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Abstract

The ‘square peg problem’ or ‘inscribed square problem’ of Toeplitz asks if every simple closed
curve in the plane inscribes a (nondegenerate) square, in the sense that all four vertices of that
square lie on the curve. By a variety of arguments of a ‘homological’ nature, it is known that the
answer to this question is positive if the curve is sufficiently regular. The regularity hypotheses are
needed to rule out the possibility of arbitrarily small squares that are inscribed or almost inscribed
on the curve; because of this, these arguments do not appear to be robust enough to handle arbitrarily
rough curves. In this paper, we augment the homological approach by introducing certain integrals
associated to the curve. This approach is able to give positive answers to the square peg problem in
some new cases, for instance if the curve is the union of two Lipschitz graphs f, g : [t, ;] = R
that agree at the endpoints, and whose Lipschitz constants are strictly less than one. We also present
some simpler variants of the square problem which seem particularly amenable to this integration
approach, including a periodic version of the problem that is not subject to the problem of arbitrarily
small squares (and remains open even for regular curves), as well as an almost purely combinatorial
conjecture regarding the sign patterns of sums y; + y, + y; for y;, y», y; ranging in finite sets of
real numbers.

2010 Mathematics Subject Classification: S5N45

1. Introduction

A subset I of the plane R? is said to inscribe a square if it contains the four
vertices of a square of positive sidelength. Note that despite the terminology, we
do not require the solid square with these four vertices to lie in the region enclosed
by I' (in the case that I" is a closed curve); see Figure 1.
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Figure 1. A (simple, closed, polygonal) curve inscribing a square.

The following conjecture of Toeplitz [26] is usually referred to as the Square
Peg Problem or Inscribed Square Problem:

CONJECTURE 1.1 (Square peg problem). [26] Let y : R/LZ — R? be a simple
closed curve. Then y (R/LZ) inscribes a square.

In this paper, a curve y : I — M denotes a continuous map from a domain /
that is either an interval [#, #,] or a circle R/LZ to a manifold M, with the curve
being called closed in the latter case. Such a curve is called simple if y is injective.

A recent survey on this problem, together with an extensive list of further
references may be found in [16]; the brief summary below is drawn from that
survey.

Thanks to arguments of a homological nature, the above conjecture is known
assuming that the curve y is sufficiently regular. For instance:

e Toeplitz [26] claimed Conjecture 1.1 for convex curves, but did not publish a
proof. This case was partially resolved by Emch [4, 5] and then fully resolved
in [3, 28]; this case can also be deduced from the ‘table theorem’ of Fenn [7];

e Hebbert [10] gave a proof of Conjecture 1.1 for quadrilaterals. A proof of
Conjecture 1.1 for arbitrary polygons was given in [18]; see also [21, 22] for
some further ‘discretizations’ of the conjecture. See [19] for some computer-
assisted quantitative bounds on one such discretization;

e Emch [6] established Conjecture 1.1 for piecewise analytic curves. An alternate
proof of the analytic case was obtained by Jerrard [11];
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e Schnirelman [23] (see also [8]) established Conjecture 1.1 for continuously
twice differentiable curves (and in fact was also able to treat some curves
outside this class). An alternate argument treating continuously twice
differentiable curves (obeying an additional technical geometric condition)
was obtained by Makeev [14];

e Nielsen and Wright [17] established Conjecture 1.1 for curves symmetric
around a line or point;

e Stromquist [25] established Conjecture 1.1 for locally monotone curves. An
alternate treatment of this case was given in [27];

e Cantarella et al. [2] established Conjecture 1.1 for C' curves, and also for
bounded curvature curves without cusps;

e Matschke [15] established Conjecture 1.1 for an open dense class of curves
(namely, curves that did not contain small trapezoids of a certain form), as well
as curves that were contained in annuli in which the ratio between the outer
and inner radius is at most 1 + +/2, and which had nontrivial winding number
around the centre of the annulus.

One can broadly classify the methods of proof in the above positive results as
being ‘homological’ in nature, in that they use algebraic topology tools such as
the intersection product in homology, bordism, equivariant obstruction theory, or
more elementary parity arguments counting the number of intersections between
curves. In fact, many of these proofs establish the stronger claim that (under some
suitable genericity and regularity hypotheses) there are an odd number of squares
with vertices lying on the curve.

It is tempting to attack the general case of Conjecture 1.1 by approximating
the curve y by a curve in one of the above classes, applying an existing result to
produce squares with vertices on the approximating curve, and then taking limits
somehow (for example, by a compactness argument). However, in the absence of
some additional regularity hypotheses on the curve, it could conceivably happen
that the approximating inscribed squares degenerate to a point in the limit. Even if
the original curve is smooth except for a single singular point, one could imagine
that all squares in the approximating curves concentrate into that singular point in
the limit. This scenario of squares degenerating to a point is the primary reason
for the inability to remove the regularity hypotheses in the known positive results
on the problem.

In this paper, we propose to modify the homological approach to the inscribed
square problem, by focusing not only on the parity of intersections between
various geometric objects associated to the curve y, but also on bounding certain
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integrals associated to these curves. As with previous works, one requires a certain
amount of regularity (such as rectifiability, Lipschitz continuity, or piecewise
linearity) on the curves in order to initially define these integrals; but the integrals
enjoy more stability properties under limits than intersection numbers, and thus
may offer a route to establish more cases of Conjecture 1.1. As an instance of
this, we give the following positive result towards this conjecture, which appears
to be new. For any / C R and any function f : I — R, we define the graph
Graph, : I — R? to be the function Graph,(t) := (¢, f(z)), so in particular
Graph(I) C R? is the set

Graph(I) == {(t, f(t)) : 1 € I}.

Such a function f is said to be C-Lipschitz for a given C > 0 if one has
|f(Gs) — f(@®)] < Cls —t| forall s, ¢t € I. Similarly if f is defined on a circle
R/ LZ rather than an interval / (using the usual Riemannian metric on R/LZ).

THEOREM 1.2 (The case of small Lipschitz constant). Let [ty, t;] be an interval,
andlet f, g : [ty, 1] = R be (1 — ¢)-Lipschitz functions for some ¢ > 0. Suppose
also that f(t)) = g(ty), f(t)) = g(t)), and f(t) < g(t) forallty <t < t|. Then
the set

Graph,([t, #]) U Graph,([f, #i]) (1.1)

inscribes a square.

In other words, Conjecture 1.1 holds for curves that traverse two Lipschitz
graphs, as long as the Lipschitz constants are strictly less than one. The
condition of having Lipschitz constant less than one is superficially similar to
the property of being locally monotone, as considered in the references [25, 27]
above; however, due to a potentially unbounded amount of oscillation at the
endpoints Graph ;(fy)) = Graph,(f) and Graph,(f;) = Graph,(f), the sets
in Theorem 1.2 are not necessarily locally monotone at the endpoints, and so
the results in [25, 27] do not directly imply Theorem 1.2. Similarly for the other
existing positive results on the square peg problem.

We prove Theorem 1.2 in Section 3. A key concept in the proof will be the
notion of the (signed) area fy y dx under a rectifiable curve y; see Definition 3.2.
This area can be used to construct a ‘conserved integral of motion’ when
one traverses the vertices of a continuous family of squares; see Lemma 3.5.
Theorem 1.2 will then follow by applying the contraction mapping theorem to
create such a continuous family of squares to which the conservation law can be
applied, and then invoking the Jordan curve theorem to obtain a contradiction.
The hypothesis of f, g having Lipschitz constant less than one is crucially used
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to ensure that the curve that one is applying the Jordan curve theorem to is simple;
see Proposition 3.8.

Since the initial release of this paper, we have learnt that a very similar
method was introduced by Karasev [12] to obtain a partial result on the related
problem of Makeev [14] of inscribing a given cyclic quadrilateral in a simple
smooth closed curve, and indeed the proof of Theorem 1.2 can be generalized
to handle inscribing an equiangular trapezoid if the Lipschitz constants are small
enough; see Remark 3.10. We thank Benjamin Matschke for this reference and
observation.

Without the hypothesis of small Lipschitz constant, the Jordan curve theorem
is no longer available, and we do not know how to adapt the argument to prove
Conjecture 1.1 in full generality. However, in later sections of the paper we
present some related variants of Conjecture 1.1 which seem easier to attack by
this method, including a periodic version (Conjecture 4.1), an area inequality
version (Conjecture 5.6), and a combinatorial version (Conjecture 6.8). In contrast
to the original square problem, the periodic version remains open even when the
curves are piecewise linear (and this case seems to contain most of the essential
difficulties of the problem). Conjecture 5.6 is the strongest of the new conjectures
in this paper, implying all the other conjectures stated here except for the original
Conjecture 1.1 (although it would imply some new cases of that conjecture).
Conjecture 6.8 is a simplified version of Conjecture 5.6 that is an almost purely
combinatorial claim regarding the sign patterns of triple sums y; + y, + y3
of numbers y;, y,, y3 drawn from finite sets of real numbers. It seems to be
a particularly tractable ‘toy model’ for the original problem, though the author
was not able to fully resolve it. The logical chain of dependencies between these
conjectures, as well as some more technical variants of these conjectures that will
be introduced in later sections, is summarized as follows, in which each conjecture
is annotated with a very brief description:

(squal:e peg) (quadri.pa.rlite) (area .ineq4) (combir-latorial)
Conj. 1.1 Conj. 52 <= Conj. 5.6 Conj. 6.8
U 4 U ¢
(special Periodic) (perif)dic) (special area ineq.) (sym. specia}l area ineq.)
Conj. 4.6 <= Conj. 4.1 Conj. 6.1 <<=  Conj.6.2

2. Notation

Given a subset E of a vector space V and a shift iz € V, we define the translates

E+h:={p+h:pekE}
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Given two subsets E, F in a metric space (X, d), we define the distance

dist(E, F):= inf d(p,q).
peE.geF

We use the asymptotic notation X = O(Y) to denote an estimate of the form
|X| < CY for some implied constant C; in many cases we will explicitly allow
the implied constant C to depend on some of the ambient parameters. If n is an
asymptotic parameter going to infinity, we use X = o(Y) to denote an estimate
of the form |X| < c(n)Y where c(n) is a quantity depending on n (and possibly
on other ambient parameters) that goes to zero as n — oo (holding all other
parameters fixed).

We will use the language of singular homology (on smooth manifolds) in this
paper, thus for instance a 1-chain in a manifold M is a formal integer linear
combination of curves y : I — M, and a 1-cycle is a 1-chain ¢ whose boundary
do vanishes. Two k-cycles are homologous if they differ by a k-boundary, that is
to say the boundary dU of a k 4 1-cycle. We integrate (continuous) k-forms on
(piecewise smooth) k-chains in the usual fashion, for instance if 0 = ) ., ;¥
is a 1-chain that is an integer linear combination of curves y;, and 6 is a 1-form,
then fg 0= 27:] lof fy{ 6. See for instance [9] for the formal definitions of these
concepts and their basic properties. We will not use particularly advanced facts
from singular homology; perhaps the most important fact we will use is the claim
that if two (piecewise linear) cycles y,, y» in an oriented manifold are homologous
and intersect a smooth oriented submanifold V (without boundary) transversely,
then their intersections y; N V, y» N V are homologous cycles in V. Indeed, if
y, and y, differ by the boundary of some cycle o, then y; NV and y, N V differ
by the boundary of o N V (viewed as a cycle with an appropriate orientation);
alternatively, one may use Poincaré duality and the theory of the cup product.

3. Proof of positive result

We now prove Theorem 1.2. It will be convenient to give a name to the space
of all squares.

DEFINITION 3.1 (Squares). We define Squares C (R?)* to be the set of all
quadruples of vertices of squares in R? traversed in anticlockwise order; more
explicitly, we have

Squares = {((x,y), (x +a,y+b),(x +a—Db,y+a+Db),
(x—b,y+a)):x,y,a,beR;(a,b) #(0,0)}

By abuse of notation we refer to elements of Squares as (nondegenerate)
squares. Thus we see that a set I' C R? inscribes a square if and only if I'*
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intersects Squares. We also form the closure

Squares = {((x,y), x +a,y+b), x +a—b,y+a+b),
(x—=b,y+a)):x,y,a,beR}

in which the sidelength of the square is allowed to degenerate to zero; this is a four-
dimensional linear subspace of (R?)*. A quadruple (¥, y», 3, y4) of curves y,
V2, V3, Va : [to, 1] — R? is said to traverse squares if one has (y, (1), y»(1), y3(1),
y4(t)) € Squares for all ¢ € [#, t]; note that we allow the square traversed to
degenerate to a point. Equivalently, (y1, 2, ¥3, y4) traverses squares if and only if
there exist continuous functions x, y, a, b : [ty, t;] — R? such that

Y1 (1) = (x(@), y(1))

Y2(t) = (x(t) + a(), y(t) + b(1))

y3(t) = (x(t) +a(t) — b(1), y() + a(t) + b(1))

va(t) = (x(@) — b(1), y(t) + a(?)).

We will also need the notion of the area under a (rectifiable) curve. Recall that
acurve y : [fy, ;] — R? is rectifiable if the sums Z::OI |y (six1) — y(s;)| are
bounded for all partitions fp = 5o < 51 < -+ - < 5, = t;. I[f we write y(¢) = (x(2),
y(t)), this is equivalent to requiring that the functions x, y : [fo, ;] — R? are of
bounded variation.

DEFINITION 3.2 (Area under a curve). Let y : [fo, ;] — R? be a rectifiable
curve, and write y (t) = (x(¢), y(¢)) fort € [ty, t;]. The area under y, denoted by
fy vy dx, is defined to be the real number

/ydx = /ll y(t)dx(t)
Y fo

where the integral on the right-hand side is in the Riemann—Stieltjes sense, that is
to say the limit of Z;’:—Ol () (x(si41) — x(s;)) for any partition fp = 59 < -+ <
s, =t and s; <57 < 541 @S MaXogi<q—1 |Si41 — Si| goes to zero.

Of course, if y is piecewise smooth, this definition of fy vy dx agrees with the

usual definition of fy y dx as the integral of the 1-form y dx on y (now viewed as
a 1-chain).

EXAMPLE 3.3. If f : [ty, t;] — R is continuous of bounded variation, then the
area under the curve Graph/ is just the usual Riemann integral:

n
/ ydx:/ f@)dte.
Graphy fo
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x

Figure 2. The area under the spiral (with the anticlockwise orientation) is equal
to |[A] — |B| — 2|C| — 3|D|, where |A]| is the area of the region A, and similarly
for |B|, |C|, | D|; the weights +1, —1, —2, —3 attached to A, B, C, D here are
the winding numbers of the spiral together with the horizontal and vertical line
segments used to close up the curve.

In particular, if f is positive, fGraphf ydx is the area of the region bounded by

Graphy, the real axis, and the vertical lines {#, #;} x R. If y is not a graph, the
area under y is more complicated; see Figure 2.

It will be particularly important to understand the area under a closed curve:
LEMMA 3.4. Let y : [ty, t;] — R? be a simple closed anticlockwise rectifiable
curve, and let 2 be the bounded open region enclosed by this curve as per the
Jordan curve theorem. Then the area under the curve y is equal to the negative of
the Lebesgue measure |S2| of §2. In particular, this area is nonzero.

Of course, if ¥ were clockwise instead of anticlockwise, then the negative sign
in the above lemma would be removed; however, it would still be true that the

area under this curve is nonzero.

