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Abstract

Let G be a finite group and p a prime. We say that a p-regular element g of G is p-nonvanishing if no
irreducible p-Brauer character of G takes the value 0 on g. The main result of this paper shows that if G
is solvable and g ∈ G is a p-regular element which is p-nonvanishing, then g lies in a normal subgroup
of G whose p-length and p′-length are both at most 2 (with possible exceptions for p ≤ 7), the bound
being best possible. This result is obtained through the analysis of one particular orbit condition in linear
actions of solvable groups on finite vector spaces, and it generalizes (for p > 7) some results in Dolfi and
Pacifici [‘Zeros of Brauer characters and linear actions of finite groups’, J. Algebra 340 (2011), 104–113].
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1. Introduction and preliminaries

An element g of a finite group G is called a nonvanishing element if χ(g) , 0 for
every irreducible complex character χ ∈ Irr(G); in other words, g is nonvanishing if
the column corresponding to g in the character table of G contains no zero entries.
In [6], Isaacs et al. proved that if G is a finite solvable group and g ∈ G is a non-
vanishing element of odd order, then g lies in the Fitting subgroup F(G) of G.
Moreover, in [3], it was shown that if G is any finite group and g ∈G is a nonvanishing
element of order coprime to 6, then again g ∈ F(G).

In this spirit, given a prime number p, we consider elements corresponding to
columns with no zero entries in the table of Brauer characters in characteristic p. We
say that a p-regular element g ∈ G is a p-nonvanishing element if φ(g) , 0 for every
irreducible p-Brauer character φ ∈ IBrp(G).
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In [4], it is proved that if, for a prime p > 3, all p-regular elements of a finite group
G are p-nonvanishing (a condition that implies the solvability of G), then G has p′-
length at most 2. Assuming (as we may, since every p-Brauer character of G contains
Op(G) in its kernel) that Op(G) = 1, this implies that every p-regular element of G lies
in Op′pp′(G).

The main theorem of the present paper extends this result, in the case p > 7.

Theorem A. Let p be a prime number greater than 3, let G be a finite solvable group
with Op(G) = 1, and let g be a p-regular element of G that is p-nonvanishing. Then g
lies in Op′pp′(G), unless p ∈ {5, 7} and the order of g is divisible by 2 or 3.

Example 5.1 shows that the above statement is ‘optimal’ in some sense. Our
approach to Theorem A consists in studying a related problem about linear actions
on modules. A key tool for our analysis is in fact Theorem 3.6, which deals with
solvable groups acting irreducibly on modules over prime fields, and satisfying one
particular orbit condition. As shown by Example 5.2, Theorem 3.6 is false in general
when p is 5 or 7 and the order of g is divisible by 2 or 3, but we do not know whether
exceptions to Theorem A really exist in this case. At any rate, different methods should
take over in order to extend Theorem A (possibly for p ∈ {2, 3} as well), and this is left
as an open problem.

Every group considered in this paper is assumed to be a finite group. The only
nonstandard preliminary concept that needs to be introduced, and that will be central
in our discussion, is the following definition.

Definition 1.1. Let Ω be a finite nonempty set and let G be a subgroup of Sym(Ω).
Given an orbit O for the action of G on Ω, and an element g of G, we say that O is
g-deranged if g does not fix any element in O.

Observe that a regular orbit is clearly g-deranged for every nontrivial g ∈ G.

2. Deranged orbits on the power set

Definition 2.1. Let Ω be a finite nonempty set. Given a positive integer t, we define
Pt(Ω) to be the set of ordered (t + 1)-tuples (Ω1,Ω2, . . . ,Ωt+1), where the Ω j are
(possibly empty) subsets of Ω such that Ω j ∩Ωl = ∅ whenever j , l, and

⋃t+1
j=1 Ω j = Ω.

We shall write P(Ω) rather than P1(Ω). (Note that P(Ω) can be identified with the
power set of Ω.)

