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STICKELBERGER ELEMENTS AND KOLYVAGIN
SYSTEMS

KÂZIM BÜYÜKBODUK

Abstract. In this paper, we construct (many) Kolyvagin systems out of Stick-
elberger elements utilizing ideas borrowed from our previous work on Kolyvagin

systems of Rubin-Stark elements. The applications of our approach are twofold.

First, assuming Brumer’s conjecture, we prove results on the odd parts of the

ideal class groups of CM fields which are abelian over a totally real field, and

we deduce Iwasawa’s main conjecture for totally real fields (for totally odd

characters). Although this portion of our results has already been established

by Wiles unconditionally (and refined by Kurihara using an Euler system argu-
ment, when Wiles’s work is assumed), the approach here fits well in the general

framework the author has developed elsewhere to understand Euler/Kolyvagin

system machinery when the core Selmer rank is r > 1 (in the sense of Mazur and

Rubin). As our second application, we establish a rather curious link between

the Stickelberger elements and Rubin-Stark elements by using the main con-
structions of this article hand in hand with the “rigidity” of the collection of
Kolyvagin systems proved by Mazur, Rubin, and the author.
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§1. Introduction

The Euler/Kolyvagin system machinery is designed to bound the size
of a Selmer group. In all well-known cases, the bounds obtained relate to
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124 K. BÜYÜKBODUK

L-values and thus provide a link between arithmetic and analytic data. Well-
known prototypes for such a relation between arithmetic and analytic data
are the Birch and Swinnerton-Dyer conjecture (more generally, Bloch-Kato
conjectures) and the main conjectures of Iwasawa theory. The Kolyvagin
system machinery has been successfully applied by many to obtain deep
results towards proving these conjectures.

In [MR1], Howard, Mazur, and Rubin show that the existence of Koly-
vagin systems relies on a cohomological invariant, what they call the core
Selmer rank (see [MR1, Definition 4.1.11]). When the core Selmer rank is
1, they determine the structure of the Selmer group completely in terms of
a Kolyvagin system. However, when the core Selmer rank is greater than 1,
not much could be said. One of the principal objectives of the current arti-
cle is to explore this more mysterious case in depth for a particular Galois
representation, for which the core Selmer rank is greater than 1.

Let k be a totally real field of degree [k : Q] = r, and let Gk := Gal(k/k)
be its absolute Galois group. Fix once and for all an odd rational prime p,
and let ψ : Gk → Z×

p be a totally even character which has finite prime-to-p
order. Consider the Gk-representation T ′ := Zp(1) ⊗ ψ−1. The core Selmer
rank of the Galois representation T ′ is r, and T ′ leads us to one of the basic
instances when the core Selmer rank is greater than 1. In [B1] and [B2], the
author studied the Kolyvagin system machinery for T ′. The main idea in
these two papers is to modify the relevant Selmer group appropriately and
construct Kolyvagin systems out of Rubin-Stark elements defined in [R2]
so as to control this modified Selmer group. In this paper, we consider the
Gk-representation T = Zp(χ), where χ : Gk → Z×

p is a totally odd character
which has finite prime-to-p order. The Gk-representation T turns out to
have core Selmer rank r as well. As in [B1] and [B2], we introduce certain
modified Selmer groups associated with the representation T . In this setting,
the Euler system that gives rise to the Kolyvagin system which controls the
modified Selmer group is obtained from the Stickelberger elements.

Before we state the main results of this article, we set some notation
which will be in effect throughout the paper. Let p, k,Gk, and r be as
above, and let χ : Gk → Z×

p be a totally odd character, which is different
from the Teichmüller character ω that gives the action of Gk on the pth
roots of unity. Let k∞ denote the cyclotomic Zp-extension of k. Consider
the following properties.

(A1) For any prime ℘ of k above p, we have χ(℘) �= 1.
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STICKELBERGER ELEMENTS AND KOLYVAGIN SYSTEMS 125

(A2) Any prime of k above p totally ramifies in k∞/k.
Note that (A2) is true, for example, if k/Q is unramified. Hypothesis (A1)
ensures that the associated Deligne-Ribet p-adic L-function Lωχ−1 does not
have a trivial zero in the sense of [G]. Note that Wiles in [W2] gave a proof
of the main conjecture without assuming these two hypotheses.

Let L be the fixed field of ker(χ) inside a fixed algebraic closure k of k;
write Δ = Gal(L/k). For any number field K containing L, let AK be the
p-part of the ideal class group of K, and let Aχ

K be its χ-isotypic part. We
fix S as the set of places of k which consists of all infinite places of k, all
places λ which divide the conductor fχ of χ, and all the places of k above p.
Finally, let θL,S = θL ∈ Zp[Δ] be the Stickelberger element (defined precisely
in [Ku, Section 1.2]; see also Section 3 below) relative to S. For the main
results of this article, we will assume the χ-part of Brumer’s conjecture, as
follows.

Assumption 1.1. θχ
K annihilates Aχ

K .

We remark here that Wiles [W1] proved that Brumer’s conjecture as
stated above follows from his proof in [W2] of the main conjecture of Iwa-
sawa theory for totally real fields. In this paper, we prove the other way
around, namely, that, assuming Brumer’s conjecture, one might also prove
the main conjecture (see Theorem B below; see [Ku], where Kurihara refines
Wiles’s result using a different type of Euler system argument).

The first application of the treatment here is Theorem 5.3 below.

Theorem A. Suppose that hypothesis (A1) and Assumption 1.1 hold.
Then,

|Aχ
L| = |Zp/χ(θL)Zp|.

With a bit more work, we can prove the Iwasawa theoretic version of
Theorem A, which we state below. Set Γ = Gal(k∞/k), and set Λ = Zp[[Γ]],
as usual. Let Lωχ−1 ∈ Λ denote the Deligne-Ribet p-adic L-function (see
[DR]). We recall in (5.2) the basic interpolation property which character-
izes Lωχ−1 . Let Tw〈ρcyc〉 be a certain twisting operator on Λ (see Section 5.2
below for its definition). For any abelian group A, let A∨ := Hom(A,Qp/Zp)
denote its Pontryagin dual, and finally, let char(M) denote the character-
istic ideal of a finitely generated Λ-module M (with the convention that
char(M) = 0 unless M is Λ-torsion). Then we are able to prove the follow-
ing (see Theorem 5.8 and Corollary 5.10 for a slightly improved version so
as to include the case μμμp ⊂ L).
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Theorem B. Suppose that hypotheses (A1) and (A2) as well as Assump-
tion 1.1 hold. Assume also that L does not contain pth roots of unity. Then,

char
((

lim−→
n

Aχ
Ln

)∨)
= Tw〈ρcyc〉(Lωχ−1).

These results have already been obtained by Wiles [W2] without appeal-
ing to the Euler system machinery, even without the assumptions of The-
orem B above. Kurihara [Ku] proved a refined version of Theorem B using
an Euler system argument (still building on Wiles’s results), though signifi-
cantly different than ours. The novelty in this paper is a new treatment of the
Euler/Kolyvagin system machinery via what we call LLL-restricted Euler sys-
tems (see Section 4.1, especially Remark/Definition 4.10 and Example 4.11),
when the core Selmer rank (in the sense of Mazur and Rubin [MR1]) of the
Galois representation in question is r > 1. One benefit of the new approach
presented in this paper is a rather surprising link between Stickelberger ele-
ments and the (conjectural) Rubin-Stark elements, which we prove below in
Theorem 5.16; see also Theorem C in this section and the paragraph that
follows its statement.

As in our earlier papers ([B1], [B2]), we improve the Euler/Kolyvagin
system machinery of [R3], [P2], [Ka], and [MR1] to prove Theorems A and
B, generalizing Rubin’s treatment in [R3, Section 3.4] of the Stickelberger
element Euler system. The main obstruction to apply the machinery of
[MR1] directly in our setting is the fact that when r > 1, what Mazur and
Rubin call the canonical Selmer structure in [MR1] produces a Selmer group
too big to control using the theory developed there. In order to deal with
this matter, we proceed as follows.

(1) We first “refine” the canonical Selmer structure by introducing more
restrictive local conditions at p. We achieve this by choosing a line LLL
inside a certain local cohomology group at p (see Section 2.3). This step
has to do with the issue discussed in Remark 3.5(i) below.

(2) We introduce what we call the module of LLL-restricted Euler systems
(see Definition 4.10). The point in doing so is that an Euler system (in
the sense of Rubin) a priori gives rise to a Kolyvagin system only for the
canonical Selmer structure, and not necessarily for the refined Selmer
structure defined in Step (1). On the other hand, as we verify here, an

LLL-restricted Euler system does give rise to a Kolyvagin system for the
refined Selmer structure.
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(3) We then obtain LLL-restricted Euler systems starting from Stickelberger
elements (see Example 4.11), which we apply to deduce Theorems A and
B above. For this part, one needs to determine the structure of semilo-
cal cohomology groups and, using this information, choose a useful col-
lection of homomorphisms (see Proposition 4.9). The choice of such a
collection also appears in [R3, Proposition D.1.3], where Rubin explic-
itly constructs one, though in a different way from ours; see Remark 3.5
for a comparison of our construction here to Rubin’s work in the case
k = Q [R3, Section III.4]. Rubin’s construction is useful only when the
base field k is Q, whereas we abstractly show that a collection of homo-
morphisms with the necessary properties exists for an arbitrary totally
real base field k.

The Galois representation (and the Euler system attached to it) which we
treat in this paper needs to be handled in a slightly different manner than
the case of Rubin-Stark elements (which was studied in [B1], [B2]), as far as
the Euler/Kolyvagin system machinery is concerned. In a forthcoming paper
[B4], the setup from the current article and that from [B3] are combined to
treat the theory of Kolyvagin systems which descend from Euler systems∗

for an arbitrary self-dual Galois representation whose core Selmer rank is
r > 1.

Our method to improve the results of [P2], [R3], and [MR1] relies on the
choice of a rank 1 direct summand (which we call LLL above) inside the semilo-
cal cohomology group at p. This makes our approach seem less natural. We
address this issue in Remark 2.32 and show that the module generated by
the “leading terms” of the Kolyvagin systems constructed this way does not
depend on the decomposition of the semilocal cohomology group at p into
rank 1 direct summands (see Theorem 2.33).

Besides the standard applications (i.e., Theorems A and B above) of our
construction of what we call an LLL-restricted Kolyvagin system (see Defini-
tion 2.36, Theorem 4.15, and Remark 4.8) out of Stickelberger elements, we
also prove the following statement regarding the local Iwasawa theory of
Rubin-Stark elements, which was proved in [B2] assuming the truth of the
main conjecture.

Theorem C. Let ψ : Gk → Z×
p be a totally even character. Suppose that

both ψ and χ = ωψ−1 satisfy hypothesis (A1), and assume that (A2) holds

∗More precisely, Euler systems of rank r in the terminology of [P2].
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as well as Assumption 1.1. Then,

char
(

∧r
ΛH1(kp, T

′ ⊗ Λ)/Λ · cψ
k∞

)
= Lψ.

Here, T ′ = Zp(1) ⊗ ψ−1, and cψ
k∞

:= {cψ
kn

} is the ψ-part of the collection
of (conjectural) Rubin-Stark elements (which we assume to exist) along
the cyclotomic tower (see [B2, Section 3] for a precise definition of these
elements).

In fact, we are able to prove considerably more than Theorem C in
regard of the Rubin-Stark elements. In Theorem 5.16(i), we obtain a rela-
tion between the Stickelberger elements and Rubin-Stark elements (note
that the existence of the latter is conjectural), making use of the formalism
of LLL-restricted Euler systems we develop in this paper, as well as the rigidity
of the module of Λ-adic Kolyvagin systems proved in [B3]. This, we believe,
is interesting on its own right. We also note that the “rigidity phenome-
non” which plays an important role for the link we obtain here (between
the Stickelberger elements and Rubin-Stark elements) has recently been uti-
lized by Mazur and Rubin [MR2] (in a rather similar fashion) to prove an
important portion of Darmon’s refinement of Gross’s conjecture.

We finally remark that, thanks to (an appropriate variant of) Proposi-
tion 4.5, we may bypass the need to appeal to Krasner’s lemma in [B1] and
[B2], and hence we may remove the hypothesis that χ is unramified at all
primes ℘ ⊂ k above p on the main results of [B1] and [B2].

Notation. Besides what we have fixed above, the following notation will
be in effect throughout.

For any field F , let GF denote the Galois group of a fixed separable
closure F of F . For any abelian group A, write

A∧ := Hom
(
Hom(A,Qp/Zp),Qp/Zp

)
for its p-adic completion. Suppose in addition that Δ acts on A; we then
write Aχ for the χ-isotypic component of A∧.

For k∞/k as above, let kn/k be the unique subfield of degree pn. We
set Γn = Gal(kn/k), and we write Ln = Lkn. For any prime q ⊂ k, let k(q)
denote the p-part of the ray class field extension of k modulo q. For any
square-free integral ideal q1 · · · qn = τ ⊂ k, we set k(τ) as the composite

k(τ) = k(q1) · · · k(qn).

Set Δτ = Gal(k(τ)/k). We let L(τ) = Lk(τ), kn(τ) = knk(τ), and Ln(τ) =
knL(τ).
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§2. Local conditions and Selmer groups

Much of this section is a review of the Kolyvagin system machinery and
the terminology of [MR1], which we will employ for the remainder of this
paper. The reader who is comfortable with the language of [MR1] may
safely jump to Section 3 after a glance at Sections 2.3.1 and 2.3.2 and
then at Proposition 2.21, Corollary 2.22, Propositions 2.23 and 2.29, and
Theorem 2.37. We also note that Remark 2.32 (esp. Theorem 2.33) should be
of interest for the general understanding of the Kolyvagin system machinery
when the core Selmer rank is greater than 1.