Proof. In the case that y is a polygonal path, this claim is clear from Stokes’

theorem:
/ydx:/ ydx:—/ dx Ndy. 3.1
¥ a2 2
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Now we consider the general case. The strategy is to approximate y by a
polygonal path, apply (3.1), and take limits; but (as with the proof of the Jordan
curve theorem) some care must be taken with the limiting argument.

We can normalize [fy, t;] = [0, 1]. Let &, > 0 be a small parameter (which will
eventually be sent to zero). By continuity of y, there exists 0 < &, < &y such
that |y () — y(t')| < & whenever t mod 1 and ¢ mod 1 are separated by distance
at least &; on the unit circle R/Z. By a further application of continuity and the
hypothesis that y is simple, there exists 0 < &, < ¢ such that |y (t) — y ()| > &,
whenever  mod 1 and ' mod 1 are separated by distance at least &; on the unit
circle R/Z. Now let n be a natural number, that we assume to be sufficiently large
depending on vy, g, &1, &. Let y, : [0, 1] — R? be the piecewise polygonal path
formed by joining up the points y,(j/n) := y(j/n) for j = 0,...,n by line

segments, thus
j+o j j+1
S RERORICS
n n n

for j =0,...,n—1and 0 < 6 < 1. As y is uniformly continuous, we see for n
large enough that

lya(t) — y ()] < % 3.2)

for all ¢ € [0, 1]. Also, it is clear that the length of y, is bounded by the length of
the rectifiable curve y.

The path y, is closed, but it need not be simple. However, from (3.2), the
triangle inequality, and the construction of &,, we see that a collision y,, () = v, (¢’)
can only occur if # mod 1 and #' mod 1 differ by at most &; in the unit circle. In
such a case, y, can be viewed as the sum (in the sense of 1-cycles) of two closed
polygonal paths, one of which has diameter at most &,. Deleting the latter path
and iterating, we conclude that y, can be viewed as the sum of a simple closed

polygonal path y° and a finite number of closed polygonal paths y,!, ..., y* of
diameter at most &y; furthermore, the total lengths of y,?, ynl, R y,f sum up to at
most the length of y, and from (3.2) we see that the curves !, ..., y* lie within

the 2¢¢-neighbourhood of y.

If &y is small enough, we can find a point z in £2 that is at a distance at least 10g,
from y. The winding number of y around z is equal to 1. By Rouche’s theorem,
the winding number of y, around z is then also equal to 1, while the winding
numbers of !, ..., yf around z are equal to 0. Thus the winding number of
y? around z is equal to 1; thus y” has an anticlockwise orientation, and z lies
in the region £2, enclosed by . This argument also shows that the symmetric
difference 2 A2, between £2 and £2, lies in the gy-neighbourhood of y. As y is
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rectifiable, this implies that
182, = 182] + O(eo)

where the implied constant in the O () notation depends on the length of . On
the other hand, from (3.1) one has

/Oydx = —[82,|.
Y

n

Foreachi =1, ..., k, we see that

/_ ydx = /_(y — ¥y dx = O(eol(y,))
Y a

i
n

where y; is the y-coordinate of an arbitrary point in y/, and £(y,) denotes the
length of /. Summing, we conclude that

k
Z/yw=0@y
i=1 7%

Finally, for n sufficiently large, we have from the rectifiability of y that

/ydx:/ydx+0(80).
Yn Y

Putting all these bounds together, we conclude that
/ydx = —|82| + O(eo);
Y

since € > 0 can be made arbitrarily small, the claim follows. O
The relevance of this area concept to the square peg problem lies in the

following simple identity.

LEMMA 3.5 (Conserved integral of motion for squares). Let

Vi, V2, V3, Va - [lo, 1] — R?

be rectifiable curves such that (yy, ya, V3, Ya) traverses squares (as defined in
Definition 3.1). Then we have the identity

n)? — b(1y)? 10)* — b(tp)>
/ydx_/ydx+/ydx—/ydx="(l) (1) alty)® — blt)
Y1 2 V3 Va

2 2 ’
3.3)
where the functions x, y,a, b : [ty, t;] — R are as in Definition 3.1.

https://doi.org/10.1017/fms.2017.23 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2017.23

Integration approach to square peg problem 11

Proof. From Definitions 3.1 and 3.2 we have

/ydx:/ly(t)dx(t)
Y1 fo

/ydx=f (y(@®) + b(1)) (dx(1) + da(1))

V2 fo

/ydx =/l(y(t)+a(t)+b(t)) (dx(t) +da(t) — db(1))
V3 fo

/ydx=/ (@) +a(?)) (dx(t) — db(1));
Y4 ]

note from the rectifiability of yy, y», 3, ¥4 that x, y, x +a, y + b (and hence a, b)
are of bounded variation. After some cancelling, we may then write the left-hand
side of (3.3) as

n It

f a(t)da(t) —/ b(t) db(t).
) to

Since a, b are Lipschitz continuous, one has a(s’)(a(s’) — a(s)) = %a(s/)2 —

ta(s)> + O(|s — s'|) for any s, 5’ € [1o, 1;], which easily implies that

A 1, 1,
/ a(t)da(t) = 74 () — 74 (to);

to

similarly we have

f 1, 1,
/ b(t)db(t) = Zb7(1r) — 5b°(t).

fo

and the claim follows. O

REMARK 3.6. Geometrically, this conserved integral reflects the following
elementary fact: if a square with vertices p;, p,, p3, p4 (traversed in anticlockwise
order) and sidelength [ is deformed to a nearby square with vertices p, + dp,
P2 + dpa, ps + dps, ps + dpy and sidelength [ + dI, then the difference of
the areas of the two quadrilaterals with vertices p;, p; + dpi1, ps + dps, p4 and
P2, P2 + dpa, p3 + dps, ps respectively add up to exactly half the difference
between the areas [2, (I + dI)? of the two squares (see Figure 3).

REMARK 3.7. One can interpret Lemma 3.5 in the language of differential forms
as follows. For i = 1,2,3,4, let m; : Squares — R? be the ith coordinate
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P4 P3

D1 REERRR rrrmm

p1+dp

Figure 3. The difference in areas between the shaded regions is half the difference
in areas between the squares. Taking ‘Riemann sums’ of this fact will yield
Lemma 3.5.

projection, then we can pull back the 1-form y dx on R? by 7; to create a 1-form
77 (y dx) on the 4-manifold Squares. Then the identity (3.3) may be rewritten
as

m(ydx) — ) (ydx) + ni(ydx) —mj(ydx) = d¢
where ¢ : Squares — R is the O-form that takes a square
((x,y),(x+a,y+b),(x+a—b,y+a+b),(x—b,y+a))

to the quantity (a* — b?)/2, and d denotes the exterior derivative. In particular,
the 1-form 7§ (y dx) — m; (y dx) + 7f(y dx) — w;(y dx) is exact.

Now we prove Theorem 1.2. Let [#, #;], f, g, ¢ be as in that theorem. It is
convenient to extend the functions f, g : [to, fo] — R by constants to the whole

real line R to form extended functions f, g : R — R. That is to say, we define
f@) =8 = f@) =g) fort > 1, f(1) = g@t) := [f(to) = g(to) for all
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t < ty, and f(t) = f(¢t) and g(t) := g(¢) forty < t < t;. Clearly f, g:R—-R
continue to be (1 — ¢)-Lipschitz and of bounded variation.
For any ¢t € R, the map

(a,b)y > (gt —b)— f@), ft +a)— f() (3.4)

is a strict contraction on R? (with the usual Euclidean metric) with contraction
constant at most 1 — ¢. Hence, by the contraction mapping theorem (or Banach
fixed point theorem) applied to the complete metric space R?, there is a unique
solution (a(t), b(t)) € R? to the fixed point equation

at), b)) = (3t — b(0) — f(), ft +a@®) — £(1)); (3.5)

furthermore, a(t) and b(¢) depend in a Lipschitz fashion on ¢ (the Lipschitz
constant can be as large as O (1/¢), but this will not concern us). If we then define
(similar curves also appear in the arguments of Jerrard [11]) the functions y,, >,
V3, Va . [to, f]] —> Rz by

n@) = (@, f(1) (3.6)
ya(t) = (t +a(t), f(t) + b(t)) 3.7)
ya(t) = (t +a(t) — b@t), f(t) +a(t) + b(t)) 3.8)
ya(t) = (t = b(t), f(t) +a(t)) 3.9)

for all + € R, then (y, y2, ¥3, v4) is a quadruple of Lipschitz (and thus locally
rectifiable) curves that traverse squares. From (3.5)—(3.7), (3.9) we have

y1(t) = Graph(r) (3.10)
y2(t) = Graph(t + a(1)) (3.11)
ya(t) = Graphg(t — b(t)) (3.12)

for all € R. In particular, yy, y», y4 take values in Graphf(R), Graphf-(R), and
Graphg(R) respectively; see Figure 4. As for y;, we can use the hypothesis of
small Lipschitz constant to establish the following key fact:

PROPOSITION 3.8. The curve y; : [ty, t;] — R? is simple.

Proof. Suppose for contradiction that ¢, t" € [to, #;] are distinct points such that
y3(t) = y;3(t’). Then if one rotates the curve Graph 7 clockwise by /2 around
y3(t) = y3(t'), the rotated curve will intersect Graph; at the two distinct points
15 (1) and y,(t") (see Figure 4). As g is 1 — e-Lipschitz, we conclude that the line
segment connecting these two points has slope of magnitude at most 1 — ¢ with
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Graph,

%..

Figure 4. Portions of the curves yi, y», y3, 4, Graphy, and Graph,. (In some
cases, ¥, s, ¥4 may lie on the enlargements Graphy, Graph; of Graphy,
Graph,, which are not shown here.)

respect to the x-axis; as f is also 1 — e-Lipschitz, we similarly conclude that the
same line segment has slope of magnitude at most 1 — ¢ with respect to the y-axis.
The two claims are inconsistent, giving the required contradiction. O

When t = 1, or t = t;, we have (a(t), b(t)) = (0, 0) as the unique fixed point
of (3.5). Applying Lemma 3.5, we conclude the identity

/ydx—/ydx—i—/ydx—/ydxzo. (3.13)
4! Y2 V3 V4

By (3.10) and Example 3.3 we have

/ ydx :/” f(@)dt. (3.14)
Y1 4]

From (3.11) and a change of variables (this change of variables is easy to justify
if the map ¢t +— t + a(t) is piecewise linear, and the general case follows
by an approximation argument (noting that all functions involved are Lipschitz
continuous)) 7 := t + a(z) we also have

/ydx =/” f(@)dt; (3.15)
V2 4]

note that ¢+ + a(#) may be temporarily decreasing instead of increasing as ¢
increases from #, to f;, but the net contributions of such excursions cancel out
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(by the fundamental theorem of calculus, or equivalently because 1-forms on a
line are automatically exact). Similarly, from (3.12) and the change of variables

f:=1t — b(t) we have
Al
/ ydx = / g(t)dt. (3.16)
Y4 fo

Thus from (3.13) we must have

1
/ydx:/ g(t)dt
V3 4]

/ ydx =0
y3+(—Graph,)

where y3 + (—Graph,) denotes the concatenation of y3; with the reversal of the
graph Graph,. This is a closed curve, hence by Lemma 3.4 this curve cannot
be simple. Since y; and Graph, are separately simple (the former thanks to
Proposition 3.8), we conclude that there exists t, < ¢, ¢ < t; such that

or equivalently

y3(t) = Graph,(t).

In particular, y;(2), y2(¢), y3(t), ya(¢) all lie in the set Graph ; U Graph;. Since
g > f(t), we see from (3.5) that a(¢) and b(¢) cannot both vanish; thus (y; (¢),
12(1), v3(t), y4(¢)) lie in Squares. Now we claim that all four vertices of this
square in fact lie in the set (1.1). Indeed, suppose for contradiction that one of
the vertices, call it v, was outside of (1.1), then it lies on the ray {(¢, (%)) :
t < fo} or on the ray {(#, f(#1)) : ¢ > t;}. But in either case, the set Graph; U
Graphg\{v} is contained in the open double sector v + {(x, y) : |y| < |x[}, and
hence Graph ; U Graph; cannot inscribe any square containing v as a vertex (as
one cannot subtend a right angle at v). This implies that the set (1.1) inscribes a
square as required, and Theorem 1.2 follows.

REMARK 3.9. Itis instructive to compare the above argument with the following
homological argument, which requires additional regularity hypotheses on f,
g at the boundary points #j, t;. Namely, suppose in addition to the hypotheses
of Theorem 1.2 that f, g are differentiable at fy, #; with g'(t;) > f’(¢) and
g'(ty) < f'(t1); this corresponds the curve (1.1) being ‘locally monotone’ in
the sense of [25] or [27], even at the endpoints Graph (7)) = Graph,(f) and
Graph,(f;) = Graph,(#). A local analysis then reveals that the curve 7 > (1)
defined above lies in the interior of (1.1) for ¢ close to ty, and in the exterior of
(1.1) for ¢ close to f;, and so it must cross (1.1) at some point; indeed, if all
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intersections were transversal, then it must cross this curve an odd number of
times. (Actually, it is not difficult to use the Lipschitz hypotheses to show that
this curve can only cross Graph, and not Graphy.) In contrast, the integral
argument based on the conserved integral (3.3) does not give any information
on the parity of crossings (indeed, if f, g are not differentiable at the endpoints,
one could conceivably have an infinite number of transverse crossings near the
endpoints Graph,(fy)) = Graph,(t) and Graph,(¢;) = Graph,()), but do
not require the functions f, g to be so regular at the endpoints 7y, ¢, that a local
analysis is possible there.

REMARK 3.10. The following observations are due to Benjamin Matschke
(private communication). The above arguments can be generalized to show that
for any fixed s,r > 0, and with f, g as in Theorem 1.2 but with the Lipschitz
constant 1 — ¢ replaced by tan(«/2) — ¢ with @ := arctan(r/s) € (0, ], the set
Graph, U Graph, inscribes a quadruple similar to the equilateral trapezoid

0,0,1,0),+1,7r),(=s,71)
or equivalently a quadruple of the form
x,y),x+a,y+b),x+ 6+ Da—rb,y+ (s+ 1)b+ra),
x+(=s)a—rb,y+ (—s)b+ra).
Theorem 1.2 corresponds to the endpoint case s = 0, r = 1 of this more general

claim. Indeed, by repeating the above arguments one can find Lipschitz curves
Yis Yas V3 Va © [fo, 1] = R? of the form

N = @ f0)
ya(0) = (t +a(t), (1) +b(1))
ys(t) = (t + (s + Da(t) —rb(t), y + (s + Db(1) + ra(?))
va(t) = (t + (=s)a(t) —rb(t), y + (=5)b(t) +ra(t))
for some Lipschitz functions a, b, f . [to, ;] — R obeying (3.10)—(3.12), then

one can again verify that y; is simple, and a variant of the calculation used to
prove Lemma 3.5 establishes the identity

(2s+1)/ydx—(2s+1)/ydx+/ydx—/ydx
Y1 Y2 Y3 Y4

r(2s +1)
= T((a(h)2 — b(1)*) — (alty)® — b(1)*))
and one can then conclude the claim by repeating the remaining arguments of this
section; we leave the details to the interested reader. On the other hand, when
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the equilateral trapezoid is not a rectangle or square, the known homological
arguments do not seem to force the existence of an inscribed copy of the trapezoid
even when the curve is smooth, because there are no symmetry reductions
available to make the number of inscribed copies odd rather than even.