Observe that, if G is a subgroup of Sym(Ω), then G also embeds into Sym(Pt(Ω))
in a natural way (under the convention that the empty set is fixed by every element of
G). Moreover, there is an obvious bijection between Pt(Ω) and the subset of Pt+1(Ω)
consisting of the elements (Ω1,Ω2, . . . ,Ωt+2) such that Ωt+2 = ∅; this subset is clearly
G-invariant, and the action of G on it is equivalent to that on Pt(Ω). For g ∈ G, we
shall freely use the obvious fact that, whenever there exists a g-deranged orbit for the
action of G on Sym(Pt(Ω)), the same happens for the action of G on Sym(Pt+1(Ω)).

https://doi.org/10.1017/S1446788715000178 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000178


98 S. Dolfi, E. Pacifici and L. Sanus [3]

Notation 2.2. Let Ω be a finite set with |Ω| > 1, let G be a transitive subgroup of
Sym(Ω), and let ∆ be a minimal nontrivial block for the action of G on Ω (that is,
|∆| > 1, but we allow ∆ = Ω). Denoting by G∆ the stabilizer of ∆ in G, and by L the
pointwise stabilizer of ∆ in G, set H = G∆/L. In this situation, H can be identified
with a primitive subgroup of Sym(∆). Also, let Σ be a right transversal for G∆ in G; in
view of [4, Remarks 2.1 and 2.2], G can be identified with a subgroup of H o K, where
K ≤ Sym(Σ) is a homomorphic image of G acting transitively on Σ. Furthermore, the
group H o K (thus G, as well) acts naturally on the cartesian product ∆ × Σ, and the
G-sets Ω and ∆ × Σ are equivalent. If |Σ| = s, then we identify Σ with {1, 2, . . . , s} ⊆ N.
Finally, we write B for the base group of H o K.

Lemma 2.3. Assuming the setting of Notation 2.2, consider an element g =

(h1, h2, . . . , hs)k of G. Then, for every positive integer t, the following conclusions
hold.

(a) Let g be in G ∩ B (that is, let k = 1). If, for a given i ∈ {1, . . . , s}, there exists an
hi-deranged orbit for the action of H on Pt(∆), then there exists a g-deranged
orbit for the action of G on Pt(Ω).

(b) If there exists a k-deranged orbit for the action of K on Pt(Σ), then there exists a
g-deranged orbit for the action of G on Pt(Ω).

Proof. We start by proving part (a) of the statement. Let (∆1, ∆2, . . . , ∆t+1) be an
element lying in an hi-deranged orbit for the action of H on Pt(∆). We define an
ordered (t + 1)-tuple of subsets of ∆ × Σ, setting

Ω j = {(δ, i) | δ ∈ ∆ j, i ∈ {1, . . . , s}}

for every j ∈ {1, . . . , t + 1}. We claim that g does not fix any element in the G-orbit of
(Ω1,Ω2, . . . ,Ωt+1).

In fact, for a proof by contradiction, assume that there exists x ∈ G such that g fixes
(Ω1,Ω2, . . . ,Ωt+1) · x. Write x = (l1, . . . , ls)z for suitable li ∈ H and z ∈ K, whence
xg = (l1h1·z, l2h2·z, . . . , lshs·z)z. For j ∈ {1, . . . , t + 1} and δ ∈ ∆ j, take r ∈ {1, . . . , s} and
ε ∈ ∆ such that

(δ, i · z−1) · xg = (ε, r) · x

holds. Note that r = i · z−1, and observe also that ε lies in ∆ j, because gx−1
fixes

(Ω1,Ω2, . . . ,Ωt+1). Moreover, δ · li·z−1 hi = ε · li·z−1 holds; thus, setting u = li·z−1 ∈ H,
we have that δ · hu−1

i lies in ∆ j. Since this holds for every δ ∈ ∆ j, we conclude that
hu−1

i fixes ∆ j and, as this happens for every j ∈ {1, . . . , t + 1}, we get that hi fixes
(∆1,∆2, . . . ,∆t+1) · u, contradicting the fact that (∆1,∆2, . . . ,∆t+1) lies in an hi-deranged
orbit for the action of H on Pt(∆).