2.1. Selmer structures on T = Zp(χ)
Below we use the notation that was set in Section 1. Recall that Γ :=

Gal(k∞/k) and Λ := Zp[[Γ]] is the cyclotomic Iwasawa algebra.
We first recall Mazur and Rubin’s definition in [MR1, Definition 2.1.1] of

a Selmer structure, in particular, the canonical Selmer structure on T and
T ⊗ Λ.

2.1.1. Local conditions. Let R be a complete local Noetherian ring, and let
M be an R[[Gk]]-module which is free of finite rank over R. In this paper,
we are interested in the case when R = Λ or its certain quotients, and when
M is T ⊗ Λ or its corresponding quotients by ideals of Λ. For example, if we
start with the Galois representation T ⊗ Λ with coefficients in Λ, we get the
representation T upon taking the quotient of T ⊗ Λ by the augmentation
ideal of Λ.

For each place λ of k, a local condition F (at λ) on M is a choice of
an R-submodule H1

F (kλ,M) of H1(kλ,M). A local condition F at p is a
choice of an R-submodule H1

F (kp,M) of the semilocal cohomology group
H1(kp,M) :=

⊕
℘|p H1(k℘,M), where the direct sum is over all the primes

℘ of k which lie above p.
For examples of local conditions, see [MR1, Definitions 1.1.6 and 3.2.1].
Suppose that F is a local condition (at λ) on M . If M ′ is a submodule of

M (resp., M ′ ′ is a quotient module), then F induces local conditions (which
we still denote by F ) on M ′ (resp., on M ′ ′) by taking H1

F (kλ,M ′) (resp.,
H1

F (kλ,M ′ ′)) to be the inverse image (resp., the image) of H1
F (kλ,M) under

the natural maps induced by

M ′ ↪→ M, M � M ′ ′.
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Definition 2.1. Propagation of a local condition F on M to a submodule
M ′ (and a quotient M ′ ′ of M ) is the local condition F on M ′ (and on M ′ ′)
obtained following the procedure above.

For example, if I is an ideal of R, then a local condition on M induces
local conditions on M/IM and M [I], by propagation.

2.1.2. Selmer structures and Selmer groups. Notation from Section 2.1.1 is
in effect throughout this section. We will denote Gkλ

by Dλ whenever we
wish to identify this group with a closed subgroup of Gk, namely, with a
particular decomposition group at λ. We further define Iλ ⊂ Dλ to be the
inertia group and Frλ ∈ Dλ/Iλ to be the arithmetic Frobenius element at λ.

Definition 2.2. A Selmer structure F on M is a collection of the fol-
lowing data:
• a finite set Σ(F ) of places of k, including all infinite places and primes

above p, and all primes where M is ramified,
• for every λ ∈ Σ(F ), a local condition (in the sense of Section 2.1.1) on

M (which we view now as an R[[Dλ]]-module), that is, a choice of R-
submodule

H1
F (kλ,M) ⊂ H1(kλ,M).

If λ /∈ Σ(F ), we will also write H1
F (kλ,M) = H1

f (kλ,M), where the mod-
ule H1

f (kλ,M) is the finite part of H1(kλ,M), defined as in [MR1, Defini-
tion 1.1.6].

Definition 2.3. Define the Cartier dual of M to be the R[[Gk]]-module

M ∗ := Hom(M,μp∞ ),

where μp∞ stands for the p-power roots of unity.

Let λ be a prime of k. There is a perfect pairing

<, >λ: H1(kλ,M) × H1(kλ,M ∗) −→ H2(kλ, μp∞ ) ∼−→ Qp/Zp

called the local Tate pairing.

Definition 2.4. The dual local condition F ∗ on M ∗ of a local condition
F on M is defined so that H1

F ∗ (kλ,M ∗) is the orthogonal complement of
H1

F (kλ,M) with respect to the local Tate pairing <, >λ.
The dual Selmer structure F ∗ is defined by setting Σ(F ∗) = Σ(F ) and

choosing the local conditions on M ∗ as the dual local conditions
H1

F ∗ (kλ,M ∗) = H1
F (kλ,M)⊥ at every prime λ ∈ Σ(F ∗).
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Definition 2.5. If F is a Selmer structure on M , we define the Selmer
module H1

F (k,M) to be the kernel of the sum of the restriction maps

(2.1) H1
F (k,M) := ker

(
H1

(
Gal(kΣ(F )/k),M

)
→

⊕
λ∈Σ(F )

H1(kλ,M)
H1

F (kλ,M)

)
.

Here, kΣ(F ) is the maximal extension of k which is unramified outside Σ(F ).
We also define the dual Selmer module H1

F ∗ (k,M ∗) in a similar fashion: just
replace M by M ∗ and F by F ∗ in (2.1).

Example 2.6. In this example, we recall [MR1, Definitions 3.2.1, 5.3.2].
(i) Let R = Zp, and let M be a free R-module endowed with a continuous

action of Gk, which is unramified outside a finite set of places of k. We
define a Selmer structure Fcan on M by setting
– Σ(Fcan) = {λ : M is ramified at λ} ∪ {℘ | p} ∪ {v | ∞},

– H1
Fcan

(kλ,M) =

{
H1

f (kλ,M) if λ ∈ Σ(Fcan), λ � p∞,

H1(kλ,M) if λ | p.

Here, H1
f (kλ,M) := ker{H1(kλ,M) → H1(kλ,M ⊗ Qp)} for every λ �

pfχ.
The Selmer structure Fcan is called the canonical Selmer structure

on M .
(ii) Now let R = Λ be the cyclotomic Iwasawa algebra, and let M be a free

R-module endowed with a continuous action of Gk, which is unramified
outside a finite set of places of k. We define a Selmer structure FΛ on
M by setting
– Σ(FΛ) = {λ : M is ramified at λ} ∪ {℘ | p} ∪ {v | ∞},
– H1

FΛ
(kλ,M) = H1(kλ,M) for λ ∈ Σ(FΛ).

The Selmer structure FΛ is called the canonical Selmer structure on M.
As in Definition 2.1, the induced Selmer structure on the quotients

M/IM is still denoted by FΛ. Note that H1
FΛ

(kλ,M/IM) will not usually
be the same as H1(kλ,M/IM). In particular, when I is the augmen-
tation ideal inside Λ, FΛ on M will not always propagate to Fcan on
M = M ⊗ Λ/I.

However, when M = T and M = T ⊗ Λ as in Section 1, it is not hard
to see that FΛ does propagate to Fcan.

Remark 2.7. When R = Λ and M = T ⊗ Λ with T = Zp(χ), we will see
in Section 2.5.2 that the Selmer structure Fcan of [B3, Section 2.1] on the
quotients T ⊗ Λ/(f) may be identified, under hypothesis (A1) on χ, with
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the propagation of FΛ to the quotients T ⊗ Λ/(f), for every distinguished
polynomial f inside Λ.

Definition 2.8. A Selmer triple is a triple (M, F , P ) where F is a Selmer
structure on M and P is a set of rational primes, disjoint from Σ(F ).

Remark 2.9. In our setting, that is, when the Galois representation in
question is T ⊗ Λ or its quotients by ideals of Λ, one may explicitly compute
the cohomology groups in terms of certain groups of homomorphisms (see
[R3, Sections I.6.1–3]). Nevertheless, we will insist on using the cohomolog-
ical language for the sake of notational consistency with [MR1] from which
we borrow the main technical results. We also hope that the similarity of
the ideas applied here and in [B1] and [B2] is more apparent this way.

2.2. Computing Selmer groups explicitly
In this section, we give an explicit description of the Selmer groups for

the Gk-representations T = Zp(χ) (resp., for T ⊗ Λ) and for T ∗ =μμμp∞ ⊗ χ−1

(resp., for (T ⊗ Λ)∗), following [R3, Section I.6.2] and [MR1, Section 6.1].

2.2.1. Selmer groups over k. Recall that L is the CM field cut by χ. For any
m ∈ Z+, it follows (as in [MR1, Section 6.1]) from the inflation-restriction
sequence that

(2.2) H1(k,T/pmT ) = H1
(
k,Z/pmZ(χ)

) ∼= Hom(GL,Z/pmZ)χ−1
,

and similarly for every prime λ of k,

(2.3) H1(kλ, T/pmT ) ∼=
(⊕

q|λ
Hom(GLq

,Z/pmZ)
)χ−1

.

Therefore, for the semilocal cohomology at a rational prime 
, we have

(2.4) H1(k	, T/pmT ) ∼=
⊕
λ|	

(⊕
q|λ

Hom(GLq
,Z/pmZ)

)χ−1

.

Passing to the inverse limit, we obtain

(2.5) H1(k,T ) ∼= Hom(GL,Zp)χ−1

and

(2.6) H1(k	, T ) ∼=
⊕
λ|	

(⊕
q|λ

Hom(GLq
,Zp)

)χ−1

.
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For the dual representation T ∗, we have by the inflation-restriction se-
quence and by Kummer theory

(2.7) H1(k,T ∗[pm]) = H1(k,μμμpm ⊗ χ−1) ∼=
(
L×/(L×)pm)χ

,

and similarly for every prime λ ⊂ k,

(2.8) H1(kλ, T ∗[pm]) ∼=
(
L×

λ /(L×
λ )pm)χ

.

Also, for the semilocal cohomology, we have

(2.9) H1(k	, T
∗[pm]) ∼=

(
L×

	 /(L×
	 )pm)χ

,

where Lλ := L ⊗k kλ, the sum of the completions of L at the primes above
λ, and L	 := L ⊗Q Q	. Taking direct limits, we see that

(2.10) H1(k,T ∗) ∼= (L× ⊗ Qp/Zp)χ

and

(2.11) H1(k	, T
∗) ∼= (L×

	 ⊗ Qp/Zp)χ.

Proposition 2.10. The canonical Selmer structure Fcan on T (resp.,
F ∗

can on T ∗) is given by
• Σ(Fcan) = Σ(F ∗

can) = {λ : λ | pfχ} ∪ {v | ∞}
and by setting (using the identifications above)

• H1
Fcan

(k	, T ) =
(⊕

q|	 Hom(GLq
/Iq,Zp)

)χ−1

,
H1

F ∗
can

(k	, T
∗) = (O ×

L,	 ⊗ Qp/Zp)χ, if 
 �= p,
• H1

Fcan
(kp, T ) = H1(kp, T ),

H1
F ∗

can
(kp, T

∗) = 0.

Here, Iq stands for a fixed inertia group at q, and OL,	 := OL ⊗ Z	 is the
sum of the local units inside L	 =

⊕
q|	 Lq.

Proof. This is proved in [R3, Sections I.6.2–3].

Definition 2.11. We define the classical Selmer structure Fcl on T (and
F ∗

cl on T ∗) by setting Σ(Fcl) = Σ(Fcan), and by letting
• H1

Fcl
(k	, T ) = H1

Fcan
(k	, T ), and

H1
F ∗

cl
(k	, T

∗) = H1
F ∗

can
(k	, T

∗), if 
 �= p,
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• H1
Fcl

(kp, T ) =
(⊕

q|p Hom(GLq
/Iq,Zp)

)χ−1

, and
H1

F ∗
cl
(kp, T

∗) = (O ×
L,p ⊗ Qp/Zp)χ.

Remark 2.12. If we assume that (A1) holds, it follows from the proof of
[R3, Proposition III.2.6] (see also [MR1, Lemma 6.1.2]) that H1

Fcl
(kp, T ) = 0

and that H1
F ∗

cl
(kp, T

∗) = H1(kp, T
∗). We therefore have the following exact

sequences:

0 H1
Fcl

(k,T ) H1
Fcan

(k,T )
locp

H1(kp, T ),

0 H1
F ∗

can
(k,T ∗) H1

F ∗
cl
(k,T ∗)

loc∗
p

H1(kp, T
∗).

Furthermore, the image of locp is the orthogonal complement of the image of
loc∗

p, by the Poitou-Tate global duality theorem. We note that the classical
Selmer group H1

Fcl
(k,T ) (resp., H1

F ∗
cl
(k,T ∗)) is denoted by S(k,T ) (resp.,

by S(k,W ∗)) in [R3].

Proposition 2.13. Let AL denote the p-part of the ideal class group of
L. Then, H1

Fcl
(k,T ) = 0 and H1

F ∗
cl
(k,T ∗) ∼= Aχ

L.

Proof. Proposition 6.1.3 of [MR1] gives

H1
Fcl

(k,T ) = lim←−
m

Hom(Aχ
L,Z/pmZ) = Hom(Aχ

L,Zp);

we note that the propagation of Fcl to Z/pmZ(χ) coincides with the Selmer
structure F ∗ of [MR1, Section 6.1]. Since Aχ

L is finite, it follows that
H1

Fcl
(k,T ) = 0.

Similarly, the propagation of F ∗
cl to μμμpm ⊗ χ−1 coincides with the Selmer

structure F of [MR1, Section 6.1]. It therefore follows from [MR1, Proposi-
tion 6.1.3] that there is an exact sequence

0 −→
(

O ×
L /(O ×

L )pm)χ −→ H1
F ∗

cl
(k,T ∗[pm]) −→ AL[pm]χ −→ 0.

Taking the direct limit with respect to m, we obtain the following exact
sequence:

0 −→ (O ×
L ⊗ Qp/Zp)χ −→ H1

F ∗
cl
(k,T ∗) −→ Aχ

L −→ 0.

