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A CHAIN RULE FOR
NONSMOOTH COMPOSITE FUNCTIONS VTA MINIMISATION

D. RALPH

Nonsmooth calculus using the approximate subdifferential of Mordukhovich and
IofFe admits a sharper chain rule, hence sharper applications in optimisation, than
does the generalised gradient of Clarke. We observe, however, that at a local
minimum point of the composition of nonsmooth vector valued and real valued
functions, the generalised gradient admits a special, relatively sharp chain rule, that
yields sharper results than have been seen before in the context of the generalised
gradient.

1. INTRODUCTION

Let X and Y be Banach spaces with continuous dual spaces X' and Y' respec-
tively, and C(X, Y) be the space of bounded (continuous) linear mappings from X to
Y. Let f : Y —* M., g : X —* Y, and suppose that g is Lipschitz near a point x € X
and / is Lipschitz near x = g(x).

There are various notions of derivatives generalising the classical definition which is
used for smooth functions. Perhaps the best known is the generalised gradient, Clarke
[3], of a locally Lipschitz function, denoted by d. We mention that the generahsed
directional derivative of / at y £ Y in the direction v £ Y,

f°(y;v) *? limsup[/(j,' + tv) - f(y')}/t,

no
is used to define the generalised gradient:

df(y) d= {A 6 y ' | Ai, < f°(y;v), Vv G Y}.

An alternative is the approximate subdifferential of Mordukhovich [13] and Ioffe [9],
da, whose more complex definition is postponed to the Appendix, for brevity here. We
note df(y) is always convex, though daf(y) may not be, and that the former contains
the latter for y near x~, sometimes strictly. For example, the function / : R —> R : y \—>
— |2/| is such that daf{0) = {-1,1} whereas 5/(0) = [-1,1]. Nevertheless Ioffe [9,
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Proposition 3.3] shows that clco daf(y) = 9f(y) for y near sc, where clco denotes the
closed convex hull operation. An extension of classical calculus is that if x~ is a local
minimiser of / then 0 <E daf(x) fl df(x). Also, if / is continuously differentiable with
gradient V / , then daf(y) = df{y) = {V/(y)} .

The approximate subdifferential has proven to be a slightly sharper tool, as evi-
denced not only by the inclusion daf(y) C df(y), but by the need for the closed convex
hull operation in the second of the following two chain rules.

THEOREM 1 . Suppose g is compactly Lipschitzian (see Appendix) at x. Then

(1) da(fog)(x)c |J da(Xg)(x),

and

(2) 0(/o5)(x)Cclco (J 8(Xg)(x).

P R O O F : If Y is finite dimensional, the compactly Lipschitz hypothesis on g is
superfluous because g is Lipschitz near x, and the chain rule (1) is due to Mordukhovich
[13]. More generally, the first chain rule is due to Jourani and Thibault [12]. It is closely
related to of a result of Ioffe [10, Corollary 7.8.1], which assumes that fog has a strict
prederivative at x with compact values. The second chain rule is due to Glover [5]. D

Both chain rules are fundamental in proving a number of closely related stability
(surjectivity) results and optimality conditions for nonsmooth optimisation. Results
using the generalised gradient can often be deduced as trivial corollaries of corresponding
results using the approximate subdifferential, because the generalised gradient contains
the approximate subdifferential. Some results using the generalised gradient, however,
are actually sharper as corollaries than they appear to be if proved from first principles
using only the generalised gradient. An example is the chain rule Proposition 2, below,
which, though specialised to the case of minimum points, is clearly sharper than its
often quoted counterpart (2). We highlight Proposition 2, rather than simply listing
further such results, because it can be used in the context of the generalised gradient to
directly generate many such results. See Section 2 for further examples and discussion.

We use the generalised Jacobian, of Ioffe [8] and Ralph [14], of g at ~x:

*) d=d= n iA G £ ( x ' y ) iX A e

PROPOSITION 2 . Under the hypotheses of Theorem l,ifx is a local minimis
of f o g then

0 e df{x)8g(x) d= U Xdg(x).
Agfl/(x)
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[3] A chain rule 131

PROOF: From Ioffe [9], 0 G da(f o g)(x). So (1) gives

0 G |J da(Xg){x).
A€8o/(i)

We have daf(x) C df{x) and, for each A G Y',

da(*g)(x) C d(\g)(x) = Xdg(x).