We move now to part (b). Let (Σ1, Σ2, . . . , Σt+1) be an element of Pt(Σ) lying in a
k-deranged orbit. Setting

Ω j = {(δ, i) | δ ∈ ∆, i ∈ Σ j}
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for j ∈ {1, . . . , t + 1}, we claim that (Ω1,Ω2, . . . ,Ωt+1) lies in a g-deranged orbit for the
action of G onPt(Ω). In fact, as above, let x ∈G be such that g fixes (Ω1,Ω2, . . . ,Ωt+1) ·
x. Write x = (l1, . . . , ls)z, with li ∈ H and z ∈ K, whence gx−1

= (y1, y2, . . . , ys)kz−1

for suitable yi ∈ H. For δ ∈ ∆ and i ∈ Σ j, we get (δ, i) · gx−1
= (δ · yi, i · kz−1

): as gx−1

stabilizes Ω j, we have i · kz−1
∈ Σ j and therefore kz−1

stabilizes Σ j. As this happens for
every j ∈ {1, . . . , t + 1}, this contradicts our choice of (Σ1,Σ2, . . . ,Σt+1) as an element
of Pt(Σ) lying in a k-deranged orbit, and the proof is complete. �

Theorem 2.4. Let Ω be a finite nonempty set, G a transitive solvable subgroup of
Sym(Ω), and g a nontrivial element of G. Then the following conclusions hold.

(a) There exists a G-regular orbit in P4(Ω).
(b) There exists a g-deranged orbit in P3(Ω).
(c) If there does not exist any g-deranged orbit in P2(Ω), then g lies in O{2,3}(G).
(d) If there does not exist any g-deranged orbit in P(Ω), then g is a {2, 3}-element of

G lying either in O{2,3,5}(G) or in O{2,3,7}(G).

Proof. Conclusion (a) is [9, Theorem 1.2]. We will start by proving parts (b)–(d) under
the additional assumption that G is a primitive subgroup of Sym(Ω).

In this case, [1, Lemma 1] guarantees the existence of a G-regular orbit on P2(Ω)
unless |Ω| = 4 and G is Sym(4), so (c) is proved; moreover, the G-orbit on P3(Ω)
containing ({1}, {2}, {3}, {4}) is regular, thus (b) holds too. As regards the action of G
on P(Ω), we can clearly assume that G does not have any regular orbit on P(Ω), so
we are in a position to apply [7, Theorem 5.6]. As we can also assume that G is not a
{2, 3}-group, we have to consider the following cases.

(1) Ω = {1, 2, 3, 4, 5} and G ' D10. Then the G-orbit of ({1, 2}, {3, 4, 5}) in P(Ω) is
g-deranged for any g ∈ G that is not an involution.

(2) Ω = {1, 2, 3, 4, 5} and G is the Frobenius group of order 20. Then the G-orbit
on P(Ω) containing ({1, 2}, {3, 4, 5}) is g-deranged for any g ∈ G that is not an
involution.

(3) Ω = {1, 2, 3, 4, 5, 6, 7} and G is the Frobenius group of order 42. Then the G-orbit
on P(Ω) containing ({1, 2}, {3, 4, 5, 6, 7}) is g-deranged for any g ∈ G that is not
an involution.

(4) Ω = {1,2,3,4,5,6,7,8} and G = AΓ(23) is the affine semilinear group on the field
GF(23) (see [7, page 38]). Now, the stabilizer in G of ({1}, {2, 3, 4, 5, 6, 7, 8}) has
odd order and the stabilizer of ({1, 2}, {3, 4, 5, 6, 7, 8}) has order coprime to 7, so
there exists a g-deranged orbit in P(Ω) for any g ∈ G which is not of order 3.

The analysis of the primitive case is complete, and we will henceforth assume that
the action of G on Ω is imprimitive. In what follows we will make use of Notation 2.2.
Observe that, taking into account part (a) of Lemma 2.3, conclusions (b)–(d) are easily
extended from the primitive to the imprimitive case whenever g lies in G ∩ B.
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Consider first the case ∆ = {δ1, . . . , δd} with d ≥ 4. Set ∆0 = ∅ and, for i ∈ {1, . . . , 4},
set ∆i = {δ1, . . . , δi}. Now, by part (a) we can choose an element (Σ0, . . . ,Σ4) lying in a
regular K-orbit for the action of K on P4(Σ), and we can define

Ω1 =

4⋃
j=0

{(δ, i) | δ ∈ ∆ j, i ∈ Σ j}.

