model C

1930 (10 years) 0.0624429 0.0146555 0.0149824
1940 (20 years) 0.0251397 0.00568472 0.00735449
1950 (30 years) 0.0106258 0.00108093 0.000829724

(a) (b)

(c)

FIGURE 16: Predicted English and Welsh mortality functions by Model C and the obtained mortality curves.

C would be again a better choice for the prediction, and the predicted mortality
functions are given in Figure 16.

Although the predicted curve is slightly bigger than the actual around age
70 years, it seems to fit the data in each cohort very well. We again observe as
in the previous results for Japan that the death rate at each age is decreasing in
the cohort, which indicates that the English society is also going to age more in
future.

4.2. Comparison with the Lee–Carter model

Finally, we close this section by comparing our model to the classical
Lee–Carter model given in (1.1). Although this comparison may be unfair since
the Lee–Carter model (1.1) does not include cohort effect, we should attempt
it because the Lee–Carter model is the most standard model in practice.
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(a) (b)

(c) (d)

FIGURE 17: Predicted mortality functions: Lee–Carter (blue dots) versus Id-SEM (red solid line). The black
dots are the empirical (actual) mortality function.

We will use the Swedish data of 1821–1940 life tables from HMD
(https://www.mortality.org/) as well as Section 4.1.1. First, we use SEM
(Model C) and estimate the parameters of 1801–1830 birth-cohorts (20–110
years old), and predict the mortality for age: (a) 70–110 years in the 1870-birth-
cohort; (b) 60–110 years in the 1880 birth-cohort; (c) 50–110 years in the 1890
birth-cohort; and (d) 40–110 years in the 1900 birth-cohort. Assuming that we
are now in 1940, we estimate the parameters of

• 1801-birth-cohort by life tables of 1821–1911;
• 1802-birth-cohort by life tables of 1822–1912;

...
• 1830-birth-cohort by life tables of 1850–1940,

For example, a human who was born in 1870 would be 70 years old in 1940,
so (a) is the prediction of mortality of 1870 birth-cohort in 1941–1980, among
others.

For the prediction by the Lee–Carter model (1.1), we use the same proce-
dure as in Lee and Carter (1992) to estimate and predict the parameters, and
the life tables of 1901–1940, which are enough for prediction by this model
since the Lee–Carter model does not consider cohort effect.

The results are given in Figure 17. The black dots are the empirical mor-
tality function (actual), and the red solid lines are the predicted mortality
functions by our Id-SEM. The blue dots are the results by the Lee–Carter
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model. We find that the SEM gives better predictions than Lee–Carter in all
the cohorts, especially for older ages.

5. CONCLUDING REMARKS: SUMMARY AND FUTURE RESEARCH

5.1. Summary

In this study, we propose a new approach to cohort-wise mortality prediction.
We assume the SE process for people in each cohort and define the time of
death as the first hitting time (τ c) of the SE process to zero level. We call
the distribution function of τ c the mortality function, which is useful for the
computations of many actuarial quantities and longevity analysis.

This study explains a human’s death in terms of survival energy but that
does not mean that we claim the existence of such an energy. We claim
that some hitting time distributions of diffusion processes can give a good
parametric family to fit the empirical mortality functions and their predic-
tions. Indeed, we propose a special inhomogeneous diffusion (Id) process as
in Section 2.4, which can give an explicit mortality function and show in
Section 4.1 that it gives surprisingly good predictions for the distant future
if we choose the drift and diffusion coefficients appropriately.

Although we have tried, in some sense, ad hocmodels for fitting and predic-
tions, our structural approach is worth using and studying further for mortality
prediction.

5.2. Future studies

5.2.1. Model selection and predictions
There are many things to be considered from the perspective of modeling.

We fix the change point T of the drift coefficient in Id-SEM for all the
cohorts in a country. However, this may depend on the cohort in practice
and we need to investigate the estimation and prediction of T from the data.
Conversely, we should take S in (3.1) to be high to some extent since the mor-
tality function in the younger population, say, 0–5 years old is not likely to
be the hitting time distribution function of a diffusion process; you can com-
pare Figures 2 and 3, (S= 0). Therefore, the prediction for younger ages is an
important problem.

How to choose T (as well as S) is a problem of model selection since it
affects the coefficients of the SE processes. Moreover, we should compare sev-
eral competing models with different coefficients. A standard procedure for
model selection is based on information criteria. However, we did not discuss
the information criteria in this study because of several theoretical problems.

We estimate the parameter in the SEM using the least squares method, for
which the Akaike information criteria (AIC) and Bayesian information criteria
(BIC) are not available since they have to be based on the maximum likelihood
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estimators. For example, in a theoretical (statistical) perspective, AIC cannot
be applied even to the Lee–Carter model because the consistency of estimators
of parameters in the Lee–Carter model is not ensured; see Remark 3.1. In our
case, we need to construct the generalized information criteria (see Konishi and
Kitagawa 1996), which would be not easy since our data for τi are restricted.
In HMD (https://www.mortality.org/), we cannot obtain the actual of each
τi but we can see the (approximate) empirical mortality functions that are
manufactured from the data of death probabilities. This could be improved
if the mortality database is arranged in more detail. Otherwise, we still have
many technical (mathematical) issues to be solved under our limited sampling
situation. This would be an important issue for future studies.

In the prediction of parameter changes, we used nonlinear regressions for
simplicity. However, that might be inadequate because the estimated parame-
ters are sometimes unstable and the trends do not seem to be selected nonlinear
functions. For the prediction of parameters, it might be possible to use a
machine learning method with Gaussian processes, among others. If we can
propose a kind of confidence interval for the future parameters, then we can
give a confidence interval for the predicted mortality function. Currently, we
can only give a confidence interval for estimated mortality functions by the
asymptotic normality results for the estimators: Theorem 3.2.

5.2.2. Some directions of model extension
Future studies will have to extend our SEM in several directions: one is to
extend the coefficient of the SDE (2.3) to be more general, for example, state-
dependent model or random coefficient and the other is to introduce “jumps”
in the SE process such as jump-diffusions or Lévy processes since SE could
jump if there is a disease or an accident in their lives.

In those cases, we face a problem such that the hitting time distribution qc
is usually not easy to use. In some special cases, we could use some implicit
results, for example, by Hao et al. (2013) or Abbring (2012), where an integral-
type equation or the Laplace transformation of the hitting time distribution
is available. However, in most cases, the mortality function is not explicit.
Then, we will face problems in statistical inference, and it could sometimes
be computer intensive in the end.

One practicable and strong candidate would be the Inverse Gaussian pro-
cess. For example, Ye and Chen (2014) investigate the process in a context of
modeling the degradation of products in random environments. Since “degra-
dation” is an accumulation of damage over time that ultimately leads to a
system failure when it crosses a certain threshold, the motivation is very similar
to our SE hypothesis. In the inverse Gaussian model, the hitting time dis-
tribution can be written in explicit form, so it can be a strong candidate for
the SEM.

Although Ye and Chen (2014) also investigate the procedures of parame-
ter estimation, there is an important difference between their model and ours.
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That is, we cannot observe the SE process directly while they can observe the
degradation process. This makes our problem harder on many statistical issues
and model selection. We have proposed one possible strategy in this paper, but
further study is required on those points as pointed out in Section 5.2.1.
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