4. Periodic variants of the square peg problem

We now discuss periodic versions of the square peg problem, in which the plane
IR? is replaced by the cylinder

Cyl; = R/LZ) x R

for some fixed period (one could easily normalize L to be 1 if desired, but we will
find it convenient to allow L to be a parameter at our disposal) L > 0. There is an
obvious projection map 7, : R? — Cy1, from the plane to the cylinder, which
induces a projection 7* : (R?)* — Cy1%; we let Squares; and Squares;
be the images of Squares and Squares under this latter projection. More
explicitly, we have

Squares; = {((x,y),x +a,y+b),(x+a—b,y+a+Db),
(x—b,y+a)):xeR/LZ;y,a,beR;(a,b) # (0,0)}

and

Squares; = {((x,y),x4+a,y+b),(x+a—b,y+a+Db),
(x—b,y+a):xeR/LZ;y,a,beR},

where we define the sum x 4 a of an element x € R/LZ and a real number a € R
in the obvious fashion. Again note that Squares, is an oriented 4-manifold in
Cyl}. As before, a subset I' of Cy1, is said to inscribe a square if I'* intersects
Squares;. We give Cy1; and Cy1] the usual flat Riemannian metric, which is
then inherited by Squares; and Squares;.

We have a standard closed curve Graph,; : R/LZ — Cy1l; in Cyl, defined
by

Graphy,, (1) = (1, 0);

one can think of Graphy; homologically as a 1-cycle generating the first
homology of Cyl;. Any other closed curve y : R/LZ — Cyl; will be
homologous to Graph, ; if and only if it takes the form

y(tmod L) = 7, (y (1))
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for some continuous lift y : R — R? of y that is LZ-equivariant in the sense that

7@ +L)=7)+ (L,0) 4.1)

forall t € R.

Amongst all the curves y in Cy1;, we isolate the polygonal curves, in which
y is piecewise linear (possibly after reparameterization), that is to say y is the
concatenation of finitely many line segments in Cy1; .

We now introduce the following variant of Conjecture 1.1.

CONIJECTURE 4.1 (Periodic square peg problem). Let L > 0, and let 0y, 0, :
R/LZ — Cyl, be simple curves in Cyl; homologous to Graphy ;. Suppose
also that the sets oy(R/LZ) and o,(R/LZ) are disjoint. Then oy(R/LZ) U
0,(R/L7Z) inscribes a square.

In contrast to Conjecture 1.1, we do not know the answer to Conjecture 4.1
even when oy, 0, are smooth or piecewise polygonal (and we in fact suspect
that resolving this case would soon resolve Conjecture 4.1 in full generality,
in analogy to Corollary 5.5 below). This is because the intersection numbers
produced by homological arguments become even in the periodic setting, rather
than odd. Of course, by rescaling we could normalize L = 1 without loss of
generality in Conjecture 4.1 if desired, but we find it preferable to not enforce this
normalization.

We are able to relate Conjecture 1.1 to a special case of Conjecture 4.1. To state
this special case, we need a further definition:

DEFINITION 4.2 (Infinitesimally inscribed squares). Let L > 0. A closed subset
I' of Cy1, is said to inscribe infinitesimal squares if there exists a sequence of
squares

Sn = ((xns yn)7 (xn +ana Yn +bn)a (X,, +an _bna Yn +an +bn)a (xn _bna Yn +6l,1))

“4.2)
in Squares; converging to a degenerate square ((x, y), (x, y), (x, y), (x, y))
for some (x, y) € I', such that

dist(S,, I') = o(la,| + |ba])
asn — oo.

Note that the property of infinitesimally inscribing squares is a purely local
property: to show that a set I” does not infinitesimally inscribe squares, it suffices
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to show that for every p € I, there is a set I, that agrees with I" in a
neighbourhood of p that does not infinitesimally inscribe squares.

We now give two examples of sets with the property of not inscribing
infinitesimal squares.

LEMMA 4.3. Let fi,..., fi : R/LZ — R be C-Lipschitz functions for some
C < tan (37/8) = 1++~/2, such that the graphs Graph,(R/LZ) fori=1,...,k
are all disjoint. Then the set Uf;l Graph (R/LZ) does not inscribe infinitesimal
squares.

Proof. By the local nature of infinitesimally inscribing squares, it suffices to show
that each Graph ; (R/LZ) does not infinitesimally inscribe squares. Suppose for
contradiction that there was some i = 1, ..., k and a sequence of squares (4.2)
with (x,, y,) — (x,y) € Graph;(R/LZ), (a,,b,) — (0,0), and all vertices
staying within o(|a,|+1b,|) of Graph (R/LZ). As f; is C-Lipschitz continuous,
this implies that the eight points *(a,, b,), £(—b,, a,), £(a, — b,,a, + b,),
+(a, + b,,a, — b,) all lie in the double sector {(¢,u) : |u| < (C + o(1))]t]}.
However, the arguments of these eight points (viewed as complex numbers) form
a coset of the eighth roots of unity, while the double sector omits all the complex
numbers of argument in [377/8, 57/8] if n is large enough; but these two facts are
in contradiction. (|

REMARK 4.4. If one rotates the standard unit square [0, 1]*> by /8, one
obtains a square with the property that all its sides and diagonals have slope
between —tan(37/8) and tan (37/8); in particular, the vertices of this square
can be traversed by the graph of a tan (37 /8)-Lipschitz function. Gluing together
infinitely many rescaled copies of this function, it is not difficult to show that the
condition C < tan (37/8) in Lemma 4.3 cannot be improved.

LEMMA4.5. Let I, ..., I} be disjoint simple polygonal paths in R? (either open
or closed). Then I't U - - - U I}, does not infinitesimally inscribe squares.

Proof. Again it suffices to verify that a single I; does not inscribe squares.
Suppose for contradiction that there was a sequence of squares with vertices (4.2)
with (x,, y,) — (x,y) € I, (a,,b,) — (0,0), and all vertices staying within
o(lay| + 1by]) of I;.

We can translate so that (x, y) = (0, 0). The origin (0, 0) is either a vertex on
the path I; or an interior point of an edge. Suppose first that (0, 0) is an interior
point of an edge, which then lies on some line £. Then for n large enough, all four
vertices (4.2) stay within o(|a,| 4 |b,|) of this line. Applying a suitable translation
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and rescaling, we can then obtain another family of squares of unit length, whose
vertices (4.2) are bounded and stay within o(1) of £. Using compactness to extract
a limit, we obtain a unit square with all four vertices on ¢, which is absurd.

Now suppose that (0, 0) is a vertex of I;, which we may take to be the origin.
This origin is the meeting point of two edges of I; that lie on two distinct lines
£, £, passing through the origin. If (after passing through a subsequence) all four
vertices (4.2) lie within o(|a,| + |b,|) of £;, then by rescaling and taking limits
as before we obtain a unit square with all four vertices on ¢;, which is absurd;
similarly if all four vertices lie within o(|a,| + |b,|) of £,. Thus we must have at
least one vertex within o(|a,| + |b,|) of £, and another within o(|a,| + |b,|) of £,,
which forces the entire square to lie within O (|a,|+ |b,|) of the origin. Rescaling
and taking limits again, we now obtain a unit square with all four vertices on the
union £; U £, of the two intersecting lines £, £,, which is again absurd regardless
of what angle ¢, and ¢, make with each other. O

For an example of a curve that does infinitesimally inscribe squares, one can
consider any curve that has the local behaviour of a cusp such as {(¢>, £*) : t € R}.
We now isolate a special case of Conjecture 4.1:

CONIJECTURE 4.6 (Periodic square peg problem, special case). Conjecture 4.1
is true under the additional hypothesis that o(R/LZ) U 0,(R/LZ) does not
inscribe infinitesimal squares.

The main result of this section is then

PROPOSITION 4.7. Conjecture 1.1 implies Conjecture 4.6. In particular (by
Lemma 4.5), Conjecture 1.1 implies the special case of Conjecture 4.1 when the
curves oy, o, are polygonal paths.

To put it another way, if one wished to disprove Conjecture 1.1, it would suffice
to produce a union o;(R) U 0,(R) of two disjoint periodic curves which did not
inscribe any squares or infinitesimal squares.

Proposition 4.7 is an immediate consequences of the following proposition:

PROPOSITION 4.8 (Transforming periodic sets to bounded sets). Let I be a
compact subset of Cyl; for some L > 0, and let n;l(l“) be its lift to R, For
every large natural number n, let ¢, : R> — R? denote the map (one can view
this map as an approximation to the conformal map 7 +— ntanh(z/n) in the
complex plane, which ‘gently pinches’ the periodic set 7, '(I") to a bounded set in
a manner that almost preserves squares. The use of trigonometric functions here is
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primarily for notational convenience; one could also use other maps than ¢, here
as long as they obeyed the above-mentioned qualitative features of approximate
conformality and mapping periodic sets to bounded sets)

¢p(x,y) = (n tanh )ﬁ, ysech2f> .
n n

Then at least one of the following three statements hold:
(1) I inscribes a square;
(i) I' inscribes infinitesimal squares;

(iii) for sufficiently large n, ¢n(nL_l(1")) U {(—n, 0), (n, 0)} does not inscribe a
square.

Indeed, to establish Conjecture 4.6 assuming Conjecture 1.1, one simply
applies Proposition 4.8 to the set I := o1(R/LZ)Uo,(R/LZ); the conclusion (ii)
is ruled out by hypothesis and the conclusion (iii) is ruled out by Conjecture 1.1,
leaving (i) as the only possible option.

Proof. We will assume that (iii) fails and conclude that either (i) or (ii) holds.

By hypothesis, we can find a sequence of n going to infinity, and a sequence of
squares with vertices (4.2), such that each square (4.2) is inscribed in ¢, (77, ).
The plan is to transform these squares into squares that either converge to a square
inscribed in I", or become an infinitesimal inscribed square in I".

We first rule out a degenerate case when one of the points (—n, 0), (n, 0) is one
of the vertices (4.2). Suppose for instance that (x,, y,) was equal to (#, 0). Since
I is compact, we see that 7z; ' (I") is contained in a strip of the form

{(x,y):y=0D)}.
Using the identity
sech’(x) = 1 — tanh’*(x) = O(1 — |tanh(x)]),

we conclude that ¢, (77, '(I")) is contained in the region

{(x,y):—n<x<n;y=0(1—m)}. “4.3)

n

If (x,, y,) = (n,0) and the remaining three vertices of (4.2) lie in ¢, (7, ),
this forces (—a,, —b,), (—a, + b,, —a, — b,), (b,, —a,) to all have argument
O(1/n) when viewed as complex numbers, which is absurd for n large enough,
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since these arguments differ by 77 /4 or /2. Thus we have (x,, y,) # (n, 0) (after
passing to a subsequence of n if necessary); a similar argument precludes any of
the vertices in (4.2) being equal to (—n, 0) or (n, 0).

At least one of the four vertices in (4.2) must have a y-coordinate of magnitude
at least (|a,| + |b,|)/2, since two of these y-coordinates differ by a, + b, and the
other two differ by a, — b,. Applying (4.3), we conclude that the x-coordinate
of that vertex lies at a distance at least cn|a,| + |b,| from (—n, 0), (n, 0) for
some ¢ > 0 independent of n; by the triangle inequality, we conclude (for n large
enough) that all four vertices have this property. In particular, we have

|an|+|bn|=0<1— 'x”').

n

Observe that in the region (4.3), we may invert ¢, by the formula

n—+x y
n—x 1—x2/n2)"

7 (x,y) = (E log
" ’ 2

On (4.3), we can compute the partial derivatives

1 2x y
1 —x2/n?" n? (1 —x2/n?)?

-1 (1of}
‘l—xz/n2(’ (Z))

i “I( )_<0 ;>
8y¢" Y= "1 —x2/n?

and so by Taylor expansion we see that

ey
a_x(pn x’y)

and

67+ 4 ) = 67 o) + 1
= xi/n

lan| + 1B
O - - -
* <n<1 — /)

(an - bna ay + bn)
1 —x2/n?

(] + 1B
+O <n<1 = x,s/rﬂ))
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(_bm an)
1 —x2/n?

n bl‘l
) |y | + 1Dy .
n(l —x2/n?)

Thus, if we set (¥,, i) := 7.(¢™" (X, ) and (G,, b,) = (@,, b)) /(1 — x2/n?),
we see that a,,, b, = O(1), and the four vertices of the square

¢_1(Xn - b,,, Yn +an) = (P_l(xna yn) +

((inv yn)’ (in + &n’ yn + Bn)’ ()zn +&n - an yn + &n + l;n)s (in - 511’ yn +Zln))
€ Squares;

all lie within O (|G,| + |b,|/n) of I".

By passing to a subsequence, we may assume that (d,, b,) converges to some
pair (a, b), which may possibly be equal to (0, 0). By compactness of I", we
may similarly assume that (X,, y,) converges to a limit (x, y) € I". If (a, b) #
(0, 0), then on taking limits using the closed nature of I we conclude that the
nondegenerate square

((x,y),x+a,y+b),(x+a—-b,y+a+b),(x—>b,y+a)) € Squares,
is inscribed in I, giving (i); if instead (a, b) = (0, 0) then we obtain (ii). ]

REMARK 4.9. In contrast to the smooth cases of Conjecture 1.1, there are no
homological obstructions to establishing a counterexample to Conjecture 4.1.
For instance, when the Lipschitz constants of f, g are strictly less than one, the
arguments of the previous section can be used to produce a quadruplet (yy, 2, ¥,
y4) of rectifiable curves yy, y», v3, ¥4 : R/LZ — Cy1, traversing squares, with
Y1, V2, V4 taking values in Graph(R/LZ), Graph (R/LZ), Graph,(R/LZ)
respectively, and all four curves homologous to the standard 1-cycle Graph .
In particular, y; would (assuming sufficient transversality and regularity) intersect
the graphs Graph(R/LZ) and Graph,(R/LZ) an even number of times per
unit period, rather than an odd number of times. This is of course consistent with
the curve not intersecting these graphs at all. The use of an infinite oscillation to
switch the parity of intersection from odd to even is reminiscent of the ‘Eilenberg—
Mazur swindle’ (see for example [20]).

5. A quadripartite variant

In Conjecture 4.1, the four vertices of the square could be distributed arbitrarily
among the two graphs Graph ;(R/LZ) and Graph,(R/LZ). It seems to be more
natural to force each vertex to lie in just one of the two graphs. To formulate this
more precisely, we introduce a further definition:
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(o (9:+afb,y+a+b)

Figure 5. Four line segments (I, I3, I3, I'y) jointly inscribing a square. The order
(up to cyclic permutation) is important; for instance, in the given picture, the
quadruple (I, Iy, I3, I3) does not jointly inscribe a square.

DEFINITION 5.1 (Jointly inscribing squares). Let L > 0. Let I, I3, I3, I
be four sets in Cy1; (possibly overlapping). We say that the quadruplet (17, I3,
I, Iy) jointly inscribes a square if I'T x I, x I3 x I, intersects Squares;, or
equivalently if there exist x € R/LZ and y, a, b € R such that

(x,y) € I

x+a,y+b)el;

(x+a—-b,y+a+b)el}

(x—b,y+a) e}

See Figure 5.

Note in Definition 5.1 that we now permit the inscribed square to be degenerate.
Conjecture 4.1 would then follow from

CONJECTURE 5.2 (Quadripartite periodic square peg problem). Let L > 0, and
let 01,0, : R/LZ — Cyl; be simple closed curves homologous to Graphy ;.
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Then the quadruplet
(01(R/LZ), 01(R/LZ), 02(R/LZ), 02(R/LZ))
Jjointly inscribes a square.