The equahty, primarily the existence of dg{x), follows from both [8, Theorem 10.4] and
the proof of [6, Proposition 2.2]. D

A proof of this result without using approximate sub differentials would be of inter-
est. We believe one of the successes of approximate sub differentials is that formulae such
as (1) become available, whereas, in the context of generalised gradients, Proposition 2
has possibly never even been conjectured.

2. APPLICATIONS

2.1 METRIC REGULARITY.

Consider the system

where D is a nonempty closed subset of X. Suppose that x is feasible, that is, g(x) — 0

and x G D, and g is compactly Lipschitzian near x. Let T = 5~1(0) C\D, the feasible

region.

This system is metrically regular at x if

for some a > 0 and each x in D near x. The function distr is called the distance

function of T, and is Lipschitz with Lipschitz constant 1 [3, Proposition 2.4.1].

There are various conditions using the Clarke [3] tangent or normal cones to D,
that ensure the existence of such a constant a. More general results, however, have
been possible using the approximate subdifferential than the generalised gradient. The
standard method of proof uses a result of the following type:

PROPOSITION 3 . If (*) is not metrically regular at x, then there are sequences

{xn) —» x in D, (yn) —» y = g(x) in Y, and (£„) —> 0 in (0, oo), such that for each

n , y f l / g(xn)> and the function

<f>n : X - • R : x >-> \\g(xn) - yn\\ + Sn \\x - xn\\
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has a (global) minimum, over D, at x n .

PROOF: See the proof of Ioffe [7, Theorem 1]. The result is also a corollary of
Borwein [1, Theorem 2.2]. D

Let U be a neighbourhood of x in which g is Lipschitz with Lipschitz constant
K > 0, and assume without loss of generality that (sn) C U and (£„) C (0,1). Thus
4>n has the Lipschitz constant K + 1 on U, hence by Clarke [3, Proposition 2.4.3], xn

is an unconstrained local minimiser of </>n + (K + 1) distp. Now <f>n is the composition
of the mappings F : Y x X X R -> R : (y,x,a) ~ \\y\\ + 6n \\x\\ + (K + l)a and
G:X—*YxXxHL:xi-* (g(x) — yn, x — xn, distp (x)). The chain rule Proposition 2
yields

0 6 9 INI ($(*») - yn) dg(xn) + 6n8 Il-H (0) + (K + l ) a d i s t D (x n ) ,

where the first norm is on Y, and the second on X. In particular, there exist An in
the unit sphere of Y' and £n in the closed unit ball of X', such that

(**) 0 G \ndg(xn) + 6n(n + (1 + K) distD (xn).

This can be used to deduce sufficient conditions for metric regularity, as stated below.
When using the generalised gradient, however, the usual chain rule (2) yields that

dTl>n(xn) C dco[a Il-H (</(*„) - yn) 8g(xn)} + Sn8 \\-\\ (0) + (K + l )9d i s t D (xn).

ruling out the relatively simple inclusion (**). Thus until now [1, 6], in this framework
the assumption that Y' has an equivalent smooth norm has been made, to guarantee
that firstly 3||-|| (yn — 9(xn)) is a singleton {An}, where An 6 Y' is the gradient of ||-||
a t Vn — 9(xn), and secondly

d^n(xn) = -Xndg(xn).

In this more restrictive case, (•*) holds.

The following results on metric regularity are proven in a straightforward manner
using (•*). See for example, [7, 1, 11, 6] for related proofs. Denote the open unit ball
in X by Bx, and the Clarke tangent cone [3] to D at x € D by TD{X) • The core
(algebraic interior) of a set in Y is the subset of its points y such that for any direction
v G Y, y + tv also lies in the set for sufficiently small t > 0; in fact, since Banach spaces
are Baire spaces, substituting the interiority operation for the core operation in each
of the following conditions gives equivalent conditions, respectively. The generalised
Jacobian dg is (strongly) upper semicontinuous at x if for each neighbourhood Af of
dg(x) (in the norm topology of C(X,Y)), there is a neighbourhood U of x such that
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THEOREM 4 . Suppose g is compactly Lipschitzian in a neighbourhood of'x € D,
where D is a closed subset of X. The following are both sufficient conditions for (*)
to be metrically regular at x.

(1) For some neighbourhood U of x,

OG core Q dA{Bx f"l TD(x)).