Since χ is totally odd, it follows from [T, proposition I.3.4] that (O ×
L )χ is

finite; hence, (O ×
L ⊗ Qp/Zp)χ = 0. This completes the proof of the proposi-

tion.
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2.2.2. Selmer groups over k∞. Let kn denote the unique subfield k∞, which
is of degree pn over k. We also set Ln = L · kn. Repeating the arguments of
the previous section (replacing the totally real field k with the totally real
field kn), we prove the following.

Lemma 2.14. There is a canonical identification

lim−→
n

H1
Fcl

(kn, T ∗) = lim−→
n

Aχ
Ln

.

2.3. Modifying the local conditions at p

When the core Selmer rank of a Selmer structure (in the sense of [MR1];
see also Section 2.5 below) is greater than 1, it produces a Selmer group
which is difficult to control using the Kolyvagin system machinery of [MR1].
As we will see in Section 2.5, the Selmer structure Fcan on T (resp., FΛ on
T ⊗ Λ) has core Selmer rank r = [k : Q]. Hence, to be able to utilize the Koly-
vagin system machinery, we will need to modify Fcan and FΛ appropriately.
This is what we do in this section.

Throughout this section we assume (A1) and (A2).

2.3.1. Local conditions at p over k.

Lemma 2.15. Under our running hypotheses,

H1(kp, T ) :=
⊕
℘|p

H1(k℘, T )

is a free Zp-module of rank r = [k : Q].

Proof. We first prove this using the general structure theory of semilocal
cohomology groups at p. All the references in this proof are to [B2, Appen-
dix A] (we note that the results quoted there are originally due to Benois,
Colmez, Herr, and Perrin-Riou).

By [B2, Theorem A.8(i)], the Λ-torsion submodule H1(kp, T ⊗ Λ)tors is iso-
morphic to

⊕
℘|p THk℘ , where Hk℘ = Gal(k℘/k℘,∞). Since we assume (A1),

it follows that H1(kp, T ⊗ Λ)tors = 0. Then [B2, Theorem A.8(ii)] concludes
that the Λ-module H1(kp, T ⊗ Λ) is free rank r. Furthermore,

coker[H1(kp, T ⊗ Λ) −→ H1(kp, T )] = H2(kp, T ⊗ Λ)[γ − 1],

where γ is any topological generator of Γ. However, it follows from [B3,
Lemma 2.11] that H2(kp, T ⊗ Λ) = 0; hence, the map

H1(kp, T ⊗ Λ) −→ H1(kp, T )

https://doi.org/10.1215/00277630-1331890 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-1331890


136 K. BÜYÜKBODUK

is surjective. The lemma now follows.

Remark 2.16. There is a more direct proof of Lemma 2.15. In this
remark, we include this alternative proof of this lemma.

By the explicit description of the semilocal cohomology groups in (2.6),

H1(kp, T ) ∼=
⊕
℘|p

(⊕
q|℘

Hom(GLq
,Zp)

)χ−1

.

It follows at once from this description that H1(kp, T ) is Zp-torsion free,
hence free. Further, since Zp is an abelian group, we may rewrite the equality
above as

H1(kp, T ) ∼=
⊕
℘|p

(⊕
q|℘

Hom(Gab
Lq

,Zp)
)χ−1

,

where Gab
Lq

stands for the abelianization of GLq
. By local class field theory,

Gab
Lq

∼= L∧
q , the p-adic completion of the multiplicative group of Lq. Further,

the valuation map valq gives an isomorphism

L×
q

valq−→ Zp ⊕ O ×,∧
Lq

.

We therefore have

H1(kp, T ) ∼= Hom
(⊕

q|p
(Zp ⊕ O ×,∧

Lq
),Zp

)χ−1

∼= Hom
((⊕

q|p
Zp

)χ
⊕

(⊕
q|p

O ×,∧
Lq

)χ
,Zp

)
.

It follows from (A1) that
(⊕

q|p Zp

)χ = 0; hence,

H1(kp, T ) ∼= Hom
((⊕

q|p
O ×,∧

Lq

)χ
,Zp

)
.

To prove the lemma, it suffices to check that the Qp-dimension of V :=(⊕
q|p O ×,∧

Lq
⊗ Qp

)χ is equal to r. The p-adic logarithm gives a homomor-

phism O ×,∧
Lq

→ OLq
with finite kernel and cokernel. Hence,

V =
(⊕

q|p
O ×,∧

Lq
⊗ Qp

)χ
=

(⊕
q|p

OLq
⊗ Qp

)χ
= (L ⊗ Qp)χ,

and therefore the Qp-dimension of V equals r by the normal basis theorem.
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Definition 2.17. Fix a Zp-direct summand L ⊂ H1(kp, T ) such that L
is free of rank 1. Fix also a generator ϕ = ϕL of L. Define the L-modified
Selmer structure F L on T as follows:
• Σ(F L) = Σ(Fcan),
• if λ � p, H1

F L
(kλ, T ) = H1

Fcan
(kλ, T ),

• H1
F L

(kp, T ) := L ⊂ H1(kp, T ) = H1
Fcan

(kp, T ).

2.3.2. Local conditions at p over k∞. Set Γ = Gal(k∞/k) as before. Let k℘

denote the completion of k at ℘, and let k℘,∞ denote the cyclotomic Zp-
extension of k℘. Since we assume (A2), we may identify Gal(k℘,∞/k℘) by Γ
for each ℘ | p, and henceforth Γ will stand for any of these Galois groups.
Let Λ = Zp[[Γ]] be the cyclotomic Iwasawa algebra, as usual. We also fix a
topological generator γ of Γ, and we set X = γ − 1. We will occasionally
identify Λ by the power series ring Zp[[X]].

Lemma 2.18. Under the assumptions (A1) and (A2),

H1(kp, T ⊗ Λ) :=
⊕
℘|p

H1(k℘, T ⊗ Λ)

is a free Λ-module of rank r.

Proof. This is checked in the first part of the proof of Lemma 2.15.

Definition 2.19. Fix a Λ-rank 1 direct summand L ⊂ H1(kp, T ⊗ Λ)
such that L maps onto L under projection

(2.12) H1(kp, T ⊗ Λ) H1(kp, T ).

Fix also a generator Φ = ΦL of L, which maps to ϕ = ϕL under projection
(2.12). Define the L-modified Selmer structure FL on T ⊗ Λ as follows:
• Σ(FL) = Σ(FΛ),
• if λ � p, H1

FL
(kλ, T ⊗ Λ) = H1

FΛ
(kλ, T ⊗ Λ),

• H1
FL

(kp, T ⊗ Λ) := L ⊂ H1(kp, T ⊗ Λ) = H1
FΛ

(kp, T ⊗ Λ).

Remark 2.20. By definition, the image of H1
FL

(kp, T ⊗ Λ) is H1
F L

(kp, T )
under the map H1(kp, T ⊗ Λ) → H1(kp, T ). Further, it follows from [MR1,
Lemma 5.3.1(ii)] for 
 �= p that H1

FL
(k	, T ⊗ Λ) also maps to H1

F L
(k	, T )

under the natural map H1(k	, T ⊗ Λ) → H1(k	, T ). In other words, FL prop-
agates to F L, and there is an induced map

H1
FL

(k,T ⊗ Λ) −→ H1
F L (k,T ).
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2.4. Global duality and a comparison of Selmer groups
In this section, we compare the classical Selmer group (which we wish to

relate to L-values) to the modified Selmer groups (for which we will apply
the Kolyvagin system machinery and which we will compute in terms of
L-values). The necessary tool to accomplish this comparison is Poitou-Tate
global duality.

2.4.1. Comparison over k. The definition of the modified Selmer structure
F L and Remark 2.12 give us the following exact sequences:

0 H1
Fcl

(k,T ) H1
F L

(k,T )
locp

L,

0 H1
F ∗

L
(k,T ∗) H1

F ∗
cl
(k,T ∗)

loc∗
p H1

F ∗
cl

(kp,T ∗)

H1
F ∗

L
(kp,T ∗)

.

Poitou-Tate global duality (see [R3, Theorem I.7.3], [Mi, Theorem I.4.10])
states that the image of locp is the orthogonal complement of the image of
loc∗

p with respect to the local Tate pairing. Using this fact, together with
Proposition 2.13, one may prove the following proposition for T = Zp(χ) as
above. Note that H1

Fcl
(k,T ) = 0 by Proposition 2.13. See [R3, Theorem I.7.3]

for further details.

Proposition 2.21. We have an exact sequence

0 → H1
F L (k,T )

locp−→ L
(loc∗

p)∨

−→
(
H1

F ∗
cl
(k,T ∗)

)∨ −→
(
H1

F ∗
L
(k,T ∗)

)∨ → 0,

where the map (loc∗
p)

∨ is induced from localization at p and the local Tate
pairing between H1(kp, T ) and H1(kp, T

∗).

Suppose that c ∈ H1
F L

(k,T ) is any class. We still write c for the image of
the class c inside L = H1

F L
(kp, T ) under the (injective) map locp.

Corollary 2.22. The following sequence is exact:

0 →
H1

F L
(k,T )

Zp · c

locp−→ L
Zp · c

(loc∗
p)∨

−→
(
H1

F ∗
cl
(k,T ∗)

)∨ →
(
H1

F ∗
L
(k,T ∗)

)∨ → 0.
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2.4.2. Comparison over k∞. Repeating the argument of Proposition 2.21
for each field kn (instead of k) and passing to the inverse limit, we obtain
the following.

Proposition 2.23. Both of the following sequences of Λ-modules are
exact.

(i) 0 → H1
FL

(k,T ⊗ Λ)
locp−→ L −→ (lim−→n

Aχ
Ln

)∨ −→
(
H1

F ∗
L

(k, (T ⊗ Λ)∗)
)∨ → 0.

(ii) For any class c ∈ H1(k,T ⊗ Λ),

0 →
H1

FL
(k,T ⊗ Λ)
Λ · c

locp−→ L

Λ · c
−→

(
lim−→
n

Aχ
Ln

)∨ −→
(
H1

F ∗
L

(k, (T ⊗ Λ)∗)
)∨ −→ 0.

Proof. We give only a sketch since similar versions of this proposition are
already available in the literature (see [R3, Theorems I.7.3, III.2.10], [dS,
Section III.1.7]).

Thanks to the argument of Proposition 2.21 and [R3, Proposition B.1.1],
there is an exact sequence

0 −→ lim←−
n

H1
F Ln

(kn, T )−→lim←−
n

Ln−→
(
lim−→
n

H1
F ∗

cl
(kn, T ∗)

)∨

−→
(
lim−→
n

H1
F ∗

Ln
(kn, T ∗)

)∨ −→ 0,

where Ln is the image of L under the natural map

H1(kp, T ⊗ Λ) −→ H1
(
(kn)p, T

)
.

By definition, lim←−n
Ln = L, and by [MR1, Lemma 5.3.1] (or rather by its

proof), it follows that there is a canonical isomorphism

lim←−
n

H1
F Ln

(kn, T ) ∼= H1
FL

(k,T ⊗ Λ).

Furthermore, by Lemma 2.14, lim−→n
H1

F ∗
cl
(kn, T ∗) = lim−→n

Aχ
Ln

. Finally, by
Shapiro’s lemma,

H1(kn, T ∗) = H1(k,T ∗ ⊗ Zp[Γn]),

where Γn = Gal(kn/k); hence,

(2.13) lim−→
n

H1(kn, T ∗) = H1
(
k, lim−→

n

T ∗ ⊗ Zp[Γn]
)
.
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Now, using the fact that the functors − ⊗Zp Zp[Γn] and HomZp(Zp[Γn], −)
are adjoint functors (we drop the subscripts below and write ⊗ and Hom
for short), it follows that

(T ⊗ Λ)∗ := Hom
(
lim←−
n

T ⊗ Zp[Γn],Qp/Zp

)
(1)

∼= lim−→
n

Hom
(
T,Hom(Zp[Γn],Qp/Zp)

)
(1)

∼= lim−→
n

Hom(T,Qp/Zp[Γn])(1)

∼= lim−→
n

Hom(T,Qp/Zp)(1) ⊗ Zp[Γn] =: lim−→
n

T ∗ ⊗ Zp[Γn],

where the isomorphism of the modules in the second and the third lines
comes from the isomorphism

Hom(Zp[Γn],Qp/Zp)
∼

Qp/Zp[Γn]

f
∑

γ∈Γn
f(γ) · γ

of Zp[Γn]-modules. This and (2.13) (together with its semilocal analogue)
show at once that

lim−→
n

H1
F ∗

Ln
(kn, T ∗) = H1

F ∗
L

(
k, (T ⊗ Λ)∗)

.

This completes the proof of (i), and (ii) follows trivially from (i).

2.5. Kolyvagin systems for modified Selmer groups
This section closely follows the exposition of [B1, Section 1.2] and [B2,

Section 2.5]. We assume (A1) and (A2) throughout this section.

Remark 2.24. It is straightforward to verify that the following hypothe-
ses (which were introduced in [MR1, Section 3.5]) hold for T = Zp(χ).
(H.1) The residual Fp[[Gk]]-representation T/pT is absolutely irreducible.
(H.2) There is a τ ∈ Gk such that τ = 1 on μp∞ and T/(τ − 1)T is free of

rank 1 over Zp.
(H.3) H0(k,T/pT ) = H0(k,T ∗[p]) = 0.
(H.4) HomFp[[Gk]](T/pT,T ∗[p]) = 0.
We remark that hypothesis (H.3) above is implied by what Mazur and Rubin
call (H.3) (see [MR1, Lemma 3.5.2]). Hypothesis (H.3) is sufficient for our
purposes.
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Let P denote the set whose elements are prime ideals of k which are
prime to pfχ. For each positive integer m and n, let

Pm+n =
{
q ∈ P : q splits completely in L(μpm+n+1)/k

}
be a subset of P . Note that Pm+n is exactly the set of primes determined
by [R3, Definition IV.1.1] when T = Zp(χ). Hypothesis (H.5) of [MR1, Sec-
tion 3.5] holds with this choice of P . Let N = N (P ) (resp., Nj = N (Pj) ⊂
N ) be the square-free products of primes q ∈ P (resp., in Pj), with the
convention that 1 ∈ Nj ⊂ N .