Writing g = (h1, . . . , hs)k, assume that the G-orbit of (Ω1,Ω\Ω1) in P(Ω) is not
g-deranged, that is, there exists x = (l1, . . . , ls)z ∈ G such that g fixes (Ω1,Ω\Ω1) · x.
Then gx−1

, which we write as (y1, y2, . . . , ys)kz−1
for suitable yi ∈ H, fixes (Ω1,Ω\Ω1)

and therefore kz−1
fixes (Ω1,Ω\Ω1) · (y1, y2, . . . , ys). It is not hard to check that this

forces kz−1
to fix (Σ0, . . . ,Σ4), so that k is trivial and g lies in G ∩ B. As observed in the

paragraph above, we are done in this case.
It remains to treat the situation when |∆| ≤ 3, which implies that H is a {2, 3}-group.

Write g = (h1, . . . , hs)k. If k = 1, then again we are done; if k , 1 then, by induction
on the cardinality of the permuted set, conclusions (b)–(d) of the statement hold with
respect to the action of K on Σ and to the element k, and an application of part (b) of
Lemma 2.3 concludes the proof. �

3. Deranged orbits in linear actions

The structure of primitive solvable groups of linear transformations is quite well
understood. In the following proposition we collect some well-known facts (see for
instance [10, Theorem 2.2 and Lemma 2.4] and [7, Lemma 0.5 and Theorem 1.9])
and, after that, we will be ready to describe some features of these groups that will be
relevant for our purposes.

Proposition 3.1. Let G be a solvable group and V a faithful primitive G-module over
a finite field. Then there exist subgroups Z ≤ U ≤ F ≤ A, and E, all normal in G, with
the following properties.

(a) U is cyclic and E is a product of subgroups Ei C G of pairwise coprime orders,
such that, for every i, Ei is cyclic of prime order pi or an extraspecial pi-group
(of exponent pi if pi , 2, and of order p2ni+1

i for a suitable integer ni). Also,
F = EU is a central product, Z = E ∩ U = Z(E), and CG(F) ≤ F.

(b) F/U ' E/Z is a direct sum of completely reducible G/F-modules.
(c) A = CG(U), so that G/A embeds into the abelian group Aut(U).
(d) A/F acts faithfully on E/Z and A/CA(Ei/Z(Ei)) embeds into the symplectic

group Sp(2ni, pi).
(e) If W is an irreducible submodule of VU , then U acts fixed-point freely on W

(hence |U | divides |W | − 1) and |G : A| is a divisor of dim(W).
(f) Setting e =

√
|E : Z|, we have |V | = |W |eb for some integer b.

(g) Let g be an element of prime order r in G. Then |CV (g)| ≤ |V |1/2, unless g lies in
A\F and either r = 2 or r divides |E|. In any case, we have |CV (g)| ≤ |V |3/4.
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Theorem 3.2. Let G be a solvable group, p a prime number greater than 3, and V a
faithful primitive G-module over a prime field. If there exists a nontrivial p-regular
element g of G such that there do not exist g-deranged orbits in V, then the p-length
of G is at most 1.

Proof. Let g be an element of G as in the statement. Since G acts faithfully and
primitively on V , we can use Proposition 3.1 and the notation introduced therein.
Observe that, since there are not g-deranged orbits for the action of G on V , by [10,
Theorem 4.1] we have e ∈ {2, 3, 4, 8, 9, 16}. Hence, E is an extraspecial r-group with
r ∈ {2, 3} (so r , p). Write A = CG(U) and notice that U contains Op(A), which is
therefore central in A. If A/F is a p′-group, then clearly Op′p(A) = A and, as G/A is
abelian, G = Op′pp′(G). In view of that, in what follows we will assume that p divides
|A/F| (thus, in particular, A/F is not a {2, 3}-group).

If e ∈ {2, 3}, then A/F embeds into GL(2, 2) or GL(2, 3), respectively. In any case,
A/F is a {2, 3}-group, against our assumption.

Thus, we have e ∈ {4, 8, 9, 16}; in the following discussion we will refer to the
analysis carried out in [2, Lemmas 3.2 and 3.3], and our aim will be to show at first
that A = Op′pp′(A).