Indeed, if 01, 0, are as in Conjecture 4.1, we can apply Conjecture 5.2 to obtain
x € R/LZ and y, a, b € R with

(x,y),x+a,y+b) eo(R/LZ)

and (x +a —b,y+a+b),(x —b,y+a) € n(R/LZ). As oy(R/LZ) and
0,(R/L7Z) are assumed disjoint in Conjecture 4.1, we have (a, b) # (0, 0), and
Conjecture 4.1 follows.

We can reverse this implication in some cases:

PROPOSITION 5.3. Conjecture 4.1 implies Conjecture 5.2 in the special case that
0;(R/LZ) does not inscribe squares fori = 1, 2.

Note that the hypothesis that o; (R/LZ) does not inscribe squares is satisfied in
many cases; for instance, by modifying the proof of Lemma 4.3 we see that this
is the case if o; is the graph of a C-Lipschitz function for some C < tan (37/8).

Proof. Let oy, 0, be as in Conjecture 5.2, and assume that o(R/LZ) and
0,(R/LZ) do not separately inscribe squares. Let m be a sufficiently large natural
number, then o;(R/LZ) and 0,(R/LZ) + (0, mL) will be disjoint. Applying
Conjecture 4.1, we may find a square

((x,y),x+a,y+b),(x+a—-b,y+a—+b),(x—b,y+a)) € Squares,
inscribed in oy (R/LZ) U (0, (R/LZ) 4 (0, mL)). In particular, we have
v.y+by+a+b y+aec[-C,ClU[mL—-C,mL+ C]

for some C > 0 independent of m. If m is large enough, this forces the quadruple
(y,y+b,y+a+b,y+ a) to be of the form (O(C), O(C), O(C), O(C)), the
form (mL + O(C),mL + O(C),mL + O(C),mL + O(C)), or some cyclic
permutation of (O (C), O(C), mL+0O(C), mL+O(C)). In the first case, we have
a square inscribed in o7 (R/LZ), and in the second case we have (after translation
by (0, mL)) a square inscribed by 0, (R/LZ); both these cases are ruled out by
hypothesis. Thus, after cyclic permutation, we may assume that

>, y+b,y+a+b,y+a)=(0(C),0C),mL+ O(C),mL+ O(C))
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which implies that the (possibly degenerate) square

((x,y), c+a—mL,y+b),(x+a—b—mL,y+a+Db),
(x —b,y+a—mL)) € Squares,,

is jointly inscribed by (oy(R/LZ), oi(R/LZ), 0,(R/LZ), 0,(R/LZ)), giving
Conjecture 5.2 in this case. O

Because the squares in Definition 5.1 are now permitted to be degenerate,
Conjecture 5.2 enjoys good convergence properties with respect to limits:

PROPOSITION 5.4 (Stability of not jointly inscribing squares). Let L > 0. Let
O1ns Oyt R/LZ — Cyl; be sequences of simple closed curves which converge
uniformly to simple closed curves o, 0, : R/LZ — Cy1, respectively as n — oo.
If each of the quadruples

(01,(R/LZ), 01,(R/LZ), 02,,(R/LZ), 02,,(R/LZ))
Jjointly inscribe a square, then so does
(01(R/LZ), 01(R/LZ), 02(R/LZ), 02(R/LZ)).

It is possible to weaken the requirement of uniform convergence (for instance,
one can just assume pointwise convergence if the curves o ,, 03, are uniformly
bounded), but we will not need to do so here.

Proof. By hypothesis, one can find a sequence p, € Squares,; such that
Pn € 01,(R/LZ) x 01,(R/LZ) X 02,(R/LZ) x 05,(R/LZ) for all n. As oy ,,
0,., converge uniformly to oy, 03, the p, are bounded and thus have at least one
limit point p, which must lie in both Squares; and o,(R/LZ) x o,(R/L7Z) x
oy(R/LZ) x 0,(R/LZ), giving the claim. O

As one application of this proposition, we have

COROLLARY 5.5. In order to prove Conjecture 5.2, it suffices to do so in the case
that the simple closed curves oy, 0, : R/LZ — Cy1; are polygonal paths.

This can be compared with the situation with Conjecture 1.1, which is known
to be true for polygonal paths, but for which one cannot take limits to conclude
the general case, due to the possibility of the inscribed squares degenerating to
zZero.
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Proof. By Proposition 5.4, it suffices to show that any simple closed curve y :
R/LZ — Cy1; can be uniformly approximated to any desired accuracy O(g)
for ¢ > 0 by a simple polygonal closed curve y : R/LZ — Cy1l; (note from a
winding number argument that if y is homologous to Graph, ;, then y will be
also if ¢ is small enough). By uniform continuity, there exists a natural number
N such that dcyq, (v (¢), y(t')) < & whenever dg,;7(t,t) < L/N, where dc,1,,
dr/17 denote the Riemannian distance functions on Cy1;,R/LZ respectively;
as y is simple and continuous, a compactness argument shows that there also
exists 0 < § < ¢ such that deyy, (¥ (), y(¢')) > 46 whenever dg,7(¢,t') > L/N.
Finally, by uniform continuity again, there exists a natural number M > N such
that dey1, (v (¢), y(t')) < 8 whenever dg/17(t,t") < L/M.

Let y; : R/LZ — R? be the polygonal path such that y;(jL/M) =y (jL/M)
for every j € Z/MZ, with y, linear on each interval jL/M + [0, 1/M]. From the
triangle inequality we see that dc,1, (v (f), v (1)) < 26 for all t € R. Unfortunately,
y; need not be simple. However, if ¢, ¢’ are such that y,(¢) = y,(¢'), then by the
triangle inequality we have dcyq, (v (¢), y(¢')) < 44, and hence dg;;z(f,1') <
L/N. Using a greedy algorithm to iteratively remove loops from the polygonal
path y, (with each removal decreasing the number of edges remaining in y; in a
unit period), we may thus find a finite family /i, . .., I; of disjoint closed intervals
inR/LZ, each of length at most L /N, such that paths y,[;, : I; — Cy1, is closed
for each 1 < j < k (that is, y, evaluates to the same point at the left and right
endpoints of /;), and such that y; becomes simple once each of the intervals I; is
contracted to a point. Note also that all of the loops of y; removed by this process
have diameter O(¢e). If one then chooses a sufficiently small neighbourhood
interval I; for each I;, and defines 7 to equal y; outside U’;:, I;, and linear on
each of the I ;, then we see that y is a simple LZ-equivariant polygonal path that
lies within O (¢) of y, as required. O

We in fact believe the following stronger claim than Conjecture 5.2 to hold:

CONIJECTURE 5.6 (Area inequality). Let L > 0, and let 0y, 05, 03,04 : R/LZ —
Cy1l; be simple closed polygonal paths homologous to Graphy ;. If (01 (R/LZ),
0,(R/LZ), 03(R/LZ), 04(R/LZ)) does not jointly inscribe a square, then

/ydx—/ydx—l—/ydx—/ydx;ﬁO. 5.1
[ea} a2 a3 o4

Note that the 1-form ydx is well defined on Cyl; and oy, 0,, 03, 04 can
be viewed as l-cycles, so the integrals in (5.1) make sense as integration
of differential forms (but one could also use Definition 3.2 with the obvious
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modifications if desired). One can also simplify the left-hand side of (5.1) as

/ ydx 5.2)
01—02+03—04

where o, — 0, 4+ 03 — 04 is interpreted as a 1-cycle. Viewed contrapositively,
Conjecture 5.6 then asserts that (o;(R/LZ), 0,(R/LZ), 05(R/LZ), 04,(R/LZ))
must inscribe a square whenever the integral (5.2) vanishes.

Clearly, Conjecture 5.2 follows from Conjecture 5.6 by first using Corollary 5.5
to reduce to the case where oy, 0, are polygonal paths, and then applying
Conjecture 5.6 with (o1, 0, 03, 04) replaced by (o1, 01, 03, 07).

Conjecture 5.6 is somewhat strong compared with the other conjectures in this
paper. Nevertheless, we can repeat the arguments in Section 3 to obtain some
evidence for it:

THEOREM 5.7. Conjecture 5.6 holds when o, = Graphy, and o4 = Graphy,
for some (1 — ¢)-Lipschitz functions f>, fy : R/LZ — Cy1; and some ¢ > 0.

Of course, by cyclic permutation one can replace the role of o>, o4 here by
01, O03.

Proof. Write o((t) := (x(¢), y,(¢)). For any t € R/LZ, the map

(a,b) = (fa(xi1(t) = b) — y1(1), f2(x1(2) +a) — yi(2))

is a contraction on R? with constant at most 1 — &, hence by the contraction
mapping theorem there exist unique continuous functions a, b : R/LZ — R such
that

(a(0), b)) = (fa(x1(t) — b)) — y1(1), fo(x1(t) +a(@)) — yi1 (1))

for all t € R/LZ. As oy, 05, 04 are polygonal paths, f,, f; are piecewise linear
functions, which implies that a, b are also piecewise linear. We then set yy, 5, 3,
v4 : R/LZ — Cy1, to be the polygonal paths

y1(t) = o1(1)
Y2(1) == o1(t) + (a(1), b(1))
= Graph, (x(t) + a(t))
v3(1) == o1(t) + (a(t) — b(t), a(t) + b(1))
va(t) == 01(t) + (=b(1), a(t))
= Graphy (x;(t) — b(1)).
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Clearly (yi, y», v3, v4) traverses squares. Applying Lemma 3.5, we conclude that

/ydx—/ydx—i—/ydx—/ydx:O.
4! v2 V3 V4

Since t > Graphy, (x()+a(t)) and t = Graph, (x;(#)—b(t)) are homologous
to o, and oy respectively, and all 1-forms on curves such as Graph , (R/LZ) or
Graph,(R/LZ) are automatically closed, we have [ ydx = [ ydxfori =1,
2, 4. Thus it suffices to show that

/ vdx #0. (5.3)
Y3—o3

The argument in Proposition 3.8 (unwrapping the curves from Cy1l, to R?)
shows that y; is simple, and the graph o3 is of course also simple. As we are
assuming (o1 (R/LZ), o,(R/LZ), 05(R/LZ), 04,(R/LZ)) to not jointly inscribe
squares, y3(R/LZ) and o3(R/LZ) must stay disjoint. The curve y; is homotopic
to oy and thus also homologous to Graph,, ;. Applying the Jordan curve theorem,
we see that the closed polygonal paths y3, 03 enclose some nonempty polygonal
region §2 in Cyl,;. By Stokes’ theorem, we conclude that the left-hand side of
(5.3) is equal to some sign times the Lebesgue measure of £2, giving (5.3) as
required. O

We also have an analogue of Corollary 5.5:

PROPOSITION 5.8 (Stability of area inequality). Let L > 0. Suppose that
Olns Oans O3y Oay - R/LZ — Cyl; are simple closed polygonal paths which
converge uniformly to simple closed polygonal paths o, 0,, 03,04 : R/LZ —
Cy1l, respectively. If, for all sufficiently small h € R Conjecture 5.6 holds for
each of the quadruples (0 ,, 02,4, O34, 0a, + (0, h)) for all n > 1, then it also
holds for (o4, 05, 03, 04).

This proposition will be useful for placing the polygonal paths o/, 05, 03, 04 in
‘general position’.

Proof. We can of course assume that (o;(R/LZ),0,(R/LZ),o03(R/LZ),
04(R/L7Z)) does not jointly inscribe a square, as the claim is trivial otherwise. By
Proposition 5.4 applied in the contrapositive, we see that there exists an ¢ > 0 and
N > 1 such that (0y,(R/LZ), 01,(R/LZ), 0,,(R/LZ), 01,(R) + (0, h)) does
not jointly inscribe squares for any |h| < € and n > N. Applying the hypothesis
(and shrinking ¢ if necessary), we conclude that

/ ydx — Lh #0
01,n—02n+03 0 —04.p
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forn > N and |y| < ¢, and hence

/ vdx| > Leg;
O1,n=02,0+03,n =04
taking limits as n — oo we conclude that
[ vdx| > Le
01—02+03—04
giving the claim. O

In the remainder of this section, we discuss how to interpret (this discussion is
not used elsewhere in the paper and may be safely skipped by the reader if desired)
the area inequality conjecture (Conjecture 5.6) using the language of homology.
Let L > 0, and let 0y, 05, 03,04 : R/LZ — Cyl; be simple closed polygonal
paths. We say that o, . . ., 04 are in general position if the following hold for any
distinct i, j, k € {1, 2, 3,4}:

(i) for any edge e of 0; and any edge f of o, the angle between the direction of
e and the direction of f is not an integer multiple of 7 /4;

(ii) forany vertices u, v, w of 0;, 0}, oy respectively, there does not exist a square
with u, v, w as three of its four vertices.

It is easy to see that one can perturb oy, 0, 03, 04 by an arbitrarily small amount
to be in general position (for example, a random perturbation will almost surely
work); furthermore one can ensure that this general position will persist even after
shifting o, vertically by an arbitrary amount. Hence by Proposition 5.8, to prove
Conjecture 5.6 it suffices to do so under the hypothesis of general position.

The Cartesian product oy X 0, X Cyl; X o4 can be viewed as a (polyhedral)
5-cycle in Cy1%; by the hypotheses of general position, this cycle intersects the
oriented 4-manifold Squares, transversely (and in a compact set), giving rise to
a l-cycle 014 in Squares,;.For j =1,2,3,4,let; : Squares;, — Cyl; be
the projection map to the jth coordinate. Because the 5-cycle o) X 0, X Cy1l; X 0y
is homologous to the 5-cycle Graph,; x Graphgy; X Cyl; X Graphg, we see
on restricting to Squares, that the 1-cycle o4 is homologous to the 1-cycle

Graphg, = {(p, p, p. p) : p € Graphy (R/LZ)} (5.4)

(with the usual orientation), and hence the pushforwards y; := (77;).0124 (Which
are polygonal 1-cycles on Cy1,) are homologous to Graph, ; and thus to o; for
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j=12,3,4For j=1,2,4, y; takes values in the curve o;(R/LZ); as y dx is
closed on that curve, we thus have

/ n_f(ydx):/ ydx:/ ydx
o124 (70j)x0124 oj

J

for j =1, 2, 4. On the other hand, from Remark 3.7 (adapted to the cylinder Cy1;
in the obvious fashion), the 1-form

i (ydx) — n}(ydx) + i (ydx) — i (ydx) (5.5)

is exact on Squares,, and hence
/ 7 (ydx) —n;(ydx) + my(ydx) — n;(ydx) = 0.
0124
Putting all this together, we see that the claim (5.1) can be rewritten as
/ ydx £0. (5.6)
Y3—03

Meanwhile, the hypothesis that (o;(R/LZ), 0,(R/LZ), 05(R/LZ), 04,(R/LZ))
do not jointly inscribe squares is equivalent to the assertion that the 1-cycles y;
and o3 are disjoint.

The 4-manifold Squares, is homeomorphic to R/LZ x R?, and so its
first homology is generated by Graphé ;- One can decompose the 1-cycle o724
as an integer linear combination of finitely many closed polygonal curves in
Squares; (which are allowed to intersect each other); as o154 is homologous
to Graphg,, one of these curves, call it o}y, : R/LZ — Squares,, must
be homologous to mGraphg, for some nonzero integer m, thus it obeys the
equivariance o, (f + L) = y%,(t) + (mL, 0). By reversing orientation we may
assume m is positive.