Using [MR1, Lemma 3.7.1], one may also check that Fcan and F L satisfy
hypothesis (H.6) of [MR1, Section 3.5]. We may therefore apply the main
results of [MR1]. In particular, the existence of Kolyvagin systems for these
Selmer structures will be decided by their core Selmer ranks (for a definition,
see [MR1, Definitions 4.1.11 and 5.2.4]). Let X (T, F ) denote the core Selmer
rank of the Selmer structure F , for F = Fcan or for F = F L.

Proposition 2.25. We have X (T, Fcan) = r(= [k : Q]).

Proof. This follows from [MR1, Theorem 5.2.15], applied with the base
field k (instead of Q; we therefore have r real places instead of one) and
using our assumption that χ is totally odd.

Proposition 2.26. The core Selmer rank X (T, F L) of the Selmer struc-
ture F L on T is one.

Proof. The proof of this proposition is identical to the proof of [B1, Propo-
sition 1.8].

2.5.1. Kolyvagin systems over k. We recall the definition of the (general-
ized) module of Kolyvagin systems (introduced in [MR1]) for the Selmer
triple (T, F L, P ).

Definition 2.27 (compare [MR1, Definition 3.1.6]). Define the (gener-
alized) module of Kolyvagin systems

KS(T, F L, P ) := lim←−
s

lim−→
j

KS(T/psT, F L, Pj),

where KS(T/psT, F L, Pj) is the module of Kolyvagin systems for the Selmer
structure F L on the representation T/psT , as in [MR1, Definition 3.1.3].

We call an element of KS(T, F L, P ) an L-restricted Kolyvagin system
for T .
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Remark 2.28. In order to define Kolyvagin systems, one first needs to
define the “transverse local condition” (see [MR1, Definition 1.1.6(iv)]). In
this remark, we briefly recall this definition. Let F be any local field, and
fix once and for all an abelian extension F ′/F which is totally and tamely
ramified and, moreover, is a maximal such extension. When F = Q	, then
there is a natural choice for F ′, namely, F ′ = Q	(μμμ	). In general, we simply
fix an extension F ′ as above and define the transverse local condition to be

H1
tr(F,X) = ker

{
H1(F,X) −→ H1(F ′,X)

}
,

for appropriate quotients X of T .
Let q ∈ Pj for some j, and consider now the case F = kq. Starting from

Section 4, we will insist that the extension F ′ contains k(q)q, where k(q) is
the maximal p-extension inside the ray class field of k modulo the prime ideal
q. Although we do not need this assumption for the results in Section 2.5, it
is necessary to choose F ′ in this manner to be able to modify the arguments
of [MR1, Theorem 3.2.4] in order to obtain a proof of Theorem 4.1 below.

Proposition 2.29. The Zp-module KS(T, F L, P ) is free of rank 1. Fur-
thermore, it is generated by a Kolyvagin system κ ∈ KS(T, F L, P ) whose
image (under the canonical map induced from reduction mod p) inside
KS(T/pT, F L, P ) is nonzero.

A generator of the cyclic module KS(T, F L, P ) will be called a primitive
Kolyvagin system.

Proof. This is immediate after Proposition 2.26 and [MR1, Theorem
5.2.10]. To apply [MR1, Theorem 5.2.10], one needs to verify that [MR1,
Section 3.5, hypotheses (H.1)–(H.6)] hold true for the triple (T, F L, P ).

Remark 2.30. Using Proposition 2.26 and [MR1, Proposition 5.2.9], the
generalized module of Kolyvagin systems KS(T, F L, P ) may be identified
by the module of Kolyvagin systems KS(T, F L, P ) (defined as in [MR1,
Definition 3.1.3]). We will use this identification without warning.

We record here the main application of a Kolyvagin system for the Selmer
triple (T, F L, P ). Suppose that {{κτ (s)}τ ∈ Ns }s = κ ∈ KS(T, F L, P ) is any
Kolyvagin system. See [MR1, Section 3] for an explanation of our notation.
We loosely say here that κτ (s) ∈ H1(k,T/psT ), and by definition, there is
a well-defined element

κ1 =
{
κ1(s)

}
s

∈ lim←−
s

H1
F L (k,T/psT ) = H1

F L (k,T ).
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Theorem 2.31 ([MR1, Theorems 5.2.13, 5.2.14]). Under our running
hypotheses,
(i) length(H1

F ∗
L
(k,T ∗)) ≤ length(H1

F L
(k,T )/Zp · κ1),

(ii) the inequality in (i) is an equality if and only if κ is primitive.

Remark 2.32. Note that the choice of a rank 1 direct summand L ⊂
H1(kp, T ) makes our approach somewhat unnatural. We address this issue
in this remark. Put

(2.14) H1(kp, T ) =
r⊕

i=1

Li

(where each Li is a free Zp-submodule of H1(kp, T ) of rank 1), and consider

(2.15)
r∑

i=1

KS(T, F Li , P ) ⊂ KS(T, Fcan, P ).

Claim. The sum in (2.15) is a direct sum.

Proof. Assume the contrary: suppose that 0 �= κκκi ∈ KS(T, F Li , P ) (for
i = 1, . . . , r) is such that

r∑
i=1

aiκκκ
i = 0

for some ai ∈ Zp and ai0 �= 0 for a certain 1 ≤ i0 ≤ r. This means that

(2.16) ai0κκκ
i0 = −

r∑
i=1
i �=i0

aiκκκ
i ∈

r∑
i=1
i �=i0

KS(T, F Li , P ).

Write κκκi0 = {κi0
n } (see [MR1, Section 3] for a precise definition of a Kolyvagin

system to clarify this notation; see also Remark 2.28 below). Equation (2.16)
therefore shows that

(2.17) locp(ai0κ
i0
1 ) ∈

r⊕
i=1
i �=i0

Li.

Also, by definition, locp(ai0κ
i0
1 ) ∈ Li0 ; using this together with (2.17), we

conclude that locp(ai0κ
i0
1 ) = 0. The injectivity of locp (which we checked in

Section 2.4.1) gives ai0κ
i0
1 = 0.
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On the other hand, Proposition 2.21 (applied with L = Li0) shows that
H1

F ∗
Li0

(k,T ∗) is finite (as the finite group H1
F ∗

cl
(k,T ∗)∨ = (Aχ

L)∨ surjects onto

its Pontryagin dual). This in turn shows, using [MR1, Theorem 5.2.12(v)],
that for any 0 �= κκκ = {κn} ∈ KS(T, F Li0

, P ), we have κ1 �= 0. Therefore,
ai0κ

i0
1 = 0 implies that ai0κ

i0 = 0, a contradiction.

Note that, in order to prove the claim above, we used the facts that locp

is injective (on H1
F Li0

(k,T )) and that H1
F ∗

Li0

(k,T ∗) is finite in our current

setting. With a bit more work, it is possible to prove this claim without
having either of these conditions. We leave the more general proof aside not
to digress from the main point of our paper any further.

It would be very interesting to have an answer for the following.
Question: Is the direct sum

r⊕
i=1

KS(T, F Li , P ) ⊂ KS(T, Fcan, P )

independent of the choice of decomposition (2.14)?
When the answer to this question is affirmative, we would have a canon-

ically defined rank r submodule of KS(T, Fcan, P ). It would be even more
tempting to inquire whether this rank r submodule descends from Euler sys-
tems. In Section 3 below, we construct a rank r submodule of KS(T, Fcan, P )
out of Stickelberger elements, which still does depend on decomposition
(2.14).

These questions seem to be out of reach in the current state of the art. We
may, however, prove the following weaker (yet still interesting) statement.
First, we recall some terminology from [MR1].

Define the module of L-values

LV = LV(T ; {Li}r

i=1
)

:= spanZp

(
κ1 :κκκ ∈ KS(T, F Li , P ) for some i

)
⊂ H1

Fcan
(k,T ).

(Compare this definition with [MR1, Definition 3.1.5].) Note that the Zp-
module LV depends a priori on the choice of decomposition (2.14).

Theorem 2.33. The module of L-values LV is independent of the choice
of decomposition (2.14).
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Proof. Fix any generator 
i of the free Zp-module Li of rank 1. Suppose
that L ⊂ H1(kp, T ) is any rank 1 direct summand (not necessarily one of
Li which appear in (2.14)). Let κκκL = {κL

n } be any generator of the cyclic
Zp-module KS(T, F L, P ). To prove the theorem, it suffices to show that
κL

1 ∈ LV . We may write

locp(κL
1 ) =

r∑
i=1

ai
i

with ai ∈ Zp.

Claim. Let ai be as above. Then

ordp(ai) ≥ ordp

(
#H1

F ∗
cl
(k,T ∗)

)
for all 1 ≤ i ≤ r.

Proof of the claim. Let d = gcd(a1, . . . , ar), and set αi := ai
d ∈ Zp. By def-

inition, at least one of the αi is a p-adic unit. We also set

x := locp(κL
1 ) =

r∑
i

ai
i and y =
x

d
=

r∑
i

αi
i.

(1) Since d · y = x ∈ L and since H1(kp, T )/L is Zp-torsion free, it follows
that y ∈ L.

(2) H1(kp, T )/Zpy is Zp-torsion free; indeed, suppose that

z =
r∑
i

βi
i ∈
r⊕
i

Li = H1(kp, T )

is such that m · z ∈ Zpy for some m ∈ Zp. This means that

r∑
i

mβi
i = sy =
r∑
i

sαi
i

for some s ∈ Zp; hence, mβi = sαi, in particular, m | sαi for every 1 ≤
i ≤ r. Since gcd(α1, . . . , αr) = 1, it follows that m | s; hence, z = (s/m) ×
y ∈ Zpy.

(3) Items (1) and (2) together show that L = Zpy.
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We may now conclude that

#L/Zp locp(κL
1 ) = #(Zpy/Zpx) = pordp(d),

with d as above. On the other hand, Corollary 2.22 shows that

#
L

Zp locp(κL
1 )

≥ #H1
F ∗

cl
(k,T ∗) ⇐⇒ #

H1
F L

(k,T )

ZpκL
1

≥ #H1
F ∗

L
(k,T ∗).

The latter statement is the main application of the Kolyvagin system κL

(see Theorem 2.31 above). We therefore conclude that

pordp(d) ≥ #H1
F ∗

cl
(k,T ∗),

which is our claim.

We now prove that Theorem 2.33 follows from this claim. As in the final
paragraph of the proof of the claim above, it follows from Corollary 2.22
and [MR1, Theorems 5.2.10, 5.2.14] that there exists a Kolyvagin system
κ̃κκi ∈ KS(T, F Li , P ) such that

locp(κ̃i
1) = #H1

F ∗
cl
(k,T ∗) · 
i ∈ Li

for every i = 1, . . . , r. By the claim above, there is a Kolyvagin system κκκi ∈
KS(T, F Li , P ) such that locp(κi

1) = ai
i (just setκκκi = (ai/(#H1
F ∗

cl
(k,T ∗)))κ̃κκi).

We therefore have

locp(κL
1 ) =

r∑
i

locp(κi
1),

and since the map locp is injective in our setting, it follows that

κL
1 =

r∑
i

κi
1 ∈ LV,

as desired.

We close our remark noting that all this discussion applies equally well
in the setting of [B1] and [B2] as long as we assume Leopoldt’s conjecture
(i.e., the injectivity of locp in the setting of [B1] and [B2]).
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2.5.2. Kolyvagin systems over k∞. We start with the observation that the
following versions of hypotheses H.T and H.sEZ of [B3, Section 2.2] hold
for T .

(H.T/k) (T ⊗ Qp/Zp)Iλ is divisible for every prime λ � p, λ ⊂ k.
(H.sEZ/k) H0(k℘, T ∗) = 0 for primes ℘ | p.

We define a Selmer structure F Λ
can on certain quotients of T ⊗ Λ. The

following is the Selmer structure Fcan of [B3, Definition 2.2].

Definition 2.34. Suppose f ∈ Λ is any distinguished polynomial, in the
sense that the quotient Λ/(f) is a free Zp-module of finite rank. Let F Λ

can

be the following Selmer structure on Tf := T ⊗ Λ/(f).
• Σ(F Λ

can) = Σ(FΛ).
• The local conditions are given by

H1
F Λ

can
(kλ, Tf ) =

{
H1(kλ, Tf ) if λ | p,

H1
f (kλ, Tf ) if λ ∈ Σ(Fcan) and λ � p,

with
H1

f (kλ, Tf ) = ker
{
H1(kλ, Tf ) −→ H1(kunr

λ , Tf ⊗ Qp)
}
,

where kunr
λ is the maximal unramified extension of kλ.

The induced Selmer structure on the quotients T ⊗ Λ/(ps, f), which is
obtained by propagating F Λ

can (in the sense of Definition 2.1), will also be
denoted by F Λ

can.

Let Ts,m := T ⊗ Λ/(ps,Xm), where X is as in Section 2.3.2.

Remark 2.35. By the definition of FL, the local conditions on Ts,m at
primes λ � p propagated from FL coincide with the local conditions propa-
gated from FΛ, and thanks to [B3, Corollaries 2.8, 2.9], they also coincide
with the local conditions determined by F Λ

can, since (H.T/k) holds true.
Indeed, it is proved in [B3] that all these local conditions coincide with

H1
unr(kλ, Ts,m) := ker

{
H1(kλ, Ts,m) −→ H1(kunr

λ , Ts,m)
}
,

as long as hypothesis (H.T/k) holds true. We note further that FL propa-
gates to the Selmer structure F L on T = T ⊗ Λ/(X).