If e = 4, then A/F embeds in Sp(4, 2) ' Sym(6), which is a {2, 3, 5}-group;
moreover, either A/F ≤ GL(2, 2) o Sym(2) or A/F ≤ Γ(24), the semilinear group on
the field with 24 elements. As Sym(6) has no elements of order 15, we see that A/F is
a {2, 5}-group of order at most 20 and that if 5 divides the order of A/F, then A/F has
cyclic Sylow 2-subgroups. In this case A/F has a normal Sylow p-subgroup. Hence,
A/F = Opp′(A/F) and it follows that A = Op′pp′(A).

If e = 8, then A/F embeds in Sp(6, 2), and we get A/F ≤ GL(2, 2) × Γ(24) (with
the projection on the second factor of order at most 20), or A/F ≤ GL(2, 2) × Γ(23), or
A/F ≤ Γ(26) with |A/F| ≤ 42. Thus, p = 5 or p = 7, and in any case A/F has a normal
Sylow p-subgroup. Again it follows that A/F = Opp′(A/F) and thus A = Op′pp′(A).

If e = 9, then A/F ≤ Sp(4, 3) and we have to consider two possibilities.

(i) A/F ≤ 2.Sym(6). Then, looking at the solvable subgroups of 2.Sym(6), we
deduce that A/F has order at most 40, so that p = 5 and A/F has a normal Sylow
p-subgroup. Hence, A/F = Opp′(A/F) and A = Op′pp′(A).

(ii) A/F ≤ (D8 � Q8).Alt(5). Then, looking at the solvable subgroups of
(D8 � Q8).Alt(5), we see that A/F ≤ (D8 � Q8).D10, whence |A/F| ≤ 320 and p =

5. Moreover, setting L/F = O2(A/F), we get that L has a normal p-complement
because Op(F) lies in Z(A), and A/L has a normal Sylow p-subgroup. It follows
that A = Op′pp′(A).

Finally, we consider the case e = 16, so that A/F embeds in Sp(8, 2), and we have
the following possibilities.

(i) A/F ≤ L, where L is a group among (GL(2, 2) o Sym(2)) × Γ(24), Γ(24) × Γ(24),
Γ(24) o Sym(2), and Γ(24).2. It can be checked that p = 5 and A/F has a normal
Sylow 5-subgroup.

https://doi.org/10.1017/S1446788715000178 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000178


102 S. Dolfi, E. Pacifici and L. Sanus [7]

(ii) A/F ≤ L, where L is a group among (GL(2, 2) o Sym(2)) × Γ(23), GL(2, 2) ×
Γ(23) × Γ(23), GL(2, 2) × (Γ(23) · 2), and GL(2, 2) × Γ(26). In this case, p = 7
and A/F has a normal Sylow 7-subgroup.

(iii) A/F ≤ Γ(23) × Γ(24). In this case, p ∈ {5, 7}, and A/F has a normal Sylow
p-subgroup.

(iv) A/F ≤ Γ(28). Here p ∈ {5, 51}, and A/F has a normal Sylow p-subgroup.

(Note that, in any case, |A/F| ≤ 7200.)
Our conclusion so far is that A = Op′pp′(A) and, in order to conclude the proof, it

will be enough to show that G/A is a p′-group whenever there exists g ∈ G\{1} such
that there are no g-deranged orbits in V . Aiming at a contradiction, we will assume
that G has p-length bigger that 1; so p divides |G/A| and, in particular, |G/A| ≥ 5.

Observe that the lack of g-deranged orbits in G implies that⋃
x∈G

CV (gx) = V.

As there are clearly no deranged orbits in V for any power of g, we can assume that g
is an element of prime order r. Hence, we get |CV (g)| ≤ |V |α, where α takes the value
1/2 or 3/4 according to part (g) of Proposition 3.1, and thus

|V | ≤ |G : NG(〈g〉)| · |V |α. (3.1)

Since the number of G-conjugates of 〈g〉 is easily seen to be at most |A|,

|V |1−α ≤ |A/F| · |U | · |E/Z|. (3.2)

However, recall that U lies in Z(A); therefore, if g is in A, the number of G-conjugates
of 〈g〉 is also bounded by |G/A| · |A/F| · |E/Z|, and

|V |1−α ≤ |G/A| · |A/F| · |E/Z|. (3.3)

In what follows, using the notation of Proposition 3.1, we set |W | = qa, where q is
a suitable prime; thus, part (f) of that proposition yields |V | = qeab, whereas part (e)
yields |U | < qa and a = k|G/A| for some k ∈ Z.