We now lift the cylinder Cy1; up to the larger cylinder Cy1l,,;, which is
an m-fold cover of the original cylinder; one can similarly lift Squares; to
the m-fold cover Squares,,;. The curves o; : R/LZ — Cy1, lift to curves
0; : R/mLZ — Cyl,;. The 1-cycle oy lifts to a 1-cycle 61,4 homologous
to Graphg,,; meanwhile, the curve of), lifts to m copies of a curve &),
homologous to Graphém ;, (and parameterized by R/mLZ), and contained (as
a set) in G1p4. We conclude that 6154 — 673, is a 1-boundary, thus

~ ~0
0124 = Oy + U

for some 2-cycle U in Squares,,;. We can then define curves )7j° :R/mL7Z —
Cyl, for j =1,2,3,4by §) := 7; 0 G),; these curves are the analogues of the
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curves yi, ¥2, V3, ¥4 from Section 3. As the 1-form y dx is closed on the curves
0;(R/LZ), as well as their lifts 6;(R/mLZ) to Cy1,,;, we have

/ n}‘(ydx):/ vdx =0
U AU

for j = 1, 2, 4, while from the exact nature of (5.5) gives
/ 7 (ydx) — i (ydx) + mj(ydx) —m;(ydx) =0
aU

and hence

/ ydx =0.
9(m3)+ U

Hence one can also express (5.6) as
/ yvdx #0. 6.7
763

The 1-cycle 7§ — &3 is homologous to Graphy,,, — Graphy,,, = 0 and thus can
be expressed as a 1-boundary 7, — 653 = 32 for some 2-cycle §2 in Cy1,,, . By
Stokes’ theorem, (5.7) can now be expressed as

—/ dx Ady # 0. (5.8)
2

In the case when the o0,, o4 were graphs of Lipschitz functions of constant less
than 1, the closed path 7 was necessarily simple (and one could take m = 1); if
(o1 (R/LZ), 0,(R/LZ), 03(R/LZ), 04,(R/LZ)) did not jointly inscribe squares,
then 77 avoided o3, and so by the Jordan curve theorem the 2-cycle §2 had a
definite sign which yielded (5.8) and thus (5.7), (5.6), (5.1). Unfortunately, in the
general case it is possible for the 2-cycle §2 to contain both positive and negative
components, even after stripping out the 1-boundaries U from &4 and working
just with &1%,. However, from working with numerous examples, it appears to
the author that there is always an imbalance between the positive and negative
components of £2 that leads to the inequality (5.8) and hence to Conjecture 5.6.
Unfortunately, the author was unable to locate an argument to establish this claim
rigorously.

REMARK 5.9. The Jordan curve theorem does imply that the simple closed

curve g3 partitions the cylinder Cy1l,,; into two connected components, the
region ‘above’ &3 (which contains all the points in Cy1,,; with sufficiently large
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positive y coordinate) and the region ‘below’ 63 (which contains all the points in
Cyl,,; with sufficiently large negative y coordinate). Suppose that (o, (R/LZ),
o,(R/LZ), 05(R/LZ), 04,(R/LZ)) does not jointly inscribe a square, so that y;
avoids o3. If we let K denote the connected component of y; (viewed as a
subset of Cy1;) that contains (the image of) 3730, then K must then either lie
entirely in the region above o3 or the region below ;. We conjecture that this
determines the sign in (5.1) (or (5.6), (5.7), (5.8)). Namely, if K is in the region
above 73, we conjecture that left-hand side of (5.1) (or (5.6), (5.7), (5.8)) must
be strictly positive, and if K is in the region below &3, then these left-hand
sides must be strictly negative. An equivalent statement of this is that if 75,
y; :R/mLZ — Cyl,,; are simple closed polygonal paths that traverse the upper
and lower boundary of K respectively (by which we mean the portions of the
boundary of K that can be connected by a path to points in Cy1,,; with arbitrarily
large positive or negative y coordinate respectively), then we have the inequalities

/ydxéf ydx</ ydx. 59
123 7 7

3

This claim, which implies Conjecture 5.6, is an assertion about the relative sizes
of the ‘holes’ in K; see Figure 6.

6. A combinatorial variant

Conjecture 5.6 appears difficult to resolve in general. However, there is a more
tractable-seeming special case of Conjecture 5.6 which captures many of the key
features of the full conjecture:

CONIJECTURE 6.1 (Special case of area inequality). Conjecture 5.6 holds when
o] = GraphO,L.

Once one makes the restriction oy = Graph, ;, Conjecture 5.6 turns out to
collapse from a two-dimensional problem to a more tractable one-dimensional
one. Indeed, suppose that the tuple (o,(R/LZ),0,(R/LZ),o3(R/LZ),
04(R/LZ)) does not jointly inscribing a square, with oy = Graph, ;. That
is to say, there does not exist x € R/LZ and y, a, b € R with

(x,y) € i(R/LZ)
(x+a,y+b)eo(R/LZ)
(x+a—b,y+a+b) eos(R/LZ)
(x—=b,y+a) € 04s(R/LZ).
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Figure 6. A polygonal path 7 (drawn as a solid line), together with some
additional 1-boundaries d(m3),U (the two dashed lines). Here, K is )730 together
with the component of d(r3), U that intersects 75 . The paths 7, and y;" are drawn
as dotted lines; they have been moved slightly away from 34 for visibility. The
area inequalities (5.9) can then be written as 0 < 2|A|+|B| < |A|+|B|+|C|+|D],
where |A| denotes the Lebesgue measure of the region A in the figure, and
similarly for |B|, |C|, | D|. Each 1-boundary gives a zero contribution to the area
under 33, so one also has | B| + |C| = | D|. In the depicted scenario, the first area
inequality is automatically true, but the second one is not necessarily so.

The first condition (x, y) € o,(R/LZ) simply asserts that y = 0. If one now
defines the linearly transformed closed polygonal curves 6,, 63,64 : R/LZ —
Cyl; by the formulae

02(1) = (x2(2) — y2(1), y2(1))
o3(t) = (x3(2), —y3(1))
04(t) = (x4(2) + ya(1), ya(1))

where x;, y; : R — R are the components of o; fori = 1, 2, 3, 4, then 63, 63, 04
remain simple, and (on setting X := x + a — b) we see that the property of the
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quadruple
(01(R/LZ), 02(R/LZ), 03(R/LZ), 04(R/LZ))

not jointly inscribing squares is equivalent to the nonexistence of real numbers
X, a, b such that
(x,0) € 0,(R/LZ)
(X,—a —b) € 65(R/LZ)
(x,a) € 64,(R/LZ).

Also, from the change of variables we see that

/:ydxz(—l)jfydx

J J

for j = 2, 3, 4. Relabelling o5, 73, 04 as y1, 2, V3, and writing b, —a — b, a as yy,
V2, ¥3 respectively, we thus see that Conjecture 6.1 is equivalent to the following
more symmetric version:

CONIJECTURE 6.2 (Special case of area inequality, symmetric form). Let L > 0,
and let y1, v», 3 : R/LZ — Cy1; be simple closed polygonal paths homologous
to Graphg 1, such that there does not exist points (x, y;) € y;(R/LZ) with x, yy,
Y2, y3 € Rand y; + y, + y; = 0. Then one has

/ ydx #0.
Yi+y2t+y3

In this section we show that Conjecture 6.2 is equivalent to an almost purely
combinatorial statement. To formulate it, we need some definitions. Recall that
the signum function sgn : [—oo, +00] — {—1, +1} on the extended real line
[—o0, +00] is defined to equal —1 of [—o0, 0), 0 on 0, and +1 on (0, 4+00].

DEFINITION 6.3 (Noncrossing sums). Let m = 2,3, and for each 1 < i < m,
let y; 1, yio € [—00, +00] be extended reals. We say that the pairs {y; 1, y;»} for
i =1, ..., mhave noncrossing sums if the following axioms are obeyed:

(1) either all of the y; |, y;» avoid 400, or they all avoid —oo;

(ii) forany ji, ..., jm € {1,2},thesum y; ; +-- -+ y, ;, (which is well defined
by (i)) is nonzero;

(iii) one has the cancellation

Z (_1)j1+A-»+jm Sgn(yl,j] + -+ ym,jm) =0. (61)

Jtsee jm€{1,2}
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or equivalently (by (ii))

Z (_1)jl+"'+jm = 0.

Jtseees Jm €4L25 1y V>0

That is to say, there are as many positive sums y; j, +- - -4y, j, > 0 with the
index sum j; +- - -+ j,, even as there are positive sums y; j, +: -+ Yyu,j, > 0
with j; + - - - + j, odd (and similarly with ‘positive’ replaced by ‘negative’).

Otherwise, we say that the pairs {y; 1, y;»} fori = 1, ..., m have crossing sums.

REMARK 6.4. The notion of noncrossing sums is invariant with respect to
interchanges between y; ; and y;, fori =1, ..., m, or between the pairs {y; 1, yi >}
fori =1, ..., m, or by replacing each of the y; ; with their negations —y; ;. One
could define this concept for other values of m than m = 2, 3, but these are the
only two values of m we will need here.

EXAMPLE 6.5. Let ay, a», by, b, be distinct elements of R U {—o0}. Then the
pairs {a,, a;} and {—b,, —b,} have noncrossing sums if and only if the number of
pairs (i, j) € {1,2} x {1,2} with a; < b; is even, thus for instance {a,, a,} and
{—b, —b,} will have noncrossing sums if

a1<a2<b1<b2

or
a<b <b, <a

but not if
a, < b, <a, < b,.

In particular, if —co < by < by, < 400, {—00,a} and {—b;, —b,} have
noncrossing sums if and only if a lies outside of [b, b,].

In a more topological form: the pairs {a;, a,} and {—b,, —b,} have noncrossing
sums if it is possible to connect (0, a;) and (0, a,) (respectively (0, b,) and (0, b,))
by a curve y, (respectively y,,) in the (one-point compactification of the) right
half-plane [0, +00) x R, in such a manner that y, and y, do not cross. See
Figures 7, 8.

EXAMPLE 6.6. The pairs {0, 1}, {0, 6}, {—5, 1} have noncrossing sums because
there are as many positive sums 0 +0+4 1,046 — 5,1 4+ 6 + 1 with an even
index sum as there are positive sums 1 +0+ 1,1+ 6 — 5,0+ 6 4+ 1 with an odd
index sum. On the other hand, the pairs {—3, 5}, {—3, 5}, {—3, 5} have crossing
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b2

ay

az

bl

Figure 7. The pairs {a,, a,} and {—b;, —b,} have noncrossing sums: the sums
ai + (=by), a + (—by) are positive, while the sums a; + (—b,), a; + (—b,) are
negative. Note that the path connecting (0, a;) to (0, a,) does not cross the path
connecting (0, b;) to (0, by).

sums because there are fewer positive sums 5 + 5 4+ 5 with an even index sum
than positive sums =3 +5+5,5—-3 45,5+ 5 — 3 with an odd index sum.

As we shall see later, the notion of {y; ;, y;»} fori = 1, 2, 3 having noncrossing
sums also has a topological interpretation (assuming axiom (i)), namely that there
are curves y; in the one-point compactification of [0, 4+-00) xR connecting (0, y; 1)
to (0, y;») for i = 1,2,3 such that there do not exist x, y;, ¥2, y3 € R with
yi+y+y;=0and (x,y) in y; for i = 1,2,3. This may help explain the
terminology ‘noncrossing sums’.

EXAMPLE 6.7. Suppose that 0 < a < b < ¢ and x, y, z are real numbers such
that {x, x +a}, {y, y + b}, {z, z + ¢} have noncrossing sums. The 2* sums formed
from this triplet may be almost completely ordered as

xt+y+tz<xtatytz<x+y+b+z
<xt+a+y+b+z,x+y+z+c
<x4+a+y+z+c<x+y+b+z+c<x4+a+y+b+z+c
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ay

b2

by

Figure 8. The pairs {a;,a,} and {—b,, —b,} have crossing sums: the sums
ay + (—by), a; + (—by), a; + (—b,) are positive, while the sum a, + (—b,)
is negative. Note that the path connecting (0, a;) to (0, ay) crosses the path
connecting (0, by) to (0, b,).

(the reader may wish to first see this in the case x = y = z = 0). The sums
x+a+y+z,x+y+b+z,x+y+z+c,x+a+y+b+z+ chaveeven
index sum, and the other four sums have odd index sum. Therefore, {x, x + a},
{y, ¥ + b}, {z, 7 + ¢} has noncrossing sums precisely when the origin O falls in
one of the five intervals

(=00, x +y+2),
x+a+y+z,x+y+b+2),
x+a+y+b+z,x+y+z+o0),
x+a+y+z+c,x+y+b+z+0),
x+a+y+b+z+4+c, +00)

(with the third interval deleted if x +y +z+c¢ < x+a+y+b+z). In particular,
we see that pair {x, x 4+ a} with the smallest difference has no influence on the
sign of the triple sums, that is to say

sgn(x + y> + y3) = sgn(x +a + y> + y3)
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for y, € {y, y 4+ b} and y; € {z, z + c}. Conversely, if this pair has no influence
on the sign of triple sums then the pairs {x, x 4+ a}, {y, y + b}, {z, z 4+ ¢} have
noncrossing sums. This lack of influence by the pair with the smallest difference
can thus be used as an alternate definition of noncrossing sums in the m = 3 case
(and it also works in the m = 2 case).

One corollary of this analysis is that if {y, y + b} has no influence on the sign
of the triple sums, then neither does {x, x + a}; similarly, if {z, z + ¢} has no
influence on the noncrossing sums, then neither does {y, y + b}.

We are now ready to give the combinatorial formulation of Conjecture 6.2.

CONJECTURE 6.8 (Combinatorial formulation). Let ki, k», k3 be odd natural
numbers, and for eachi = 1,2, 3, let y; 1, ..., Yix, be distinct real numbers. Adopt
the convention that y; o = yir,+1 = —00. Assume the following axioms:

(1) (noncrossing) forany 1 < i <3 and 0 < p < g < k; with p, q the same
parity, the pairs {y; ,, yi p+1} and {—Y; 4, —Yi g+1} have noncrossing sums;

(i1) (noncrossing sums) for any 0 < p; < ky, 0 < py < kp, 0 < p3 < k3 with
P1, D2, P3 the same parity’ the pairs {)’1.171 ) yl,p1+l}’ {yZ,Pz’ yZ,P2+l}) {y3,p37
V3,ps+1) have noncrossing sums.

Then one has the inequality

3 ki

D> =Dy, <o (6.2)

i=1 j=1

REMARK 6.9. In the language of Arndld, the hypothesis (i) shows that
the ordering of the extended real numbers —oo, y;i,..., ¥y, 1S given by
the permutation of a meander (formed by gluing together two noncrossing
matchings); see [13].

The main result of this section is then

THEOREM 6.10. Conjecture 6.2 (and hence Conjecture 6.1) is equivalent to
Conjecture 6.8.

6.1. Forward direction. Let us first assume Conjecture 6.2 and see how
it implies Conjecture 6.8. Let ki, k», k3 and y;; obey the assumptions of
Conjecture 6.8, but suppose for contradiction that (6.2) failed. The plan is
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then to use the quantities y; ; to build simple closed polygonal paths y;, y»,
y3 : R/LZ — Cy1; for some L > 0 to which Conjecture 6.2 may be applied.