Definition 2.36 (compare [MR1, Definition 3.1.6]). We define the mod-
ule of L-restricted Λ-adic Kolyvagin systems to be

KS(T ⊗ Λ, FL, P ) := lim←−
s,m

lim−→
j

KS(Ts,m, FL, Pj),
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where KS(Ts,m, FL, Pj) is the module of Kolyvagin systems for the Selmer
structure FL on the representation Ts,m.

Theorem 2.37. Suppose that (H.T/k) and (H.sEZ/k) hold true. Then
the Λ-module KS(T ⊗ Λ, FL, P ) is free of rank 1, and the canonical map

KS(T ⊗ Λ, FL, P ) −→ KS(T, F L, P )

is surjective.

Note that, thanks to assumption (A1), both (H.T/k) and (H.sEZ/k) are
true for the particular Galois representation T we are interested in. Any
generator of the cyclic Λ-module KS(T ⊗ Λ, FL, P ) will be called a primitive
Λ-adic Kolyvagin system.

Proof. The proof of this theorem is very similar to the proof of [B2,
Theorem 2.19], to which we refer the reader for details. We only remark here
that the proof follows from an appropriate variant of [B3, Theorem 3.23],
which applies (with the base field Q replaced by k, and the Selmer structure
Fcan replaced by FL) thanks to Proposition 2.26 and the truth of hypotheses
(H.1)–(H.4), (H.T/k), and (H.sEZ/k).

In Section 4.2 below, we explain how to obtain these Kolyvagin systems
out of the Stickelberger elements, assuming a weak version of Brumer’s
conjecture. Note, however, that the existence of Λ-adic Kolyvagin systems
does not rely on Brumer’s conjecture.

We record here the main application of a Λ-adic Kolyvagin system

κκκ =
{

{κτ (s,m)}τ ∈ Ns+m

}
s,m

.

For an explanation of our notation, see [MR1, Section 3]. Here we only
note that κτ (s,m) ∈ H1(k,Ts,m), and by definition, there is a well-defined
element

κ1 =
{
κ1(s,m)

}
s,m

∈ lim←−
s,m

H1
FL

(k,Ts,m) = H1
FL

(k,T ⊗ Λ).

For notational simplicity, we write T = T ⊗ Λ. Recall that char(A) denotes
the characteristic ideal of a finitely generated Λ-module A, with the con-
vention that char(A) = 0 unless A is Λ-torsion.

Theorem 2.38. Under assumptions (A1) and (A2),

char
(
H1

F ∗
L

(k,T∗)∨)
| char

(
H1

FL
(k,T)/Λ · κ1

)
.

https://doi.org/10.1215/00277630-1331890 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-1331890


STICKELBERGER ELEMENTS AND KOLYVAGIN SYSTEMS 149

Proof. This is [MR1, Theorem 5.3.10(iii)] applied in our setting. We
remark that all the hypotheses of [MR1, Theorem 5.3.10(iii)] hold thanks
to (A1) and (A2) (as we have already demonstrated above).

§3. Euler systems from Stickelberger elements

We begin by recalling the definition of Stickelberger elements. We first set
our notation. Assume that k,χ, f = fχ and L are as above. For a (square-free)
cycle τ = q1 · · · qm of the number field k, let k(τ) be the compositum

k(τ) = k(q1) · · · k(qm),

where k(q) denotes the maximal p-extension inside the ray class field of k

modulo the prime ideal q. For any field K, define K(τ) as the composite of
k(τ) and K. Let

K =
{
Ln(τ) : τ ∈ N ;n ≥ 0

}
,

K0 =
{
kn(τ) : τ ∈ N ;n ≥ 0

}
be two collections of abelian extensions of k. Note that any field Ln(τ) ∈ K
is CM and abelian over the totally real field k. Let S be the set of places
of k, consisting of all places above p, all places dividing f, and all infinite
places. For any K ∈ K, write SK for the set of all places of the field K lying
above the places in S. When there is no confusion, we will simply write S

for SK .
For any K ∈ K, the partial zeta function for σ ∈ Gal(K/k) is defined as

usual by
ζS(s,σ) :=

∑
(a,K/k)=σ

a is prime to S

Na−s

for Re(s) > 1. Here Na is the absolute norm of the ideal a ∈ k, and (a,K/k)
is the Artin symbol. The partial zeta functions admit a meromorphic contin-
uation to the whole complex plane and are holomorphic everywhere except
at s = 1. We may therefore set

θK = θK,S :=
∑

σ∈Gal(K/k)

ζS(0, σ)σ−1 ∈ C[Gal(K/k)].

Thanks to [S], θK is an element of Q[Gal(K/k)]. Further, we know for the χ-
part θχ

K of θK , thanks to [DR], that θχ
K ∈ Zp[Gal(K/k)]χ, since we assumed

that χ �= ω.

https://doi.org/10.1215/00277630-1331890 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-1331890


150 K. BÜYÜKBODUK

Lemma 3.1. For any Ln(τ) = K ⊂ K ′ = Ln′ (τ ′) inside K,

θK′ |K =
∏

q|τ ′,q�τ

(1 − Fr−1
q )θK .

Proof. This follows from [T, proposition IV.1.8].

As before, let AK denote the p-part of the ideal class group of K ∈ K, and
let Aχ

K denote its χ-isotypic part. Until the end of this section, we suppose
that the χ-part of the Brumer’s conjecture (Assumption 1.1) holds true.

Remark 3.2. Greither [Gr, Corollary 2.7] and Kurihara [Ku, Corol-
lary 2.4] have deduced Assumption 1.1 from Iwasawa’s main conjecture in
this setting (which holds thanks to [W2]) and the vanishing of the Iwasawa
μ-invariant for K. However, we do not wish to assume the truth of the
main conjecture; in fact, we rather assume in this paper Assumption 1.1
and deduce the main conjecture itself.

Having referred the reader to [Ku], we caution the reader about one minor
point: If a prime ℘ ⊂ k above p is unramified in K/k, then Kurihara’s
Stickelberger element θ̃χ

K differs from our θχ
K by a factor of (1 − Fr℘)χ,

where Fr℘ is the Frobenius at ℘ for the unramified extension K/k. If (A1)
holds, it follows that (1 − Fr℘)χ is a unit inside Zp[Gal(K/k)]χ. Therefore,
the statement of Assumption 1.1 is still equivalent to the statement that
θ̃χ
K · Aχ

K = 0, which is the assertion deduced from the main conjecture in [Ku].

Suppose that F is any finite abelian extension of k and that K = FL.
Then by the inflation-restriction sequence and class field theory, one has

(3.1) H1
(
F,Zp(χ)

) ∼= H1(K,Zp)χ−1
= Hom(A×

K/K×,Zp)χ−1
,

where A×
K denotes the idèles of K. Since any continuous homomorphism of

A×
K into Zp should vanish on

BK :=
∏
w| ∞

K×
w ×

∏
w|p

{1} ×
∏

w�p∞
O ×

Kw
⊂ A×

K ,

(3.1) gives

H1
(
F,Zp(χ)

) ∼= Hom(A×
K/K×BK ,Zp)χ−1

(3.2)
= Hom

(
(A×

K/K×BK)χ
,Zp

)
.
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Further, there is an exact sequence

0 −→ UK/O ×
K −→ A×

K/K×BK −→ AK −→ 0,

which is induced from the map that sends an idèle to the corresponding
ideal class. Here O ×

K is the closure of the global units O ×
K inside the local

units UK ⊂ K ⊗ Qp. Since taking χ-parts is exact (as the order of χ is prime
to p), we obtain an exact sequence

0 −→ Uχ
K/(O ×

K)χ −→ (A×
K/K×BK)χ −→ Aχ

K −→ 0.

Thus, by Assumption 1.1, multiplication by θχ
K gives a map

(A×
K/K×BK)χ θχ

K−→ Uχ
K/(O ×

K)χ.

Since we assumed that χ is totally odd, (O ×
K)χ is finite (see the final

paragraph of the proof of Proposition 2.13), and we therefore have an
induced map

(3.3) (A×
K/K×BK)χ θχ

K−→ Uχ
K/(Uχ

K)tors.

Suppose that we are given a collection of homomorphisms λλλ = {λτ
n} with

λτ
n ∈ Hom(Uχ

Ln(τ),Zp) which satisfies the following properties.

(1) For all Ln(τ),Ln′ (τq) ∈ K, the following diagram commutes:

Uχ
Ln′ (τq) λτq

n′

Zp

Uχ
Ln(τ)

−Frq

λτ
n

(2) For n′ ≥ n, we have λτ
n′ |

U
χ
Ln(τ)

= λτ
n.

Define

c̃kn(τ) ∈ Hom
(
(A×

Ln(τ)/(Ln(τ))×BLn(τ))
χ,Zp

)
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(which we view also as an element of H1(kn(τ), T ) via identification (3.2)
above) as the composition∗

(3.4) c̃kn(τ) :
(
A×

Ln(τ)/(Ln(τ))×BLn(τ)

)χ θχ
Ln(τ)−→ Uχ

Ln(τ)/(ULn(τ))
χ
tors

λτ
n−→ Zp.

Set c̃ = {c̃kn(τ)}.

Theorem 3.3. Fix a collection of homomorphisms λλλ = {λτ
n} as above (if

it exists). Then there is an Euler system c = {ckn(τ)} (which depends on the
choice of λλλ) for the Galois representation T (in the sense of [R3, Definition
II.1.1, Remark II.1.4]) such that ckn = c̃kn for all n.

In Section 4.1 below, we construct a collection λλλ which satisfies the desired
properties and hence conclude with the existence of an Euler system for T ,
assuming the truth of Assumption 1.1. When k = Q, this Euler system has
been given by Rubin [R3, Section 3.4].

Proof. Since the proof of this theorem very closely follows the proof of
[R3, Proposition III.3.4], we give only a sketch. All the references in this
proof are to [R3]. First, one checks (mimicking the proof of [R3, Proposition
III.3.4]) that the collection c̃ (which should be compared with the collection
c̃′ of Rubin) satisfies a distribution relation with wrong Euler factors. This
could be remedied, as in the paragraph following [R3, Remark III.4.4], using
[R3, Lemma IX.6.1] to obtain a new collection c (which corresponds to what
Rubin calls c̃), as desired.

We close this section with a final remark which we will refer to in what
follows.

Remark 3.4. The argument of Remark 2.16 shows that, under hypothesis
(A1),

H1
(
kn(τ)p, T

) ∼= Hom(Uχ
Ln(τ),Zp).

Remark 3.5. In this remark we discuss the main differences between the
cases when the base field k is a general totally real field (i.e., the case we
study in this article) and the particular case k = Q (i.e., the case Rubin
studies in [R3, Section III.4]).

∗We remark that any homomorphism λ ∈ Hom(Uχ
Ln(τ),Zp) necessarily factors through

the quotient Uχ
Ln(τ)/(ULn(τ))

χ
tors; this is how we make sense of the rightmost map in (3.4).
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(i) The first difference regards the core Selmer ranks. The core rank
X (T, Fcan) of the canonical Selmer structure (see Example 2.6 above) of
the Gk-representation T is [k : Q] = r. Rubin treats the case r = 1 (i.e.,
the case k = Q). In this paper, we study the case r > 1, adapting the
work of Mazur and Rubin [MR1] to the general case when X (T, Fcan) >

1 via what we call LLL-restricted Euler systems. Although Kurihara [Ku]
successfully applies the classical Euler system argument to Stickelberger
elements to prove Theorems A and B above, our approach via LLL-
restricted Euler systems yields in addition a comparison between the
Stickelberger elements and Rubin-Stark elements (see Theorem 5.16
below). Furthermore, our approach here fits well into the framework
developed in [MR1] which was later enhanced by the author in [B1],
[B2], and [B4].

(ii) The second difference is the manner in which the collection λλλ = {λτ
n}

of homomorphisms is chosen. Rubin [R3, Appendix D] constructs these
homomorphisms explicitly when k = Q. This construction is not avail-
able when k �= Q; that is why we prove “abstractly” in Section 4.1 that
a collection λλλ exists with the desired properties.

§4. Euler systems to Kolyvagin systems map

We first recall what Mazur and Rubin call the Euler system to Koly-
vagin system map. Suppose that T , K, and P are as above. Let ES(T ) =
ES(T, K) denote the collection of Euler systems for (T, K) in the sense
of [R3, Section 3]. Recall also the generalized module of Kolyvagin systems
KS(T, F , P ) and KS(T ⊗ Λ, F , P ) for various choices of Selmer structures F .

Theorem 4.1 (Mazur and Rubin). There are canonical maps
• ES(T ) −→ KS(T, Fcan, P ),
• ES(T ) −→ KS(T ⊗ Λ, FΛ, P )
with the following properties:
(1) if c ∈ ES(T ) maps to κκκ ∈ KS(T, Fcan, P ), then κ1 = ck;
(2) if c ∈ ES(T ) maps to κκκ ∈ KS(T ⊗ Λ, FΛ, P ), then

κ1 = {ckn } ∈ lim←−
n

H1(kn, T ) = H1(k,T ⊗ Λ).

Proof. Let ρcyc : Gk → Z×
p be the cyclotomic character (giving the action

of Gk on μμμp∞ ), and set

ρ = ω−1ρcyc : Γ −→ 1 + pZp.
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Let ψ = ωχ−1 be as in the introduction, and set

T ′ = Zp(1) ⊗ ψ−1 = T ⊗ ρ, and T′ = T ′ ⊗ Λ.