Let us consider first the case e = 4. Looking at the discussion in the first part of this
proof, we see that |A/F| ≤ 20 and p = 5, so a is a multiple of 5. Note also that |U | is an
even divisor of qa − 1, so that q is an odd prime. If g < A, then inequality (3.2) yields

q2ab < 20 · qa · 24,

whence qa < 26 · 5. This forces q = 3 and a = |G/A| = 5. Now 5 is a divisor of the order
of g, contradicting the fact that g is a p′-element. Therefore, g lies in A and we can
use inequality (3.3); if g is not an involution in A\F, then we obtain 310 ≤ 5 · 20 · 24,
which is false. We conclude that g is an involution in A\F, and at any rate inequality
(3.3) yields

qk|G/A|b ≤ |G/A| · 20 · 24.
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It is easy to see that this implies that q = 3, a = |G/A| = 5, and b = 1. Moreover,
|U | divides 35 − 1 = 2 · 112. By inequality (3.1), |V | = 320 ≤ |G : NG(〈g〉)| · |V |3/4; so
|G : NG(〈g〉)| ≥ 35. Moreover, |A/F| is divisible by 5 (as otherwise G has p-length 1),
so A/F can be identified with a subgroup of order 10 or 20 of Γ(24), acting on F/U. It
follows that A/U contains 20 involutions and hence A contains 40 involutions (besides
the involution of U, which is central in A and certainly not a conjugate of g), against
|G : NG(〈g〉)| ≥ 35.

Assume next that e = 8; in this case, we know that |A/F| ≤ 2 · 32 · 7. Inequality
(3.2) yields qa < 27 · 32 · 7 (with a ≥ 5), thus forcing q ∈ {3, 5} and a = |G/A| ∈ {5, 7}.
In any case, we get p = |G/A|; therefore, g being a p′-element, we get g ∈ A. Using
now inequality (3.3), we obtain 310 ≤ 27 · 32 · 72, which is false. Therefore, e cannot
be 8 under our assumptions.

As for the case e = 9, we have |A/F| ≤ 320 and p = 5; thus, a is a multiple of
5. Assume first that g < A; then we can use inequality (3.2) with α = 1/2, obtaining
q9a/2 < 320 · qa · 34. Hence, we have q35/2 < 320 · 34, which is false for every prime q.
On the other hand, assume that g ∈ A. Now we can use inequality (3.3), which yields

q9k|G/A|b/4 ≤ |G/A| · 320 · 34.

Even setting b = 1, this forces q = 2 and a = |G/A| = 5. But |U | is a multiple of 3 in
this case, and |U | should divide 25 − 1 = 31, which is a clear contradiction. Thus, also
the value 9 for e is impossible.

Finally, consider the case e = 16; thus, |A/F| ≤ 7200. Inequality (3.2) yields

q4ab < 7200 · qa · 28,

that is, q3a < 7200 · 28. This implies that q = 2, which is a contradiction.
The proof is now complete. �

The conclusion of the above theorem also holds for solvable groups inducing few
orbits in primitive linear actions.

Lemma 3.3. Let G be a solvable group, p a prime number greater than 3, and V a
faithful primitive G-module over a prime field. If the elements of V are partitioned in
at most three orbits under the action of G, then the p-length of G is at most 1.

Proof. By [7, Theorem 6.8] and [5, Theorem 1.1] (which deal with the cases when the
number of G-orbits on V\{0} is 1 or 2, respectively), it is easily checked that either
G is a group of semilinear maps on V , or G belongs to a list of groups whose orders
are not divisible by p2 whenever p is a prime greater than 3. Therefore, the desired
conclusion follows. �

In order to investigate imprimitive linear actions from the relevant point of view, in
the spirit of Notation 2.2 we establish the following setting.