By perturbing one of the y; ; slightly (noting that all the hypotheses on the y; ;
are open conditions) we may assume that the quantity

3 ki
Q=) Y (=1)y, (6.3)

i=1 j=1

is strictly positive. Similarly, we may assume that the differences |y; ,+1 — yi |
withi =1,2,3and 1 < p < k; are all distinct.

We will need a strictly monotone decreasing function ¢ : [0, 4-00) — [1, 2]; the
exact choice of ¢ is unimportant, but for concreteness one can take for instance
o) =1+ (1/1+41).

Let L > 0 be a sufficiently large quantity to be chosen later. We will also need
a certain large and negative quantity —R (depending on Q, L, and the y; ;) whose
precise value will be specified later. By applying Conjecture 6.8(ii) with p; =
p2 = ps = 0, we see that {—o0, y;,1}, {—00, ¥2.1}, {—00, ¥3.1} have noncrossing
sums, which implies that

Yia+ Y21+ y31 <O0.

Similarly if we apply Conjecture 6.8(ii) with p; = ki, p, = k,, p; = k3, we see
that

ik t Yok, + Yauy <O.
As a consequence, we may find piecewise linear continuous functions fi, f>, f3 :
[—1, 1] — R such that

fi=D) =yii:  fi() =y, (6.4)
fori =1, 2, 3, and such that
fi@®) + fo(t) + f3(0) <O (6.5)

for all —1 < ¢ < 1. For instance, we can set fi, f>, f3 to be the linear functions
given by the boundary conditions (6.4). But we can also subtract an arbitrary
positive multiple of 1 —|¢| from any of f|, f>, f5 and obey the above requirements.
In particular, there is a quantity —C, (independent of L) such that if the quantity
— R mentioned previously is less than or equal to —Cj, one can find fi, f>, f3
solving the above conditions such that

3 1
Z/ fi(tydt = —R. (6.6)
i=1 Y1

Henceforth we fix fi, f,, f5 with these properties.
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Leti =1, 2, 3. We construct some polygonal paths y; 1, Vi152, - -+, Viki—1—k
Vik» Viki—1 in Cy 1y by the following recipes:

DEFINITION 6.11. (i) ¥, is the rightward horizontal line segment from
(—=L/2+ 1, yi1) to (0, y; 1), projected to Cy1;.

(ii) Forany odd 1 < p < k;, ¥, ,—p+1 1s the piecewise linear path traversing the
vertices

L
O, yi,p)v <E - ¢(|yi,p — Yi,p+1 D, yi,p) )
L
3 Oyip = YVip+11)s Yip+1 |5 (O, Yip+1)

in that order (that is to say, the concatenation of a rightward horizontal line
segment, a vertical line segment, and a leftward horizontal line segment, if L
is large enough), and then projected to Cy1;.

(iii) For any even 1 < p < k;, i p—p, is the piecewise linear path traversing the
vertices

L
O, yi.p), (—E + o Uyip — Yi.p+1l)s yi,p> ,

L
<—5 +oUyip — Yip+1l), yi,p+l) » 0, yip+1)

in that order (that is to say, the concatenation of a leftward horizontal line
segment, a vertical line segment, and a rightward horizontal line segment, if
L is large enough), and then projected to Cy1;.

(iv) ¥ is the rightward horizontal line segment from (0, y; 4, ) to (L/2—1, y; ),
projected to Cy1,.

(V) ¥ik—1 1s the graph

L
{<E+t,f,~(t)>:—1<t<1}

traversed from left to right and then projected to Cy1l,, thus it begins at
JTL(L/Z — 1, yi.k,-) and ends at 7TL(L/2 —+ 1, yi,l)-
See Figure 9.
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ryi»4_>5 (0,9i,5) ’Yi,5
(0, ¥i2)
Yi,2—3
(0,9i.3)
Vi, 3—4
(0, ¥i.4)
Vi,5—1
i1 (0,.1) Yi,1—2
r=—f+1 v=-5+2 z=0 p=L-2 a=L-1 g=Lii

Figure 9. Construction of the components of y;, in the case k; = 5. Notice the
interlacing between the (0, y; ,) with p odd and the (0, y; ,) with p even, and the
alternating orientations of y; at these locations.

Clearly, one can concatenate the paths y; 1, Vi152, - - - Viki—1—ki» Yiki» Viki—1 tO
form a closed polygonal path y; in Cy1; (which one can parameterize by R/LZ
after a suitable rescaling). Using the convex fundamental domain

L+1L+1 R
—— — X
2 2

of Cy1;, we see that y; is homotopic in this domain to the horizontal line segment
from (—L/2+1,y;;) to (L/2 4+ 1, y;.1), and hence y; is homologous in Cy1; to
Graphg,.

Using Conjecture 6.8(i), we can show

LEMMA 6.12. Suppose L is sufficiently large. Then foranyi =1, ..., 3, the path
y; is simple.

Proof. Each of the components y; 1, ¥i1-2, - s Viki—1—k» Yik» Viki—1 Of y; are
separately simple, and the endpoints are all distinct except for the endpoints of
adjacent paths, so it suffices to show that no two of these components meet in the
interior.
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The interior of the path y; 4, ., lies in the strip (L/2—1, L/2+1) xR (viewed as
a subset of Cy1;), while the interior of the other paths lie in either (—L/2+ 1, 0)
x R or (0,L/2 — 1) x R, again only touching the boundary at endpoints.
So it suffices to show that there are no crossings in (—L/2 + 1,0) x R or
O,L2—-1) xR

We just verify the claim for (—L/2+1,0) x R, as the case of (0, L/2—1) xR
is completely analogous. The only path components here are y;; and y; ,— p+1
for 1 < p < k; even. To check that y;; and y; ,_, ,41 do not cross, it suffices
from Definitions 6.11(i), (iii) to show that y;; does not lie between y; , and
Yi,p+1. But from Conjecture 6.8(i) we see that {—oo, y; 1} and {—yi p, —Yi p+1}
have noncrossing sums, which gives the claim by Example 6.5.

Now we need to check that y; ,_.,4+1 and y; 4 4+1 do not cross when 1 < p,
q < k; are even and distinct. By Conjecture 6.8(i), the pairs {y; ,, yi p+1} and
{—Yi,q» —Yiq+1) have noncrossing sums; thus the interval spanned by {y; ,, yi 4+1}
either is disjoint from, contains, or is contained in the interval spanned by {y; ,,
Yi.p+1}. In the former case, the paths y; ,_, 41 and y, ;.44 are clearly disjoint
because from Definition 6.11(ii), the y coordinate of any point on the first path
lies in the interval spanned by {y; ,, i, ,+1}, and the y coordinate on any point on
the second path lies in the interval spanned by {y; 4, ¥i ;+1}. By symmetry, the only
remaining case to check is when the interval spanned by {y; ,, i p+1} is contained
in the interval spanned by {y; ;, yi 4+1}. Butin this case, we have |y; , — yi p+1| <
|¥i.g — Yi.q+1l, so by Definition 6.11(iii) and the monotone decreasing nature of ¢,
the vertical segment of the curve y; ,_, ,41 lies to the right of that of y; ,_, ;1. From
this we see that the two curves are disjoint. This concludes the demonstration of
simplicity in (—L/2 + 1, 0) x R; the case of (0, L/2 — 1) x R is similar. O

In a similar fashion, we can use Conjecture 6.8(ii) to show

LEMMA 6.13. There does not exist x € R/LZ and y,, y,, y3 € Rwith y; + y, +
v3 = 0 such that (x, y;) € y;(R) foralli =1, 2, 3.

Proof. Suppose for contradiction that x, y;, y,, y; exist with the stated properties.

First suppose that x lies in [L/2 — 1, L/2+ 1] (projected to R/L7Z). Then from
Definition 6.11(v) we have y; = fi(x — L/2) fori = 1,2, 3, but then from (6.5)
we cannot have y; + y, + y; = 0, a contradiction.

We now treat the case when x lies in [0, L/2 — 1] (projected to R/LZ); the
remaining case when x lies in [—L/2 4 1, 0] is similar and will be omitted. By
Definition 6.11, we see that each of the (x, y;) lies either on y;;, or on y; ,, -, 11
for some odd 1 < p; < k;.

Suppose first that each of the (x,y;) lie on y; p,p+1. By hypothesis, the
quantities L/2 — ¢ (|yip, — Yip+1) for i = 1,2,3 are distinct; by cyclic
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permutation we may assume that L/2 — ¢ (|yi ,, — Yi,p,+1]) is the smallest of
these quantities, or equivalently that |y; ,, — ¥; 41| is minimized at i = 1. By
Definition 6.11(ii), the x coordinate of y, p,_, ,,+1 does notexceed L/2—¢ (|y1 ,, —
Y1,p+11), which implies that

L
X < E _¢(|yl,p1 - yl,p1+l|)9

and hence by further application of Definition 6.11(ii) we have y, = y,,, and
Y3 = Y34, for some g, € {p>, p + 1} and g, € {p;3, ps + 1}; furthermore y, lies
between y; ,, and y; 4 inclusive. Since y; + y, + y; = 0, this implies that the
sums yi ,, + Y24, + Y345 a0d Y1 541 + V2.4, + V3,4, do DOt have the same sign.
Because i = 1 minimizes |y; ,, — i p,+1|, we conclude (from Example 6.7) that
the pairs {yi p,, Yi,pi+1}s 12,000 Y2, 00411 {3,055 ¥3.p5+1) dO DOt have noncrossing
sums, contradicting Conjecture 6.8(ii).

The case when one or more of the (x, y;) lies on y,,, is treated similarly,

with k; now playing the role of p; (and recalling the convention y; ;.1 = —00).
This concludes the treatment of the case x € [0, L/2 — 1], and the case x €
[-L/2 4+ 1, 0] is similar. O

From the previous two lemmas and Conjecture 6.2, we conclude that

/ ydx # 0. 6.7
Yi+r+y3

We work in the fundamental domain

L+1L+1 R
—— — X
2 )

of Cy1l;.Onthe strip [L/2 — 1, L/2 + 1] x R, the contribution to fyl_m_m ydx
is 21'3:1 ffl fi(t)dt = —R thanks to Definition 6.11(v) and (6.6). On the strip
[-L/2+4+2,L/2 —2] xR, the curve y; fori = 1, 2, 3 is simply the union of the
line segments [-L/2+42, L/2—2] x {y; ,} for p =1, ..., k; (traversed from left
to right for odd p, and right to left for even p), so the contribution to f y ydx
here is

1+y2+y3

3 ki

DL=HY )y, =L -0

i=1 j=1
thanks to (6.3). Finally, the contribution of the remaining strips [—L/2 + 1,
—L/24+2]xRU[L/2—-2,—L/2— 1] x R is some quantity —C; independent of
L and R, as can be seen by translating these strips by L /2. The inequality (6.7)
thus becomes

(L-4)Q0—-C;—R#NO.
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But as Q is positive, we can make this quantity vanish by choosing L large enough
and then setting —R := C; — (L — 4) Q; note for L large enough that this value
of —R will be less than the threshold —Cj, needed so that one can arrange the
function fi, f>, f5 to obey (6.6). This yields the desired contradiction.

6.2. Backward direction. Now we assume Conjecture 6.8 and see how it
implies Conjecture 6.2.

By applying (a slight variant of) Proposition 5.8, we see that to prove
Conjecture 6.2, it suffices to do so under the additional nondegeneracy hypothesis
that all the vertices of yy, y», y; have distinct x-coordinates (in particular, these
curves do not contain any vertical edges). Write y; () = (x;(¢), y;(¢t)) for some
piecewise linear x; : R/LZ — R/LZ and y; : R/LZ — R. As y; is homologous
to Graphy ;, we can find a continuous lift X; : R — R of x; with X;(t + L) =
Xi(t) + L for all + € R; we also let y; : R — R be the periodic lift of y;. As
X;(t) —t is periodic and continuous, it is bounded; by multiplying the period L by
a large integer if necessary, we may assume that

. L

|%; (1) — 1] < 10 (6.8)
forallt e Randi =1, 2, 3.

Using the nondegeneracy hypothesis, we see that for any i = 1,2, 3 and any

x € R, the fibre {y € R : (x, y) € y:(R)} consists of a finite number k;(x) of
real numbers, where the function k; takes values in the odd natural numbers, is
periodic in L, and is locally constant for all x outside of finitely many residue
classes mod L. We can enumerate these real numbers as

Vilti (), .o, Yiltig o (X))

where ;1 (x) < -+ < t;4,r)(x) are those real numbers ¢ with x;(¢) = x, arranged
in increasing order, thus
Xt (x) =x (6.9

forallx e R,i =1,2,3,and 1 < j < k;(x). For x outside of finitely many residue
classes mod L, the functions #; ; are locally linear, and have the LZ-equivariance
property

tiix+L)y=t;(x)+L

forall x e R,i =1,2,3,and 1 < j < k;(x). Also, from the nondegeneracy
hypothesis we see from the intermediate value theorem that outside of finitely
many residue classes mod L, 1; ; is increasing for odd j and decreasing for even j.
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The analogue of the set Squares; C Cyli in this context is the oriented
3-dimensional submanifold Sums of Cy13 defined by

sums := {((x1, y1), (X2, y2), (x3, ¥3)) € Cy1; : X1 = X3 = X35 Y1 + Y2+ y3 = 0}.

The hypotheses of Conjecture 6.2 then assert that the 3-cycle y; X y» X y; in
Cy1; does not intersect Sums. We view Sums as an oriented submanifold of the
4-manifold V C Cy1; defined by

Vo= {((x1, 1), (X2, y2), (X3, ¥3)) € Cy1; : x; = X2 = x3}.

As we assumed the vertices of yi, 35, y3 to have distinct x coordinates, the 3-
cycle y; X y» X y;3 intersects V transversely in some 1-cycle yy,3. As y1, v», ¥3 are
homologous to Graphy ;. V123 is homologous to the 1-cycle

Graphy, :={(p, p. p) : p € Graphy}

with the standard orientation.

Now we argue as in the previous section. The 4-manifold V is homeomorphic
to R/LZ x R* and thus has first homology generated by Graphé .- By the greedy
algorithm, one can express the 1-cycle y,,; as a finite integer linear combination
of closed paths contained (as a set) in y;y3, each of which is either simple or a
1-boundary; one of these, say y5; : R/LZ — V, is homologous to mGraphéL
for some nonzero integer m, and is thus simple. From the Jordan curve theorem,
m must be +1 or —1; by reversing the orientation of y,3; we can then assume that
m = 1, thus y{); is homologous to Graphg', and is contained (as a set) in y153. In
particular, it avoids Sums. If we write

Vi () = (X (1), Y1 (1)), (X (1), Y2 (1)), (X (1), Y3(1)))

then X : R/LZ — R/LZ, Y|,Y,,Ys : R/LZ — R are piecewise linear
contlnuous functions with X homologous to the identity function (in the sense
that X lifts to a function X : R — R with X(r + L) = X(t) + L for all t € R),
with the properties that

(X(), Y;(1)) € i(R/LZ) (6.10)

and
Yi(t) +Ya(t) + Y3(t) #0 (6.11)

forallt e R/LZandi =1, 2, 3.

REMARK 6.14. One can view the functions X(z), Y,(¢), Y>(¢), Y3(¢) from a
dynamical perspective by thinking of (X (¢), Y;(¢)) as the trajectory of a particle
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\

Fd (X (1), Ya(t))

TN (X (), Ya (1))

Y1

Figure 10. The dynamics of X (¢), Y (), Y2(¢), Y3(t).