Note that we have an isomorphism of Gk-modules

(4.1) T′ = T ′ ⊗ Λ
⊗ρ−1

−→ T ⊗ Λ = T,

as ρ is a character of Γ. We then have the following diagram:

ES(T )
τρ

ES(T ′)
∂′

KS(T ′ ⊗ Λ, FΛ)

τρ−1

s′

KS(T ⊗ Λ, FΛ)
s

KS(T, Fcan)

The two dashed arrows are the maps claimed to exist in the statement
of the theorem, and they are given as the composition of relevant maps in
the diagram. We now explain how the other arrows are obtained. The map
τρ is obtained by applying a formal twisting argument (see [R3, Section 6]).
The map τρ−1 is induced from isomorphism (4.1), and s is induced from
the specialization T ⊗ Λ → T whose kernel is the augmentation ideal of Λ.
Similarly, s′ is induced from the specialization T ′ ⊗ Λ → T which makes the
triangle

T ′ ⊗ Λ

s′

⊗ρ−1

T ⊗ Λ

s

T

(as well as the triangle in the diagram above) commutative. The map ∂′

is the Euler systems to Kolyvagin systems map of Mazur and Rubin [R3,
Theorem 5.3.3], which is obtained as follows. Starting with an Euler system
ccc′ ∈ ES(T ′) for T ′, Kolyvagin’s construction (see [R3, Section 4]) yields a
weak Kolyvagin system (in the sense of [MR1, Definition 3.1.8]),

κκκw = {κw
η }η∈ N .
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The classes κw
η do not necessarily satisfy the transverse local condition at a

prime λ | η. One may, however, first calculate the finite projections of these
classes (slightly modifying (by replacing Q(
) by k(λ) and Q(n) by k(η)
where necessary) as in [MR1, Theorem A.4]; see particularly Lemma A.6
and Proposition A.8 for the key steps). Note that we pass to an auxiliary
twist T ′ to ensure that Frpm

λ − 1 acts injectively on T ′ for every λ ∈ P and
for every m ∈ Z+, which is needed for the arguments of Mazur and Rubin
to be performed. Finally, one may modify κκκw, as [MR1, (33)] does to kill
its finite projections and thus obtain a Kolyvagin system, as desired.

Remark 4.2. Mazur and Rubin’s definition of the generalized module of
Λ-adic Kolyvagin systems KS(T ⊗ Λ, FΛ, P ) slightly differs from our defi-
nition of this module (Definition 2.36). It is not hard to see that these two
definitions give rise to isomorphic modules (see also Remark 4.13 below).

We would like to apply this map to the Euler systems that we constructed∗

in Section 3. Note, however, that Theorem 4.1 will give rise to Kolyvagin
systems only for the coarser Selmer structures FΛ and Fcan (rather than
the finer Selmer structures FL and F L). To be able to obtain Kolyvagin
systems for the modified Selmer structures FL and F L, we need to analyze
the structure of the semilocal cohomology groups for T ⊗ Λ and T over
various ray class fields of k. This is performed in Section 4.1. We then apply
the results of Section 4.1 to construct the desired Kolyvagin systems for the
modified Selmer structures in Section 4.2.

Remark 4.3. In effect, one needs only a weak Kolyvagin system (in the
sense of [MR1, Definition 3.1.8]) for the main application of the Euler/
Kolyvagin system machinery, that is, for bounding the dual Selmer group.
Weak Kolyvagin systems are essentially the derivative classes of Kolyvagin
(see [R3, Section IV]) which are obtained by directly applying the deriv-
ative operators, without the need of the alterations performed in [MR1,
Appendix A].

4.1. A good choice of homomorphisms
Recall that k∞ is the cyclotomic Zp-extension of k and that Γ = Gal(k∞/k).

Let kn denote the unique subextension of k∞/k with [kn : k] = pn, and set
Γn := Gal(kn/k). Recall also that Δτ := Gal(k(τ)/k).

∗Modulo the existence of a family of homomorphisms λλλ.
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Lemma 4.4. For every n ∈ Z≥0 and τ ∈ N (P ), the corestriction maps on
the semilocal cohomology,

(i) H1(kn(τ)p, T ) −→ H1(k(τ)p, T ),
(ii) H1(k(τ)p, T ) −→ H1(kp, T ),
(iii) H1(kn(τ)p, T ) −→ H1(kp, T ),
are surjective.

Proof. The cokernel of the map

H1
(
k(τ), T ⊗ Λ

)
= lim←−

n

H1
(
kn(τ)p, T

)
−→ H1

(
k(τ)p, T

)
is given by H2(k(τ)p, T ⊗ Λ)[γ − 1], where γ is any topological generator
of Γ = Gal(k∞/k). Since it is known that H2(k(τ)p, T ⊗ Λ) is a finitely
generated Zp-module (see [P1]), it follows that

H2
(
k(τ)p, T ⊗ Λ

)
[γ − 1] = 0 ⇐⇒ H2

(
k(τ)p, T ⊗ Λ

)
/(γ − 1) = 0.

Since the cohomological dimension of the absolute Galois group of any local
field is 2,

H2
(
k(τ)p, T ⊗ Λ

)
/(γ − 1) ∼= H2

(
k(τ)p, T ⊗ Λ/(γ − 1)

)
= H2

(
k(τ)p, T

)
.

It therefore suffices to check that

H2
(
k(τ)p, T

)
:=

⊕
v|p

H2
(
k(τ)v, T

)
= 0,

which, via local duality, is equivalent to checking that (T ∗)Gk(τ)v = 0 for
each v | p.

Write Dv for the decomposition group at v | p inside Gal(k(τ)/k) := Δτ .
We may identify Dv ⊂ Δτ by the local Galois group Gal(k(τ)v/k℘), where
℘ ⊂ k is the prime below v. Since Δτ is generated by inertia groups at the
primes dividing τ , all of these act trivially on T ∗ (by the choice of τ ). Hence,
it follows that

(T ∗)Gk(τ)v = (T ∗)Gk℘ .

Note that T ∗ =μμμp∞ ⊗ χ−1, so it follows at once that (T ∗)Gk℘ = 0, and thus
(i) is proved.

Set Tτ := Indk
k(τ)T . The semilocal version of Shapiro’s lemma (which is

explained in [R3, Section A.5]) shows that

H1
(
k(τ)p, T

) ∼= H1(kp, Tτ ).
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The corestriction map

Nτ : H1(kp, Tτ ) ∼= H1
(
k(τ)p, T

)
−→ H1(kp, T )

is simply induced from the augmentation sequence

0 −→ Aτ · Tτ −→ Tτ −→ T −→ 0,

where Aτ is the augmentation ideal of the local ring Zp[Δτ ]. The argu-
ment above shows that the cokernel of Nτ is dual to H0(kp, (Aτ · Tτ )∗).
Furthermore,

(Aτ · Tτ )∗ := Hom(Aτ · Tτ ,μμμp∞ ) = Hom(Aτ · Tτ ,Qp/Zp) ⊗ Zp(1),

and Hom(Aτ · Tτ ,Qp/Zp) = Aτ · Hom(Tτ ,Qp/Zp); we thence see that

H0
(
kp, (Aτ · Tτ )∗)

↪→ H0(kp, T
∗
τ ).

It therefore suffices to show that H0(kp, T
∗
τ ) = 0. By local duality, this is

equivalent to proving that H2(kp, Tτ ) = 0, which, by the semilocal version
of Shapiro’s lemma, is equivalent to checking that H2(k(τ)p, T ) = 0. This
final statement is equivalent to the assertion that H0(k(τ)p, T

∗) = 0 by local
duality. This, however, has been already verified in the third paragraph of
this proof. This completes the proof of (ii).

Assertion (iii) clearly follows from (i) and (ii).

Proposition 4.5. For every τ ∈ N (P ),
(i) the semilocal cohomology group H1(k(τ)p, T ) is a free Zp[Δτ ]-module

of rank r,
(ii) for every n ∈ Z≥0, the Zp[Γn × Δτ ]-module H1(kn(τ)p, T ) is free of

rank r.

Proof. We start with the remark that H1(k(τ)p, T ) is a free Zp-module
of rank r · |Δτ |. Indeed, this may be proved by the argument of Lemma 2.15
(or, alternatively and more directly, following the argument of Remark 2.16).
Further, we know thanks to Lemma 4.4 that the map

H1
(
k(τ)p, T

)
−→ H1(kp, T )

(which could be thought of as the reduction modulo the augmentation ideal
Aτ ) is surjective. Nakayama’s lemma and Lemma 2.15 therefore imply that
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H1(k(τ)p, T ) is generated by (at most) r elements over Zp[Δτ ]. Let B =
{x1, x2, . . . , xr } be any set of such generators. To prove (i), it suffices to
check that the xi do not admit any Zp[Δτ ]-linear relation. Assume the
contrary, and suppose that there is a relation

(4.2)
r∑

i=1

αixi = 0, αi ∈ Zp[Δτ ].

Define
S = {δxj : δ ∈ Δτ ,1 ≤ j ≤ r},

and note that S generates (as a Zp-module) H1(k(τ)p, T ) by our assumption
on B, and also that |S| = r · |Δτ | = rankZp(H

1(k(τ)p, T )). Equation (4.2)
can be rewritten as ∑

δ,j

aδ,j · δxj = 0,

with aδ,j ∈ Zp. Since we already know that H1(k(τ)p, T ) is Zp-torsion free,
we may assume without loss of generality that aδ0,j0 ∈ Z×

p for some δ0, j0.
This in turn implies that

δ0xj0 ∈ spanZp
(S − {δ0xj0 });

hence, H1(k(τ)p, T ) is generated by S − {δ0xj0 }. This, however, is a contra-
diction since we already know that the Zp-rank of H1(k(τ)p, T ) is r · |Δτ | =
|S|; hence, it cannot be generated by |S| − 1 elements over Zp. The proof of
(i) now follows.

One proves (ii) in an identical fashion, now considering the augmentation
map

H1
(
kn(τ)p, T

)
−→ H1

(
k(τ)p, T

)
,

which is surjective thanks to Lemma 4.4.

Define the field F as the compositum of the fields k(τ),

F =
⋃

τ ∈ N (P)

k(τ),

as τ runs through the set N . We set ΔΔΔ := Gal(F/k).
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Corollary 4.6. The Zp[[Γ × ΔΔΔ]]-module lim←−n,τ
H1(kn(τ)p, T ) is free of

rank r, and the natural projection

lim←−
n,τ

H1
(
kn(τ)p, T

)
−→ H1

(
km(η)p, T

)
is surjective for every m ∈ Z≥0 and η ∈ N .

Proof. This is immediate after Proposition 4.5.

Definition 4.7. Fix a Zp[[Γ × ΔΔΔ]]-rank 1 direct summand LLL of

lim←−
n,τ

H1
(
kn(τ)p, T

)
.

Denote its image under the (surjective) map

lim←−
n,τ

H1
(
kn(τ)p, T

)
−→ H1

(
km(η)p, T

)

by Lη
m. When η = 1, we simply write Lm instead of L1

m, and when m = 0,
we write L for L0. Finally, let L denote the image of LLL under the projection

lim←−
n,τ

H1
(
kn(τ)p, T

)
−→ lim←−

n

H1
(
(kn)p, T

)
= H1(kp, T ⊗ Λ).

We fix generators ϕϕϕ,ϕη
m,ϕm,ϕ, and Φ of LLL, Lη

m, Lm, L, and L, respectively,
such that

ϕϕϕ �→ ϕη
m �→ ϕm, and ϕϕϕ �→ Φ �→ ϕ

under the projection maps we mentioned above.

As in Definition 4.7, we could start with a choice of LLL, which in turn
fixes L and L. Alternatively, we could start with an arbitrary L (and L) as
we did in Section 2.3 and show (using linear algebra) that there is a rank
1 direct summand LLL ⊂ lim←−n,τ

H1(kn(τ)p, T ) which projects down to L (and
L), as in Definition 4.7.

Remark 4.8. In Definition 2.27 (resp., Definition 2.36) above, we give
a definition of an L-restricted Kolyvagin system (resp., L-restricted Λ-adic
Kolyvagin system). When LLL is above, so that the line LLL projects down to
L (resp., down to L), we also call these LLL-restricted Kolyvagin systems.

By Remark 3.4, we may identify lim←−n,τ
H1(kn(τ)p, T ) by the module

lim←−n,τ
Hom(Uχ

Ln(τ),Zp), where we recall that ULn(τ) stands for the local units
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inside Ln(τ) ⊗ Qp. We define, for each m ≥ 0 and η ∈ N , a homomorphism
λη

m ∈ Hom(Uχ
Lm(η),Zp) as the composite

λη
m := ϕη

m ◦
∏
q|η

(−Frq).

We further set ηג
m for the (free of rank 1) Zp[Γm × Δη]-module generated

by λη
m. Clearly,

(4.3) ηג
m =

∏
q|η

(−Fr−1
q )Lη

m = Lη
m,

where the final equality is because Lη
m is a Zp[Γm × Δη]-stable submodule of

(4.4) H1
(
km(η), T

) ∼= Hom(Uχ
Lm(η),Zp).

When η is fixed and m varies, note that the collection {λη
m}m forms a

projective system with respect to norm maps.∗ When η = 1, we write λm

(resp., (mג instead of λη
m (resp., ηג

m). Also, when m = 0, we simply write λ

(resp., (ג for λ0 (resp., .(0ג
We finally remark that λm = ϕm for all m, by definition.

Proposition 4.9. For η, ηq ∈ N and any m′ ≥ m,
(i) ληq

m′ |
U

χ
Lm(η)

= λη
m ◦ (−Frq),

(ii) λη
m′ |

U
χ
Lm(η)

= λη
m.