Notation 3.4. Let G be a group and V an irreducible G-module. Choosing a subgroup
T of G and a primitive submodule W of VT such that V = WG (possibly T = G), we
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set H = T/CT (W). Also, we denote by Σ a right transversal for T in G and, if s = |Σ|,
we identify Σ with {1, 2, . . . , s} ⊆ N. As already mentioned in Notation 2.2, G can
be identified with a subgroup of H o K, where K is a transitive subgroup of Sym(Σ);
moreover, H o K (thus G) acts naturally on the direct sum W⊕s of s copies of W, and
the G-modules V and W⊕s are isomorphic (see [4, Remark 2.3]). Finally, we denote
by B the base group of H o K.

Next, we gather the analogue of Lemma 2.3 in the context of linear actions.

Lemma 3.5. Assuming the setting of Notation 3.4, consider an element g = (h1, h2,
. . . , hs)k of G. Then the following conclusions hold.

(a) Let g be in G ∩ B (that is, let k = 1). If, for a given i ∈ {1, . . . , s}, there exists an
hi-deranged orbit for the action of H on W, then there exists a g-deranged orbit
for the action of G on V.

(b) Let t be a positive integer. If there exists a k-deranged orbit for the action of K
on Pt(Σ), and W is partitioned in at least t + 1 orbits under the action of H, then
there exists a g-deranged orbit for the action of G on V.

Proof. In order to prove (a), let us choose an element w of W lying in an hi-deranged
orbit for the action of H, and consider the element v ∈ W⊕s whose ith component is
w for every i ∈ {1, . . . , s}. We claim that v lies in a g-deranged orbit for the action of
G. In fact, assume that there exists x ∈ G such that vxg = vx. Write x = (l1, . . . , ls)z for
suitable li ∈ H and z ∈ K, whence xg = (l1h1·z, l2h2·z, . . . , lshs·z)z. We have

vxg = (wl1h1·z + · · · + wlshs·z )z = wl1·z−1 h1 + · · · + wls·z−1 hs ,

whereas vx = wl1·z−1 + · · · + wls·z−1 ; setting u = li·z−1 ∈ H, we deduce that wuhi = wu,
giving a contradiction that proves our claim.

As regards (b), take (Σ1, Σ2, . . . , Σt+1) in a k-deranged orbit for the action of K on
Pt(Σ), and choose r1, r2, . . . , rt+1 ∈ W in pairwise distinct H-orbits; considering the
element v = w1 + · · · + ws ∈W⊕s such that wi = r j if i lies in Σ j, we claim that v lies in
a g-deranged orbit for the action of G on V . In fact, let x ∈ G be such that vxgx−1

= v.
Writing x = (l1, . . . , ls)z as in part (a), we get gx−1

= (y1, y2, . . . , ys)kz−1
for suitable

yi ∈ H, whence, setting b = kz−1
,

wy1·b−1

1·b−1 + · · · + wys·b−1

s·b−1 = w1 + · · · + ws.

It is not hard to deduce that, in this situation, b = kz−1
is forced to stabilize Σ j for every

j ∈ {1, . . . , t + 1}, thus contradicting the choice of (Σ1, Σ2, . . . , Σt+1) as an element of
Pt(Σ) lying in a k-deranged orbit, and the proof is complete. �

Finally, we consider irreducible linear actions of solvable groups.

Theorem 3.6. Let G be a solvable group, p a prime number greater than 3, and V a
faithful irreducible G-module over a prime field. Let g be a p-regular element of G
such that there do not exist g-deranged orbits in V. Then g lies in Op′pp′(G), unless
p ∈ {5, 7} and the order of g is divisible by 2 or 3.
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Proof. We can clearly assume that g , 1. Since Theorem 3.2 settles the primitive case,
we can assume that the action of G on V is imprimitive, and we will use Notation 3.4.
So, let us write g = (h1, h2, . . . , hs)k. If k = 1, then Lemma 3.5(a) yields that, for every
i ∈ {1, . . . , s}, there does not exist any hi-deranged orbit for the action of H on W; as
g is nontrivial, there certainly exists i ∈ {1, . . . , s} such that hi is nontrivial: therefore,
Theorem 3.2 yields H = Op′pp′(H) and the desired conclusion easily follows. In view
of this, we will henceforth assume that k , 1.