P; that is constrained to lie in y;(R/LZ), and with all three particles Py, P,, P;
constrained to lie on a vertical line. We can also constrain the particles P, P,, P;
to have a constant horizontal speed; the particles move in one horizontal direction
until one of the particles P; cannot move any further due to it hitting a vertex v
of y; with both edges adjacent to v lying on the same side of the vertical line
containing v. Whenever such a collision occurs, the horizontal velocity reverses
sign, P; moves from one edge of y; to the next, and the other two particles reverse
themselves and retrace their steps; see Figure 10. Note from our hypotheses
that only one collision occurs at a time. Because the paths yy, y», y;3 have only
finitely many edges, these trajectories must be periodic; the above homological
considerations ensure that at least one of these trajectories is homologous to
Graphé ;. (possibly after enlarging the period L).

Recall that X : R/LZ — R/LZ lifts to a function X : R — R such that
Xt +L)=X(@) + L forall t € R, thus X(¢) — ¢ is periodic and therefore
bounded. We also lift Y; : R/LZ — R periodically to 17, :R— Rfori =1,2,3.
By lifting and (6.10), we can then find unique continuous functions 7; : R — R
with T;(t + L) = T;(t) + L for all t € R, such that

(X(1), Y;(1)) = (F(T; (1)), 5:(T;(2))) (6.12)
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for all ¢ € R. By replacing L with a large multiple if necessary, we may assume
that

~ L
[ X () —¢t], |T;(t) — 1] < I 6.13)

forallt e Randi =1, 2, 3.

By continuity and (6.11), we see that the expression f’l ) + }72(t) + }73(t) is
either positive for all 7, or negative for all 7. By applying the reflection (x, y) >
(x, —y) on Cyl; we may assume the latter case occurs, thus

Yi(0) + Ya(r) + Y35(1) <0 (6.14)

for all t € R/LZ. To establish Conjecture 6.2, it suffices to show that

/ ydx < 0;
Yi+v2+v3

integrating fibre by fibre, it will suffice to show that

ki (x)

DY =1 (x0) <0 (6.15)

i=1 j=1

for almost every x € R.
Fix x € R; we may assume that x avoids all the x coordinates of vertices of
Y1, V2, V3. We abbreviate k; = k; (x) and

yij = Yi(ti})
fori =1,2,3 and 1 < j < k;, adopting the conventions y; o = yix+1 = —00.
Applying Conjecture 6 8 it w111 suffice to verify the hypotheses (i), (ii) of that

conjecture.

Let . = t.(x) denote the largest time #, € R for which X (t;) = x (such a
time exists thanks to (6.13) and continuity). We claim that 7;(¢;) = t;, (x) for
all i = 1,2, 3. Suppose for contradiction that this failed for some i = 1, 2, 3,
then from (6.10) one has T;(t;) = #; ,(x) for some 1 < p < k;. From (6.13) and
the intermediate value theorem we must then have T;(¢) = #;4,)(x) for some
t > t,, which by (6.12), (6.9) gives X(@t) =x, contradicting the maximality of 7.
Similarly, if 7= = t_(x) is the smallest time . € R for which X (t_) = x, then
T;(t-) = t;1(x) fori =1, 2, 3. From (6.14) applied at the times 7., 7_ we have the
inequalities

Yiit Yty <0 (6.16)

and
ik + Y2k + Vi < 0. 6.17)
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Having obtained these inequalities, we will have no further need of the functions
X, X Y, 17,-, T; or the curves y1°23, although we will introduce a variant of these
functions shortly.

We now verify the noncrossing property (i) for any given i = 1, 2, 3. We just
verify the claim when p, g are odd, as the claim when p, g are even is completely
analogous. First suppose that g < k;. Let y,; , denote the restriction of path
t— (X;(t), y;(2)) to the interval ¢ € [t; ,(x), #; p1(x)]; define y, ; , similarly. The
path y, ;. , traces out a piecewise linear curve in R? that starts at (x, y; ,), ends at
(x, i, p+1), and does not encounter the vertical line x x R at any point in between;
also, it moves to the right for ¢ near #; ,(x) (and to the left for ¢ near f; ,;;(x)).
Thus, this curve y, ; , must stay in the right half-plane [x, +00) x R; actually, by
(6.8) we see that it stays in the strip [x, x + L/2] x R (say). Similarly for y; ; ,.
On the other hand, as y; is simple and p < g, the two paths y, ; , and y; ; , cannot
meet. From the Jordan curve theorem and Example 6.5, this forces the endpoints
{i.p» Yi.p+1} and {y; 4, i 41} of these paths to be noncrossing, giving (i) in this
case.

Now suppose that ¢ = k;. In this case we define y, ;, to be the restriction
of t — (X;(¢), ;(¢)) to the interval [t; 4, (x), ;1 (x) + L] (this interval is well
defined by (6.8)). This is a path from (x, y;4,) to (x + L, y; ;) that does not cross
{x,x 4+ L} x R except at endpoints, and hence lies in the strip [x, x + L] x R.
It cannot cross yy; ,, which also lies in this strip, avoids the right edge, and
starts and ends at the points (x, y; ,), (X, yi p+1) on the left edge. By the Jordan
curve theorem, this implies that y; ;, cannot lie between y; , and y; ,1, which by
Example 6.5 implies (since y; ,+1 = —00) that {y; ,, ¥i p+1} and {yix, Yik 11} are
noncrossing. This concludes the establishment of (i) when p, g are odd; the case
when p, g are even is analogous (working to the left of {x} x R rather than to
the right, and using the convention y; o = —oo rather than y; ;,.; = —o0) and is
omitted.

Now we verify (ii) for 0 < p; < k1, 0 < pr < ks, 0 < p3 < k3 with py, pa, p3
the same parity. We just establish the claim when p,, p,, p; are all odd, as the
case when py, p,, ps are all even is completely analogous.

In the case p; = ki, p» = k,, p3 = k3, we see from (6.17) and the conventions
Ykl = Yokot2 = Y3us43 = —00 that the pairs {yi s, Vi 1} {V2rs Y2kot1)s
{¥3.43» Y3.45+1}. Thus we may assume that p; < k; for at least one i; say p; < k.

As in the proof of (i), we can form the curves y, ; ,, fori = 1, 2, 3, which lie
in the strip [x, x + L] x R, with initial point (x, y; 5,) and final point (x, y; ,.,).
Fori =1, 2,3, let x; denote the maximum x coordinate attained by y, ; ,,, thus
x < x; < x + L; furthermore x; = x + L if p; = k; and x; < x + L/2 otherwise,
in particular x; < x 4+ L/2. As the vertices of y; have distinct x coordinates, the
x; are distinct in the interval [x, x + L/2]; without loss of generality we may then
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take x; < x5, x3. Fori =1, 2, 3, define y;, i 1O be the connected component of
Vr.ip; 1V [x, x1] x R that contains (x, y; ,,); thus y):,l,pl = Yy.1,p»and fori =2, 3,
Yr.ip 18 @ piecewise path connecting (x, y; ;) to some point on the vertical line
{xl} x R.

Consider the set

S={(x", ¥y, 5. ¥y € R*: (x/, y)) lies in y);,i,p,- fori =1,2,3}.

The set S is a union of line segments in R*. It contains the point (x, y;. s V2.0
¥3,5,) With exactly one line segment emanating from it; S similarly contains the
point (X, Y1 p,+1, Y2, p,» ¥3,p,) With exactly one line segment emanating from it. A
local analysis (using the nondegeneracy hypothesis that the vertices of yy, 5, 3
all have distinct x coordinates) then reveals that every other point (x', y|, ¥5, ¥3)
in § is either an interior point of a line segment in S (and avoids all other line
segments comprising §), or else is a vertex that is the endpoint of exactly two
edges in S; this claim is most delicate in the case where x’ = x;, in which
the curves y;, and y,, = have terminated, but y,  ,, leaves (x’, y1) in two
leftward directions, thus again forming two edges in S (see Figure 11). Because
of this, there must be a path ¢ — (X'(¢), Y{(¢), Y;(¢), Y5(2)) in S from (x, y; ,,,
V2,505 Y3,p5) 10 (X, Y1 p1415 V2. p0s ¥3.p;) (see Remark 6.14). By the hypothesis of
Conjecture 6.2, we must have

Y/(t) + Y (t) + Yi(t) #0

for all ¢. In particular, we conclude that the sums

Yipr + Y20t Y3ps Yipiat T Y20 + V3ps

have the same sign. A similar argument (using the connected component of y, ;
containing (x, y; ,,+1) rather than (x, y; ,,) as appropriate) shows more generally
that the sums

Yip Y20 T Y3055 Yipi+1 + Y200 T V3

have the same sign for ¢, € {p,, p,+1} and g3 € {ps, ps+1} (this claim is trivially
true when g, = k,+1 or g3 = k3+1). By Definition 6.3, we conclude that the pairs
{yl,pl ’ yl,p1+1}9 {Y2.p2, )’2,p2+1}, {Y3.p3, y3,p3+1} have noncrossing sums, glvmg (11)
in the case that p;, p,, p; are all odd; the claim when p,, p,, ps are all even is
proven similarly (using the convention y; o = —oo instead of y; ;, = —00, working
to the left of {x} xR rather than to the right, and using (6.16) in place of (6.17)) and
is omitted. This completes the derivation of Conjecture 6.2 from Conjecture 6.8,
and establishes Theorem 6.10.
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’Y;,:;,p;
)

i
Yz, 1,p1

(@',99)

/ ((El, yé)
7/;727102

x1

Figure 11. The local behaviour of a point (x’, y{, ¥3, ¥3) in S when x’ equals x;.

7. Some special cases of Conjecture 6.8

From Theorem 6.10, we see that any counterexample to Conjecture 6.8 can be
converted to counterexamples for Conjectures 6.2, 6.1, and 5.6, and we believe
it likely that such counterexamples, should they exist, could then be modified to
give counterexamples to Conjectures 5.2, 4.1, 4.6, and hence the original square
peg conjecture (Conjecture 1.1). On the other hand, after extensive testing of
examples, the author is now inclined to believe that Conjecture 6.8 is true, and a
proof of this conjecture is likely to lead to an approach to establish Conjecture 5.6
(and hence Conjectures 5.2, 4.1, 4.6) and perhaps even Conjecture 1.1.

We do not have a proof of Conjecture 6.8 in full generality, however we
can verify some special cases. First, we observe the following analogue of
Theorem 5.7 for Conjecture 6.2:

THEOREM 7.1. Conjecture 6.2 is true when one of the curves y; is the graph
¥i = Graph/ of a piecewise linear function f : Z/L7Z — R.

Proof. Suppose that y; = Graph . By replacing y; with Graph,, and y, with
the transformed polygonal path {(x,y — f(x)) : (x,y) € »(Z/LZ)}, we may
assume without loss of generality that f = 0. The hypothesis of Conjecture 6.2
then ensures that the reflection y, of y, across the x axis is disjoint from y,;, hence
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by the Jordan curve theorem and Stokes’ theorem as before we have

/ydx;é/ydx
2 71

giving Conjecture 6.2 in this case since [; ydx = — [ ydx. O

From this theorem and the construction used in the proof of Theorem 6.10,
we see that Conjecture 6.8 holds when one of the k;, say ks, is equal to 1. Of
course, as Conjecture 6.8 is largely a combinatorial conjecture, one expects to
also be able to verify the k3 = 1 case of Conjecture 6.8 by a direct combinatorial
argument, without explicit invocation of the Jordan curve theorem. We can do this
by developing some combinatorial analogues of the Jordan curve theorem that are
valid even when ki, k;, k3 > 1. For any i € {1, 2,3} and y € [—00, +00], define
the winding number W;(y) by the Alexander numbering rule [1]

k.
| N ;
Wiy) =5+ 5 ) (=1 sgn(ij = )
Jj=1

1 A
= 32 (=D +sgn(yi; — ) (7.1)
j=1

(where we use the hypothesis that ; is odd), thus W; is a half-integeron y; 4, .. .,
Yik» a locally constant integer outside of these points, and jumps by £1/2 when
one perturbs off of one of the y; ; in either direction. Also observe that W;(y)
equals 0 near +o00, and 1 near —oo. From Fubini’s theorem we can relate the
winding number to the alternating sum Z];': ,(=1)/7'y, ; by the identity

[e’e] ki
/ Wi(dy =Y (=1)/"'yi; +T (72)
-7

j=1
which holds for all sufficiently large 7. A similar argument gives

ki

/ (= Wi(=y)dy == (=1) "'y, + T (7.3)
-T

J=1

again for sufficiently large 7.
We can then use the hypothesis (i) of Conjecture 6.8 to give

LEMMA 7.2 (Combinatorial Jordan curve theorem). Suppose that the hypotheses
of Conjecture 6.8 hold. Leti = 1,2, 3. Then one has W;(y; ;) =1/2 forall j =1,
ooy ki, and Wi(y) € {0, 1} for all' y in [—00, +00]\{yi .1, - - - Yik+1}-
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Proof. Because W; is locally constant away from {y; 1, ..., ¥ix+1} and jumps by
£1/2 when it reaches any of the y; ;, it suffices to establish the first claim. Let
1 < p < k;. From Conjecture 6.8(i) we have

Y= e, — i) =Y (=1 sgn(yip — vig)
Jj=q.9+1 Jj=q.9+1

for all 0 < g < k, distinct from p with the same parity as p (using the conventions
Yio = Yix+1 = —00). Direct inspection shows that the claim also holds for g = p.
Summing over ¢, and noting that the contributions of j = 0 or j = k; + 1 are the
same on both sides, we conclude that

kl kl
DD sgn(i, = vi) = D=1 s = vi)
j=1 j=1
and hence
Wi(yi,p) = Wi(Yip+1)
for all 1 < p < k;. Direct computation also shows that W;(y; ,) = 1/2 when
1<p< kl maximizes y; ,, and the claim follows. O

Next, for distinct i,i" € {1,2,3} and y € [—o0, +o¢], we define the further
winding number W;; (y) by the similar formula

ki ky
Wi () = = + ZZ( DI sgn(yi; + yi =)
j=1j'=1
1 o
=32 Z(—l)m (1+ sgn(yij + Yoy — ¥))- (74)

j=1j'=1

As before, W;;»(y) will be a locally constant integer away from the sums y; ;+yy v,
that equals O for sufficiently large positive y and 1 for sufficiently large negative
y. From Fubini’s theorem we have the analogue

ki

/ Wi () dy =) (=)~ ‘y,,+Z( Dy + T (1.5)

j=1 j=l
for sufficiently large T. Curiously, one has the convolution identity
Wi =W/ s W,
where the primes denote distributional derivatives, although the author was not

able to make much use of this identity. The winding numbers W;;; also have
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some resemblance to the Steinberg formula [24] for the multiplicity of irreducible
representations in a tensor product, although this is likely to be just a coincidence.

The hypothesis (ii) of Conjecture 6.8 allows us to make the winding number
W, vanish at some points, and also give some control on the complementary
winding number W;»:

PROPOSITION 7.3. Suppose that the hypotheses of Conjecture 6.8 hold. Let i, i,
i"” be distinct elements of {1, 2, 3}.
(i) One has Wiy (—y;» ;) =0forall j =0,..., ks + 1.