Proof. This is evident, since by construction

ληq

m′ |
U

χ
Lm(η)

= ϕηq

m′ ◦
∏
�|η

(−Fr�)(−Frq)|
U

χ
Lm(η)

= ϕη
m ◦

∏
�|η

(−Fr�)(−Frq)|
U

χ
Lm(η)

= λη
m ◦ (−Frq)|

U
χ
Lm(η)

,

where the second equality is because

ϕηq

m′ |
U

χ
Lm(η)

= ϕη
m|

U
χ
Lm(η)

∗Under identification (4.4), the norm maps on the cohomology are induced from the
inclusions Uχ

Lm(η) ↪→ Uχ
Lm′ (η), m′ ≥ m.
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by the norm coherence property of the collection {ϕη
m}η,m . This completes

(i), and (ii) is proved similarly.

Let cSt = {cSt
kn(τ)} ∈ ES(T ) be the Euler system constructed via Theo-

rem 3.3 using the Stickelberger elements and the collection {λη
m} we defined

above. In the next section, we will use cSt to construct a Kolyvagin system
for the Selmer triple (T, F L, P ) (resp., for the triple (T ⊗ Λ, FL, P )).

Remark/Definition 4.10. Let M be any Gk-representation which is
free of finite rank as a Zp-module and which is unramified outside a finite
set of places of k. Let KM be a large abelian extension of k defined as in [R3,
Definition 1.1]. Suppose that S ⊂ lim←−K⊂ KM

H1(Kp,M) is any submodule.
Let SK ⊂ H1(Kp,M) denote the image of S under the obvious projection
map. We say that an Euler system

{cK }K⊂ KM
= c ∈ ES(M, KM ) = ES(M)

is S-restricted if locp(cK) ∈ SK for any finite extension K ⊂ KM of k. The
collection of S-restricted Euler systems for the pair (M, KM ) will be denoted
by ESS(M) = ESS(M, KM ).

Example 4.11.
(1) Let LLL ⊂ lim←−n,τ

H1(kn(τ), T ) be as in Definition 4.7. It is easy to see

that the Euler system cSt we construct above is an LLL-restricted Euler
system.

(2) Consider the even, nontrivial character ωχ−1 := ψ of Gk, and set T ′ :=
Zp(1) ⊗ ψ−1. Only in this example, we let L denote a fixed Zp[[Γ × ΔΔΔ]]-
rank 1 direct summand of lim←−n,τ

H1(kn(τ), T ′). The author [B2, Sec-
tion 3] has constructed an L-restricted Euler system for the pair (T ′, K),
starting from the conjectural Rubin-Stark elements.

Later in Section 5.3, we will construct another L-restricted Euler
system for (T ′, K), applying a formal twisting argument on the Euler
system cSt. We will also compare this Euler system with the one coming
from the Rubin-Stark elements, using the “rigidity” of the collection of
Λ-adic Kolyvagin systems.

4.2. Kolyvagin systems for modified Selmer groups (bis)
Recall the sets Pj ⊂ P and Nj ⊂ N . For notational simplicity, we write

T := T ⊗ Λ from now on, and for a fixed topological generator γ ∈ Γ, we set
γn = γpn

. Finally, let M be the maximal ideal of the ring Λ.
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Definition 4.12. For F = FΛ or FL, we set

KS′(T,F, P ) := lim←−
m,n

lim−→
j

KS
(
T/(pm, γn − 1)T,F, Pj

)
,

where KS(T/(pm, γn − 1)T,F, Pj) is the Λ/(pm, γn − 1)-module of Kolyvagin
systems (in the sense of [MR1, Definition 3.1.3]) for the propagated Selmer
structure F on the quotient T/(pm, γn − 1)T.

Remark 4.13. We introduced the module KS′(T, FΛ, P ) above because,
after applying Kolyvagin’s descent procedure (see [R3, Section IV]), one
directly obtains elements of KS′(T, FΛ, P ). On the other hand, it is not
hard to see for F = FΛ or FL that the module KS′(T,F, P ) defined above
is naturally isomorphic to the module KS(T,F, P ) of Definition 2.36, using
the fact that each of the collections {pm, γn − 1}m,n and {pm,Xn}m,n forms
a base of neighborhoods at zero. Furthermore, using the fact that the col-
lection {Mα}α∈Z+ also forms a base of neighborhoods at zero, one may
identify these two modules as Kolyvagin systems by the generalized module
of Kolyvagin systems defined in [MR1, Definition 3.1.6]. By slight abuse, we
will write KS(T,F, P ) for any of the three modules of Kolyvagin systems
given by three different definitions (i.e., by Definitions 2.36 and 4.12 here,
and [MR1, Definition 3.1.6]). For our purposes in this section, we will use
Definition 4.12 to define this module.

Write {
{κSt

τ,m}τ ∈ Nm

}
m

=κκκSt ∈ KS(T, Fcan, P )

(resp., {
{κSt∞

τ (m,n)}τ ∈ Nm+n

}
m,n

=κκκSt∞ ∈ KS(T, FΛ, P ))

for the Kolyvagin systems obtained via the descent procedure of [R3, Sec-
tion 4] applied on the Euler system cSt = {cSt

kn(τ)}. We know that

κSt
1

lim←−
m

κSt
1,m ∈ lim←−

m

H1(k,T/pmT ) = H1(k,T )def

cSt
k

def= λ ◦ θχ
L = ϕ ◦ θχ

L ∈ Hom
(
(A×

L/L×)χ,Zp

)
= H1(k,T )
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and that

κSt∞
1

lim←−
m,n

κ1(m,n) ∈ lim←−
m,n

H1
(
k,T/(pm, γn − 1)T

)
= H1(k,T)def

{cSt
kn

}n
{λn ◦ θχ

Ln
}n = {ϕn ◦ θχ

Ln
}n ∈ lim←−

n

H1(kn, T ) = H1(k,T).def

Remark 4.14. For every (rational) prime 
, Shapiro’s lemma shows that

(4.5) H1
(
k(τ),T/(pm, γn − 1)T

) ∼= H1
(
kn(τ), T/pmT

)
and

(4.6) H1
(
k(τ)	,T/(pm, γn − 1)T

) ∼= H1
(
kn(τ)	, T/pmT

)
.

(See [C, proposition II.1.1] for (4.5) and [R3, Appendix B.5] for (4.6).)
Thanks to these identifications, we may talk about the propagation of a
local condition H1

F (k	,T) ⊂ H1(k	,T) at 
 to a local condition

H1
F

(
(kn)	, T/pmT

)
⊂ H1

(
(kn)	, T/pmT

) ∼= H1
(
k	,T/(pm, γn − 1)T

)
.

Namely, we define H1
F ((kn)	, T/pmT ) as the isomorphic copy of the module

H1
F (k	,T/(pm, γn − 1)T) under isomorphism (4.6) of Shapiro’s lemma.

Theorem 4.15. We have the following.
(i) κκκSt ∈ KS(T, F L, P ).
(ii) κκκSt∞ ∈ KS(T, FL, P ).

Proof. These are identical to the proofs of [B1, Theorem 2.19] and [B2,
Theorem 3.23]. We remark that the only essential point beyond [R3] and
[MR1] is to verify that

(4.7) locp(κSt
τ,m) ∈ H1

F L (kp, T/pmT ) ∼= L/pmL

for each τ ∈ Nm and m ∈ Z+, and that

locp

(
κSt∞

τ (m,n)
)

∈ H1
FL

(
kp,T/(pm, γn − 1)T

)
(4.8)

∼= L/(pm, γn − 1)L := Ln/pmLn

for every τ ∈ Nm+n and every m,n ∈ Z+. As in [B1] and [B2], the key point
in proving assertions (4.7) and (4.8) is the fact that cSt is an LLL-restricted
Euler system.
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We give the main applications of our construction in Section 5. This will
be twofold. The first application is somewhat standard; we will bound the
dual Selmer groups. As the second application, we will relate the Stick-
elberger elements, making use of the first application, to the conjectural
Rubin-Stark elements. Among other things, this will enable us to control
the local behavior of Rubin-Stark elements.

Remark 4.16. As remarked earlier, one needs only a weak Kolyvagin
system in order to deduce the main applications of the LLL-restricted Euler
system cSt. See [MR1, Definition 3.1.8] for a definition of a weak Kolyvagin
system. We remark that Kolyvagin’s descent (see [R3, Section 4]) applied on
an Euler system gives rise to a weak Kolyvagin system. A weak Kolyvagin
system can be used following the formalism of [R3, Sections 5, 7] with slight
alterations, to obtain the same results which we present below.

§5. Applications

Before we state our main applications of the LLL-restricted Euler system
cSt, we recall our running hypotheses. We fix a totally odd character χ of
Gk := Gal(k/k) which is not the Teichmüller character ω (giving the action
of Gk on the pth roots of unity μμμp). Throughout Section 5, we assume that
(A1) holds. Suppose also that Assumption 1.1 is true.

5.1. Main theorem over k

We first prove a bound on the size of the dual Selmer group H1
F ∗

L
(k,T ∗).

We use this bound to obtain bounds on the classical (dual) Selmer groups,
via the comparison theorem established in Section 2.4.1.

Theorem 5.1. Under our running hypotheses,
(i) lengthZp

(H1
F ∗

L
(k,T ∗)) ≤ lengthZp

(H1
F L

(k,T )/Zp · κSt
1 ),

(ii) lengthZp
(H1

F ∗
cl
(k,T ∗)) ≤ lengthZp

(L/Zp · cSt
k ).

Proof. (i) is Theorem 2.31. (ii) follows from (i) and Corollary 2.22 applied
with c = cSt

k = κSt
1 .

Let θχ
L ∈ Zp[Δ]χ be as in Section 3. The evaluation map

χ : Zp[Δ]χ −→ Zp

induces an isomorphism, and we write χ(θL) for the image of θχ
L under this

map. Recall the definition of ϕ and λ, which we used in Sections 3 and 4 to
define cSt

k . Recall also that λ = ϕ by definition.
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Theorem 5.2. Under the assumptions above,

|Aχ
L| ≤ |Zp/χ(θL)Zp|.

Proof. By Proposition 2.13, H1
F ∗

cl
(k,T ∗) ∼= Aχ

L, and by construction, cSt
k =

χ(θL)λ = χ(θL)ϕ. Since ϕ is a Zp-generator of L (by definition), it follows
that L/Zp · cSt

k = Zp/χ(θL)Zp. The proof now follows from Theorem 5.1(ii).

The inequality of Theorem 5.2 may be strengthened to an equality.

Theorem 5.3. As in Theorem 5.2 above, assume that (A1) holds and
that Assumption 1.1 is true. Suppose in addition either

(i) that μμμp �⊂ L, or
(ii) that the statement of Theorem 5.2 is true for χ = ω.

Then
|Aχ

L| = |Zp/χ(θL)Zp|.

Proof. Unless μμμp ⊂ L (i.e., if we are in case (i) above), the claimed equal-
ity follows from the inequality of Theorem 5.2 using a standard argument
involving the class number formula (see [R1, Section 5] and [B1, Section 3]
for details). Note that we need the assumption that μμμp �⊂ L for this portion
since otherwise we would need the inequality of Theorem 5.2 also for the
Teichmüller character ω, and this escapes the methods of the current paper.

When μμμp ⊂ L, Theorem 5.2 used along with assumption (ii) gives again
the desired equality utilizing the class number formula.

We note that Wiles’s result [W1, Theorem 3] (only for the case χ = ω) is
exactly the statement of Theorem 5.2 in the case χ = ω. Therefore, condition
(ii) in the statement of Theorem 5.3 is true if we assume Wiles’s result in
this particular case.

We henceforth assume [W1, Theorem 3] (only for the case χ = ω) if
μμμp ⊂ L.

Remark 5.4. Note that all the Euler factors at primes ℘ | p are excluded
in the definition of θχ

K , for any K ∈ K (recall the collection K from Section 3),
contrary to the standard definition of Stickelberger elements when K/k is
unramified at a certain prime above p. Theorem 5.3 is still equivalent to [W1,
Theorem 3], since assumption (A1) assures that our Stickelberger elements
agree with that of [W1] and [Ku] up to units.
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5.2. Main theorem over k∞
Along with the assumptions above, suppose also that (A2) holds. Write

char(M) for the characteristic ideal of a torsion Λ-module M .
We proceed as in the previous section. First, we prove a bound for the

characteristic ideal of the dual Selmer group H1
F ∗

L

(k,T∗)∨. We then use this
bound, together with Proposition 2.23, to obtain a bound on the character-
istic ideal of (the Pontryagin dual of) the classical (dual) Selmer groups.

Theorem 5.5. Under the running assumptions,

char
(
H1

F ∗
L

(k,T∗)∨)
| char

(
H1

FL
(k,T)/Λ · κSt∞

1

)
.

Proof. This is Theorem 2.38.

Set cSt
k∞ := {cSt

kn
}n ∈ lim←−n

H1(kn, T ) = H1(k,T).

Corollary 5.6. char((lim−→n
Aχ

Ln
)∨) | char(L/Λ · cSt∞

k∞
).

Proof. This follows from Theorem 5.5 and Proposition 2.23(ii) applied
with c = cSt∞

k∞
, together with the fact that κSt∞

1 = cSt∞
k∞

.

Recall the element θχ
Ln

∈ Zp[Δ × Γn]χ = Zp[Δ]χ[Γn] from Section 3. We
denote the image of θχ

Ln
under the map

χΛ : Zp[Δ]χ[Γn] −→ Zp[Γn]

(which extends χ : Zp[Δ]χ → Zp from the previous section to Γn by letting
χΛ(γ) = γ for γ ∈ Γn) by χΛ(θLn). Lemma 3.1 shows that {χΛ(θLn)} is a
projective system with respect to the natural surjections Zp[Γn′ ] → Zp[Γn],
n′ ≥ n. We define

χΛ(ΘL∞ ) :=
{
χΛ(θLn)

}
∈ lim←−

n

Zp[Γn] = Λ.