Observe that, by Theorem 2.4(b), there exists a k-deranged orbit for the action of
K on P3(Σ); as a consequence of this fact together with Lemma 3.5(b), we get that
W is partitioned in at most three orbits under the action of H; hence, Lemma 3.3
yields H = Op′pp′(H). Now we look at the action of K on P(Σ): the existence of
k-deranged orbits for this action would imply, again by Lemma 3.5(b), the existence of
a g-deranged orbit for the action of G on V . As this is not the case by our assumptions,
in view of Theorem 2.4(d) we can hence conclude that k is a {2,3}-element of K (so the
order of g is divisible by 2 or 3) and that k lies either in O{2,3,5}(G) or in O{2,3,7}(G). It is
then clear that g lies in Op′pp′(G) unless p is either 5 or 7, and the proof is complete. �

4. Proof of Theorem A

We are ready to prove Theorem A, which was stated in Section 1. The argument
is essentially the same as in [4, Theorem A], but of course here we will be using
Theorem 3.6 instead of [4, Theorem C].

Proof of Theorem A. Assume that either p > 7, or p > 3 with the order of g coprime to
6, and observe that the hypotheses of the theorem are inherited by the element gΦ(G)
of the factor group G/Φ(G) (whereΦ(G) denotes the Frattini subgroup of G). In view
of this fact, it will be enough to prove Theorem A in the case when Φ(G) = 1; this
extra assumption ensures that F := F(G) is a completely reducible G-module (possibly
in ‘mixed characteristic’).

Let V be a minimal normal subgroup of G. Then V̂ = Irr(V) = IBrp(V) (recall that
p does not divide |V |) is a faithful irreducible G/CG(V) module. Take µ ∈ V̂ and let
φ ∈ IBrp(G) lying over µ. By Clifford correspondence (see for instance [8, (8.9)]), φ is
induced by an irreducible Brauer character of IG(µ) and therefore it vanishes on every
p-regular element of G not belonging to the set S =

⋃
x∈G IG(µx). Since the Brauer

character φ does not vanish on g, we get g ∈ S and hence we conclude that there
are no gCG(V)-deranged orbits for the action of G/CG(V) on V̂ . We can now apply
Theorem 3.6, getting that gCG(V) lies in Op′pp′(G/CG(V)).

Writing F = V1 × · · · × Vn, where the Vi are minimal normal subgroups of G, and
observing that F =

⋂n
i=1 CG(Vi), the result now follows because G/F can be regarded

as a subgroup of G/CG(V1) × · · · × G/CG(Vn); hence, gF lies in Op′pp′(G/F), and
finally g lies in Op′pp′(G) because p does not divide the order of F. �
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5. Examples

In order to round out our understanding of the subject, we devote the last section to
some examples. The first of them shows that Theorem A is somewhat ‘optimal’.

Example 5.1. Let G = AΓ(27) be the affine semilinear group on GF(27). Then, for
p = 127, Op(G) = 1 and the p-Brauer character table of G contains no zeros. In
particular, every element of order 7 of G is a p-nonvanishing element of G not
belonging to Op′p(G).

Next, we see that Theorem 3.6 is false in general when p ∈ {5, 7} and the order of g
is not coprime with 6.

Example 5.2. Let H = Γ(24), acting on its natural module W = GF(24)+, and let K be
a subgroup of Sym(5) with K ' D10. Consider G = H o K acting on the irreducible
module V =

⊕5
i=1 Wi, where |Wi| = |W | = 24 for i ∈ Σ = {1, . . . , 5}. Let g be an

involution of K, let v =
∑5

i=1 wi ∈ V (where wi ∈ Wi), and set Iv = {i | wi , 0} ∈ P(Σ).
Now, as g is in the stabilizer of a K-conjugate of Iv, taking into account that H is
transitive on W\{0}, it is not hard to see that g centralizes a G-conjugate of v. Thus,
there are no g-deranged orbits under the action of G on V and, for p = 5, g is a p-
regular element not lying in Op′pp′(G).

A similar example can be made for p = 7, with the element g having order 3.
Let H = Γ(23) act on its natural module W of order 23, and let K = AΓ(23) act

naturally on eight elements. Consider the corresponding action of G = H o K on V with
|V | = 224. If g is an element of order 3 of K, then there are no g-deranged orbits under
the action of G on V and, for p = 7, g is a p-regular element not lying in Op′pp′(G).
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46100 Burjassot, València, Spain
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