(1) If0 < p <k and 0 < g < ki have the same parity, then one has

Wir(=ip — Yirw) = Wir(—=Yi p+1 — Yirp) (7.6)
forb=q,q+1if|yip— Yip+1l < |yig — Vg1l and
Wir(=Yia — y,-f,q) = Wi(—=Yiq — yi’,q+l) (7.7

Jora=p,p+1iflyi, = Yipsil 2 1yig — Vg1l

Proof. By permutation we may seti = 1,i’ =2,i” = 3. Suppose that 0 < p; < &y,
0 < pr < ko, 0 < p3 < k3 have the same parity. By Conjecture 6.8(ii) we have

o> D sgn(yy, + g, + i)
J1=p1.p1+1 p=p2,p2+1

= Z Z (_l)jl+j2 Sgn(yl,jl + Y2, + y3,P3+1);

J1=p1,p1+1 ja=pa,p2+1

summing over p;, p, and noting that the contributions of j; = 0, j; = k; + 1,
Jj» =0, jo» =k, + 1 are the same on both sides we see that

W12(—y3,p3) = W12(_y3,p3+1)

for all 0 < p; < k3; since Wir(—y30) = Wip(400) = +1, we conclude (i).

Now suppose 0 < p < k; and 0 < g < k&, have the same parity and |y, , —
Vi,p+1l < |y2.g — Y2.4+1], and let O < r < k3 have the same parity as p and g. From
Conjecture 6.3(ii) we see that the pairs {y1 p, Y1.p+1} (V2,05 Yogr1}s {3 Y3ra1}
have noncrossing sums, which by Example 6.7 implies that at least one of the
pairs {y1 ,, Y1, p+1}s {¥3.r» y3,-+1} have no influence on the triple sums. This implies
that

D senG, v ) = Y (=D sgn(y i + s + ¥3)

j=r,r+l j=ror+1
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for b = qg,q + 1; summing in r we obtain (7.6). The claim (7.7) is proven
similarly. O

This proposition is already enough to reprove the k3 = 1 case of Conjecture 6.8
as follows. By adding ys; to all of the y, ; and then sending ys ; to zero, we may
assume that y; | = 0. Then we have Wi5(y) = W, (y) and Wy (y) = W,(y) for all
¥, and hence by Proposition 7.3 we have W;(—y, ;) =0for j =1,...,k, and
Wy(=y,;) =0for j =1, ..., k;. We conclude that on the set {y e R : W;(y) =
+1}, the function W,(—y) is locally constant and vanishes at the endpoints, thus
we have the inclusion

{yeR:Wi(y) =+1} C{y e R: W(—y) =0} (7.8)

This inclusion is strict because the endpoints y; ; of the former set cannot match
any of the endpoints —y;, ; of the latter set due to the nonvanishing of the sums
Yijy + Y25 + Y31 = Yij, + y2.j,- We conclude (using Lemma 7.2) that for
sufficiently large 7', we have

oo o0

Wi(y)dy < | (1 =Wa(=y))dy

-T =T

and the desired claim (6.2) then follows from (7.2), (7.3).

REMARK 7.4. The above arguments crucially used the hypothesis in
Conjecture 6.8(i). Indeed, the conjecture is false without this hypothesis; a
simple counterexample is when ky = 3, k, = k3 = 1, y;1 = =1, y1o = —4,
yi3=—2,and y,; = y;; =0.

We can partially extend these arguments to cover the cases ki, kp, k3 > 1 as
follows. We use Lemma 7.2 to partition

0,.... ki +1} x{0,.... b+ 1} = VS UV} (7.9)

where Vf;l (respectively V/}) consists of those pairs (p, ¢) for which W5(—y;. »—
Y2,4) = +1 (respectively Wi(—y; , — y2,) = 0). We will work primarily on
V!, although much of the analysis below also applies to V. The set V) is a
combinatorial analogue of the compact set K in the end of Section 5, while V}'
plays the role of the 1-boundaries d(73), U that avoid this compact set.

The set Vfgl avoids the boundary of {0, ..., k;+ 1} x {0, ..., k,+ 1} and is thus
actually a subset of {1, ..., k;} x {l,..., k»}. We place a directed graph GTZI =
(V3', E};) on the vertex set V5! as follows. If 0 < p < k; and 0 < g < k; have
the same parity and |y, ,— Y1 p+1] < [¥2,4—Y2,4+11, We connect (p, b) to (p + 1, b)
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whenever b € {q, g+1} is odd with (p, b) € Vlgl, and connect (p + 1, b) to (p, b)
whenever b € {q,q + 1} is even with (p,b) € V;}'. If instead p, ¢ have the
same parity and |y, — Y1 p+1l > |Y2.4 — Y2.4+1], We connect (a, g) to (a,q + 1)
whenever a € {p, p + 1} is odd with (a, q) € Vfgl and connect (a,q + 1) to
(a, q) whenevera € {p, p+ 1} is even with (a, q) € Vl*z'l. By Lemma 7.3(ii), this
construction only produces edges that start and end in V;}'; indeed, every point
(a,b)yin{p,p+1} x{g,qg +1} N v;l will be connected to another point in this
set, either by an outgoing edge (if a + b has the opposite parity to p or g) or an
incoming edge (if a 4+ b has the same parity as p or ¢). Applying this procedure
to each square {p, p + 1} x {g, g + 1} with 0 < p < k; and 0 < g < k; the
same parity, one obtains a directed graph G| = (Vfgl, Ej)in Wthh each vertex
has exactly one outgoing edge and one incoming edge; thus G , decomposes into
disjoint simple directed cycles. Any one of these cycles y can enter a vertical line
{a} x {0, ..., ky + 1} from the left only when the second coordinate is odd, and
from the right only when the second coordinate is even; thus y will intersect such
a vertical line at odd second coordinates the same number of times as at even
second coordinates; that is to say

> =nt=o.
b:(a,b)ey
Similarly for every horizontal line, thus
D, (='=0
a:(a,b)ey
for all 0 < b < kp 4+ 1. As a consequence, we have
D D (g +y20) =0
(a,b)ey
for each cycle y, and hence on summing in y
D D (g + y20) =0
(a,b)ev!

and hence by (7.9)

> = 1)“+b(yla+y2b)—2< 1/~ 1y1,+2< Dy (7.10)

(a.b)eV j=1

Next, we claim the identity

> (=D sgn(yia + Yap + y2r) =0 (7.11)

(a,b)ev;i!
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for all 0 < r < k3 + 1. This is certainly the case for r = 0, so it suffices to show
that

Yo D sgniatyn ) = Y (=D sgn(yia 4 yan + y3,i1)

(a.b)ev! (a.b)evy!

for all 0 < r < k. Fix such a r. By breaking up V;}! into squares, it suffices to
show that

Z (=D sgn(y1.a + Y2 + ¥3.)

(a.b)e{p. p+1ix{g.g+ 1INV}

= > (=D sgn(y1a + yob + yarp)  (7.12)

(a.b)e{p. p+1)x{q.qg+1}NV5!

whenever 0 < p < k; and 0 < g < k; have the same parity as r. Suppose first
that |y1 41 — yi,p| < [¥2.441 — Y241, then by Lemma 7.3(ii), the set {p, p + 1} x
{g,q+1}N Vﬂgl is the union of horizontal lines {(p, b), (p+1, b)}. It then suffices
to show that for each such line, we have

> =D sgn(yia + Yap + ¥30) =0 (7.13)

ae{p,p+1};ce{r’ ,r'+1}

for all 0 < r’ < k3 with the same parity as p, ¢; but from Conjecture 6.8(ii)
and Example 6.7, the sign of the triple sums of {yi,, Y1 p+1}, {V2.45 Y2441},
{¥3., ¥3.,+1} 1s not influenced by one of {yi ,, y1,p+1} or {ys,, y3,741}, giving
(7.13). The case when |yi p+1 — Yi,p| > V2,441 — Y24l 1s treated similarly (using
vertical lines in place of horizontal lines).

If we now define the modified winding number

WhO) = Y (=D sgn(yia + y2p — )

(a,b)eVyy
then we see from (7.11) and Proposition 7.3 that
Wh(=ys,) =0 (7.14)

for all 0 < r < k3 + 1. From (7.10) and Fubini’s theorem we see that

00 ki ky
/ Whdy =Y (=1 "y + ) (=) Ny + T
-T j=1 j=1
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and

T ki ky
/ A= WoONdy == (=D "y 4+ Y (=D 'y +T (715

j=1 j=1

for sufficiently large 7.

On the set {y : W3(—y) = +1}, we now see that the function Wlo2 is locally
constant (since, by definition of WY,, all the discontinuities y; , + y», of W}, lie
in the set {y : W3(—y) = 0}) and equal to O on the boundary (thanks to (7.14)).
This gives the inclusion

[y Ws(=y) =+1} C {y: Wh(y) =0} (7.16)

which generalizes (a permutation of) (7.8). This gives some (but not all) cases of
Conjecture 6.8:

PROPOSITION 7.5. Conjecture 6.8 holds under the additional assumption that
the function W (y) < 1 forall y.

This case of Conjecture 6.8 is analogous to the case of (5.8) when the 2-cycle
§2 appearing in that inequality has a definite sign.

Proof. The inclusion (7.16) is strict, because the endpoints of the set {y :
Wi(—y) = +1} cannot agree with any of the endpoints of {y : W(y) = 0}.
We conclude (using Lemma 7.2 and the hypothesis W7, < 1) that for sufficiently
large T that

T T
| wiendy < [ a-whona
and the desired inequality (6.2) then follows from (7.2), (7.15). I

This observation can handle several further cases of Conjecture 6.8 (for
example, the perturbative regime in which the y, i, ..., y24, are very small
compared to the differences between the y;i,..., ¥i4 ). Unfortunately it is
possible for W, to exceed 1, which means that one cannot resolve Conjecture 6.8
purely on the strength of the inclusion (7.16). However, it appears from
numerous examples that whenever this occurs, a significant portion of the
set {y : Wio(y)? = 0} is ‘closed off’ from Wj, in that the set {y : Ws(—y) = +1}
is prohibited from entering that portion, which restores the truth of Conjecture 6.8;
the author was able to make this statement rigorous in the case k3 = 3 by a rather
lengthy and ad hoc argument, which unfortunately does not seem to extend to the
general case. Rather than present this (somewhat unenlightening) argument here,
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we give an example to illustrate this ‘closing off’ phenomenon. We will take
ki =k, =3 and y;; < y12 < Y13 and y21 < Y22 < Yp3 (this ordering is
consistent with the noncrossing hypothesis (i)). We will assume that we are in
the ‘almost perturbative setting’ in which the nine sums s;, ;, := yi j, + y»j, for
Ji, 2 = 1, 2, 3 are ordered by the relations

S, <812 < 81,3,82,1 < 8522 <83 <531 <832 < 533.

thus the only uncertainty in the ordering of these nine sums arises from the relative
positions of s; 3 and s, ;; clearly both orderings are possible. These relations imply
the further inequalities

Y22 = Y2,1, Y23 — Y22 < Y12 — V1,15 V1,3 — V1,.2-

By this and many applications of Proposition 7.3(ii) we can see that W3(—y; , —
Y24) = 0forall p,q € {0, 1,2, 3,4}, hence VE‘ is empty and Wlo2 = W), in this
case.

First suppose one is in the ‘fully perturbative’ setting where s, 3 < s, (this for
instance occurs when all the y, 1, ¥2.2, ¥2.3 are small compared to the differences
Y12 — Y11 and y; 3 — y12). In this case the winding number W), = Wlo2 only takes
the values 0 and 1, with the former occurring on the intervals

(51,1, 812) U (51,3, 52,1) U (52,2, 82,3) U (53,1, 532) U (533, +00), (7.17)

and Proposition 7.5 gives (6.2) in this case. In this case one can make the error in
(6.2) arbitrarily small; for instance if one takes k; = 9 and

Y31 = —S1,1 — €
V3o = —Si2t¢€
Y33 = —81,3—¢&
V34 = —S3+E€
Y35 = =82 — €&
Y36 = —S21 t+€
Y37 = —831 — €&
Y38 = —S32+¢€
Y39 = —833 — €&

for some sufficiently small ¢ > 0, one can check that the hypotheses of
Conjecture 6.8 hold, and the left and right-hand sides of (6.2) differ by 9¢; see
Figure 12.
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53,3

[ s
831_|

5213
s
821_|

5113

S1i2

S1i1

Figure 12. The perturbative case. The solid line represents those sums (x, y; +y,),
where (x, y;) lies on a simple curve passing through (0, y; 1), (0, y1.2), (0, yi3),
and (x, y,) lies on a simple curve passing through (0, 1), (0, y2.2), (0, y2.3).
Note how the entire region (7.17) (viewed as a subset of the y-axis, drawn here as
a dashed line) lies above the solid line, in the sense that it is connected to (0, T')
for arbitrarily large and negative —T . The points (0, —y;;) fori = 1,...,9 (not
pictured) lie just above the curve in this region.

Now suppose that s, 3 > s, . In this case, Wi, = Wlo2 now takes the value of 0
on the intervals

(51,1, 81,2) U (82,2, $2.3) U (53,1, §32) U (533, +00)

but is additionally equal to 42 on the interval (s3 1, $,3). The argument used to
prove Proposition 7.5 then fails to establish (6.2), incurring instead an additional
additive error of s,3 — .. However, in this case the portion (s,5,s3) of
{y : Wia(y) = 1} now becomes ‘closed off’ from the points —ys 1, ..., —¥34,,
in the sense that none of the —y; ; can lie in this interval, which also implies that
W;(—y) cannot equal 1 in this interval either; see Figure 13. This lets one improve
the bound arising from (7.16) by a factor of s, 3 — 5,5, which exceeds the loss of
§1.3 — §2.1 incurred previously because s, > s . This restores Conjecture 6.8 in
this case. To see why none of the —ys ; lie in (s,,2, 52,3), suppose for contradiction
that this were not the case, and let 1 < p < k; be the largest index such that
—¥3,p € (52,2, 52,3). This index p cannot equal k3, because this would imply that
the pairs {yi 1, yi2}, {¥2,3, y2.4} and {y3 ,, y3 ,+1} have crossing sums (only one
of the eight sums from these pairs is positive), contradicting Conjecture 6.8(ii).
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52
S1
[ I
52,1
S1i2

Figure 13. The nonperturbative case. There is now a region of winding number +2
between s,,; and s, 3. But to compensate for this, the region between s, ; and s3 1,
which still has a winding number of 0, has been cut off from (0, T') for large T .
This cut-off region is necessarily larger (as measured as a portion of the y-axis)
than the region of winding number +2.

The same argument excludes the case when p is odd and less than k3, since in this
case y3 p+1 avoids (s, 52,3) by hypothesis, and also avoids (s 3, 522) since WIO2
equals +1 there (here is where we use s13 > $2.1), so one has an odd number of
positive sums in this case. Finally, the index p cannot be even, because —ys i
lies outside (s,.2, 52.3) and also outside (s32, s33) (as Wy, equals +1 there) and
hence the triple {yi2, ¥1,3}, {¥2.2, 2.3}, {¥3.5> ¥3,p+1} Would be crossing (this has
an odd number of positive sums), again contradicting Conjecture 6.8(ii). Thus
Conjecture 6.8 holds in all of these cases. More generally, the author has observed
numerically that every creation of a region where W, exceeds 1 will invariably be
accompanied by a larger region of {W/,(y) = 0} which is now ‘closed off” from
W3, and was able to verify this claim rigorously when k; = 3 or k, = 3 by ad hoc
methods, but was unable to see how to establish such a claim in general.
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