Finally, let x �→ x• be the involution on Λ induced from γ �→ γ−1 for γ ∈ Γ.

Theorem 5.7. Under the running hypotheses of this section,

char
((

lim−→
n

Aχ
Ln

)∨)
| χΛ(ΘL∞ )•.

Proof. By the construction of cSt
kn

and λn,

cSt
kn

= λn ◦ θχ
Ln

= χΛ(θLn)•λn = χΛ(θLn)•ϕn.
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It follows that

(5.1) cSt
k∞ =

{
χΛ(θLn)•ϕn

}
n

= χΛ(ΘL∞ )•Φ,

with Φ = {ϕn} as in Section 4.1. Since Φ is a generator of L (by definition),
the theorem follows from Corollary 5.6.

Once again, making use of a standard class number argument (and yet
again, the case μμμp ⊂ L requires more care as above) shows that this equality
may be turned into an equality, as follows.

Theorem 5.8. Under the hypotheses of Theorem 5.3 and assuming (A2),

char
((

lim−→
n

Aχ
Ln

)∨)
= χΛ(ΘL∞ )•.

Let ρcyc : Gk → Z×
p be the cyclotomic character (giving the action of Gk

on μμμp∞ ), and set 〈ρcyc〉 = ω−1ρcyc : Γ → 1 + pZp. We define a twisting map
Tw〈ρcyc〉 : Λ → Λ by setting

Tw〈ρcyc〉(γ) = 〈ρcyc〉(γ)γ for γ ∈ Γ

and extending to Λ by linearity and continuity. Finally, let Lωχ−1 ∈ Λ denote
the Deligne-Ribet p-adic L-function for the character ωχ−1. We will loosely
say here that Lωχ−1 is characterized by the interpolation property

(5.2) 〈ρcyc〉kξ(Lωχ−1) =
∏
℘|p

(
1 − ω−kξχ(℘)N℘k−1

)
L(1 − k,ω−kξχ)

for every k ≥ 1 and every character ξ of Γ of finite order. Here, L(s, �) is
the (abelian) Artin L-function attached to a character � of Gk which is of
finite order.

Lemma 5.9. χΛ(ΘL∞ )• = Tw〈ρcyc〉(Lωχ−1).

Proof. For every character ξ of Γ of finite order, it follows from the defi-
nitions that

ξ
(
χΛ(ΘL∞ )•)

= ξ−1
(
χΛ(ΘL∞ )

)
=

∏
℘|p

(
1 − χ−1ξ(℘)

)
L(0, χ−1ξ)

= 〈ρcyc〉ξ(Lωχ−1) = ξ(〈ρcyc〉 Lωχ−1).

Since this is true for every ξ, the lemma follows.

Corollary 5.10. Under the assumptions of Theorem 5.8,

char
((

lim−→
n

Aχ
Ln

)∨)
= Tw〈ρcyc〉(Lωχ−1).
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5.3. Twisting and local Iwasawa theory of Stark elements
The goal of this section is to establish a connection between the Stickel-

berger elements and the conjectural Rubin-Stark elements. To achieve this,
we will employ the following two ingredients.
(1) The twisting formalism developed in [R3, Section VI].
(2) The rigidity statement in [B2, Theorem 2.19(ii)] for the module of Λ-

adic Kolyvagin systems.
Write ρ := 〈ρcyc〉 for notational simplicity. Let ψ = ωχ−1 as in Section 1,
and set

T ′ = Zp(1) ⊗ ψ−1 = T ⊗ ρ.

We also write T′ = T ′ ⊗ Λ.

5.3.1. Twisting argument.

Lemma 5.11. Suppose that ρ is as above.
(i) There is a commutative diagram

lim←−
n

H1(kn, T ) ⊗ ρ ∼

locp

lim←−
n

H1(kn, T ′)

locp

lim←−
n

H1
(
(kn)p, T

)
⊗ ρ ∼ lim←−

n

H1
(
(kn)p, T

′)

such that the horizontal arrows are natural isomorphisms.
(ii) There is a commutative diagram

lim←−
K∈ K0

H1(K,T ) ⊗ ρ ∼

locp

lim←−
K∈ K0

H1(K,T ′)

locp

lim←−
K∈ K0

H1(Kp, T ) ⊗ ρ ∼ lim←−
K∈ K0

H1(Kp, T
′)

such that the horizontal arrows are natural isomorphisms.
(iii) (lim−→n

H1
F ∗

cl
(kn, T ∗))∨ ⊗ ρ

∼−→
(
lim−→n

H1
F ∗

cl
(kn, (T ′)∗)

)∨.

Proof. This is [R3, Proposition VI.2.1]. We note that lim−→n
H1

F ∗
cl
(kn, T ∗)

here coincides with what Rubin calls SΣp(k∞,W ), thanks to Remark 2.12,
where W = T ∗ and where Σp is the set of places of k which lie above p.
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Let LLL ⊂ lim←−K∈ K0
H1(Kp, T ) be as in Section 4.7, and let LLLρ denote the

image of LLL under the isomorphism of Lemma 5.11(ii). Recall the LLL-restricted
Euler system cSt that we constructed at the end of Section 4.1. Let cSt,ρ

denote the twist of the Euler system cSt defined via [R3, Theorem VI.3.5];
this means that cSt,ρ ∈ ES(T ′, K). Furthermore, one can see without diffi-
culty that the following lemma is true.

Lemma 5.12. The twisted Euler system cSt,ρ is LLLρ-restricted.

Let Lρ ∈ H1(kp,T
′) denote the image of LLLρ under the obvious projection

map. Recall the element cSt
k∞ = {cSt

kn
}n ∈ H1(k,T), and set cSt,ρ

k∞
= {cSt,ρ

kn
}n ∈

H1(k,T′). Note that locp(cSt
k∞ ) ∈ L ⊂ H1(kp,T) and locp(c

St,ρ
k∞

) ∈ Lρ ⊂
H1(kp,T

′), by construction. As before, we drop locp from notation and
denote locp(cSt

k∞ ) (resp., locp(c
St,ρ
k∞

)) simply by cSt
k∞ (resp., by cSt,ρ

k∞
). Lemma

5.11(i) induces an isomorphism,

(5.3) L/Λ · cSt
k∞ ⊗ ρ

∼−→ Lρ/Λ · cSt,ρ
k∞

.

To simplify notation, set X∞(T ) := (lim−→n
H1

F ∗
cl
(kn, T ∗))∨, and set similarly

X∞(T ′) :=
(
lim−→n

H1
F ∗

cl
(kn, (T ′)∗)

)∨. Until the end of this paper, assume that
(A1) and (A2) both hold true.

Proposition 5.13. Let Twρ : Λ → Λ be the twisting operator as above.
(i) Twρ

(
char(X∞(T ′))

)
= char(X∞(T )).

(ii) Twρ(char(Lρ/Λ · cSt,ρ
k∞

)) = char(L/Λ · cSt
k∞ ).

(iii) char(X∞(T ′)) = char(Lρ/Λ · cSt,ρ
k∞

).

Proof. Assertion (i) follows from Lemma 5.11(iii) together with [R3,
Lemma VI.1.2(i)], and (ii) from (5.3) applied with [R3, Lemma VI.1.2(i)].

Thanks to (i) and (ii), assertion (iii) is equivalent to verifying that

(5.4) Twρ−1

(
char(X∞(T ))

)
= Twρ−1

(
char(L/Λ · cSt

k∞ )
)
.

This, however, is the statement of Theorem 5.8 put together with (5.1) and
twisted by Twρ−1 .

5.3.2. Stickelberger elements versus Rubin-Stark elements. Following [B2,
Definition 2.10], we define the Lρ-modified Selmer structure FLρ on T′,
for Lρ ⊂ H1(kp,T

′) as above. The argument of [B2, Theorem 3.23] shows
that the LLLρ-restricted Euler system cSt,ρ gives rise to a Kolyvagin system
κκκSt∞,ρ ∈ KS(T′, FLρ , P ).
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Proposition 5.14. We have

char
(
H1

FL∗
ρ
(k, (T′)∗)∨)

= char
(
H1

FLρ
(k,T′)/Λ · κSt∞,ρ

1

)
.

Proof. This follows from Proposition 5.13 and the exact sequence of
Proposition 2.23(ii) rewritten for T′ instead of T. See also [B2, Proposi-
tion 2.12] for this version of the exact sequence of Proposition 2.23(ii).

Assume until the end of this paper that the character ψ satisfies hypoth-
esis (A1) as well, that is, that ψ(℘) �= 1 for any prime ℘ of k lying above p.
According to [B2, Theorem 2.19(ii)], the Λ-module of Kolyvagin systems
KS(T′, FLρ , P ) is free of rank 1.

Corollary 5.15. The Kolyvagin system κκκSt∞,ρ generates the cyclic mod-
ule KS(T′, FLρ , P ).

Proof. We know by [B2, Theorem 2.19(ii), Proposition 4.2] that the free
Λ-module KS(T′, FLρ , P ) is generated by a Λ-primitive Kolyvagin system
κκκ (in the sense of [MR1, Definition 5.3.9]). In particular, we may write

κκκSt∞,ρ = u · κκκ,

with u ∈ Λ.
The main application of the Λ-primitive Kolyvagin system κκκ for the

Selmer triple (T′, FLρ , P ) is the following (see [B2, Theorem 2.20]):

(5.5) char
(
H1

FL∗
ρ
(k, (T′)∗)∨)

= char
(
H1

FLρ
(k,T′)/Λ · κ1

)
.

Assertion (5.5) together with Proposition 5.14 shows that u ∈ Λ×. This
completes the proof.

Let eeeStark = {eStark}K∈ K0 be the Euler system {εψ

K,Φ
(∞)
0

}K∈ K0 defined in

[B2, Proposition 3.14]. This Euler system is obtained from the Rubin-Stark
elements that Rubin [R2] conjectured to exist, and therefore the existence
of eeeStark is implicitly assumed here.∗ Note that our ψ here is denoted by χ

in [B2]. Let
cStark
k∞ ∈ ∧rH1(kp,T

′)

∗Having said that, note that we will recover in Theorem 5.16(i) below the Kolyvagin
system κκκStark up to a unit (which descends from eee

Stark) directly from the Kolyvagin system
κκκSt∞, which is obtained in this article from Stickelberger elements.
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be the element defined as in [B2, Remark 4.5]. Finally, let κκκStark be the
Λ-primitive Kolyvagin system for the Selmer triple (T′, FLρ , P ), which is
obtained from the Euler system eeeStark. We remark that what we call Lρ

here is denoted by L∞ in [B2], and κκκStark here is denoted by κκκΦ
(∞)
0 in [B2].

Recall the Kolyvagin system κκκSt∞,ρ which is obtained from the LLLρ-restricted
Euler system cSt,ρ of Stickelberger elements.

The theorem below draws a connection between the Stickelberger ele-
ments and the Rubin-Stark elements.

Theorem 5.16. The following hold under the running assumptions:
(i) there is a unit u ∈ Λ× such that κκκSt∞,ρ = u · κκκStark,
(ii) char(Lρ/Λ · κSt∞,ρ

1 ) = char(Lρ/κ
Stark
1 ),

(iii) char(∧rH1(kp,T
′)/Λ · cStark

k∞ ) = Lψ.
Here, Lψ is the Deligne-Ribet p-adic L-function attached to the totally even
character ψ.

Proof. Assertion (i) follows from Corollary 5.15 and the fact that κκκStark

generates the free rank 1 Λ-module KS(T′, FLρ , P ). Assertion (ii) is imme-
diate from (i).

The discussion preceding the statement of [B2, Corollary 4.6] shows that

∧rH1(kp,T
′)/Λ · cStark

k∞
∼= Lρ/Λ · κStark

1 .

Hence, it follows from (ii) that

char
(

∧rH1(kp,T
′)/Λ · cStark

k∞

)
= char(Lρ/Λ · κSt∞,ρ

1 ).

By the construction of the Kolyvagin system κκκSt∞,ρ out of the Euler system
cSt,ρ, it follows that κSt∞,ρ

1 = cSt,ρ
k∞

, which in turn implies that

char
(

∧rH1(kp,T
′)/Λ · cStark

k∞

)
= char(Lρ/Λ · cSt,ρ

k∞
).

Using Proposition 5.13(ii), (5.1), and Lemma 5.9, we see that

Twρ

(
char(Lρ/Λ · cSt,ρ

k∞
)
)

= char(L/Λ · cSt
k∞ ) = Twρ(Lψ).

This completes the proof of the theorem.

The author [B2, Theorem 4.7] has previously deduced Theorem 5.16(iii)
from Iwasawa’s main conjecture. Here, we need to assume slightly less,
namely, the χ-part of Brumer’s conjecture (see Assumption 1.1) to prove
this statement.

https://doi.org/10.1215/00277630-1331890 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-1331890


172 K. BÜYÜKBODUK
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(Grenoble) 48 (1998), 1231–1307.

[R1] K. Rubin, Stark units and Kolyvagin’s “Euler systems,” J. Reine Angew. Math.
425 (1992), 141–154.

[R2] , A Stark conjecture “over Z” for abelian L-functions with multiple zeros,
Ann. Inst. Fourier (Grenoble) 46 (1996), 33–62.

https://doi.org/10.1215/00277630-1331890 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-1331890


STICKELBERGER ELEMENTS AND KOLYVAGIN SYSTEMS 173

[R3] , Euler Systems, Ann. of Math. Stud. 147, Princeton University Press,
Princeton, 2000.
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