(2) dg is (strongly) upper semicontinuous at x~, D is convex and

0 6 core Q di4(Bx n (D - x)).

The second condition is an extension to the nonsmooth case of the well known
results of Robinson [16], which apply to a continuously differentiate function g and a
closed convex set D.

2.2 OPTIMAL MULTIPLIERS VIA EXACT PENALTY FUNCTIONS.

Jourani and Thibault [12] emphasise that the chain rule (2) for the generalised
gradient, since it requires the closed convex hull operation, is not as useful as the
approximate subdifferential in obtaining first-order necessary conditions for nonsmooth
constrained optimisation. The chain rule Proposition 2 remedies this shortcoming.

As an illustration suppose <j> : X —» R is Lipschitz near x, and x is a local
minimiser of

min^(x) subject to g{x) = 0, x £ D.
X

Assume the system (*) is metrically regular at x. Then z is also a local minimiser of
the penalty function

for some « > 0. To see this, observe that metric regularity says that the increase in
the penalty term ||<7(z)|| + distp (x) is at least linear in the distance from the feasible
region, for x E D near x; this easily extends to all x near ~x. Hence for some K, the
rate of increase of K(| |(/(X)| | + dist/j (x)) caused by violating the constraints near x is
greater than the Lipschitz constant of <f> near x, and it follows that pK(x) > pK(x) if
x is near ~x but is not feasible. The penalty function pK is called exact because x is a
local minimiser of pK. See Burke [2] for further details.

Since x is a local minimiser of p«, we have 0 6 dapK{x)C\dpK{x). If g is compactly
Lipschitzian at x, (1) gives

0 € dapK C da<f>{x) + K[ ( J da(\g)(x)] + «5a distD (x)
usi

da(\g)(x) + N°(x),
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where N§{x) is the G-normal cone [10] to to D at x, that is, the weak* closure of the

union of sets ada disto (sc), a > 0. The functionals A in Y' (and also those in Np(x))

are immediate generalisations of the Lagrange or Karush-Kuhn-Tucker multipliers so

familiar in smooth optimisation [4].

In light of (2), one might expect that the corresponding formula using the gener-

alised gradient must involve

dco (J d(\g)(x),

which obscures the multipliers A so-neatly found above. But from Proposition 2 (or
the above formulae involving the approximate subdifferential),

0 G d(/>(x) + /cddistc (x)dg(x) + /c9distD (x)

+ | J *dg(x) + ND(x),

where ND(X) , the Clarke normal cone to D at x, coincides with the weak* closure of
the union of all sets addistjj (ic), a > 0 [3, Proposition 2.4.2]. This extends multiplier
rules for classical constrained optimisation problems, using generalised gradients and
generalised Jacobians in place of gradients and Jacobians of smooth functions.

2.3 A CHAIN-MEAN-VALUE RULE.

We have

LEMMA 5 . For any xi,x2 near x there exists t G (0,1) such that x = txi +

(1 — t)x2 satisfies

f o g(xi) - / o g(x2) G df(g{x))dg(x)(x! - x2).

PROOF: Choose x\,x2 in a convex neighbourhood U of x in which / o g is Lips-
chitz. Let h: [0,1] -» R : 1i-» / o g(txi + (1 - t)x2) - if o g(Xl) - (1 - t)f o g(x2). By
continuity of h, there exists t €E (0,1) that minimises either h or —h over [0,1]. In
either case an application of Proposition 2 yields the result. U

3.APPENDIX

Let <j>: X ->R\J {oo} and dom^ d= {x G X \ <f>(x) < co}. Let x G dom^. For

u € X, let

I def

no
and define

| d=f {( G X' | £u < 4>l(x;v), V« G X}.
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If x & dom<f>, 3^<}>{x) is defined as the empty set.

For any set D in X , let

drf I V\xl u i t x/,
I oo otherwise.

By x—*x we mean x —* x and <f>(x) —» <j>{x) • By

lim sup 0* $£>(

we mean the set of weak* limit points of all sequences (£„) such that for some (xn)-*x,
£n G 9^u(a!n) for each n.

DEFINITION 6: [9, Definition 1]
Let A denote the collection of all finite dimensional subspaces of X. The set

o#*)d= f| li

is called the a(pproximate)-subdifferential of ^ at x.

If <̂> is Lipschitz near x then the above can be simplified using the fact that

* A . + L ( * ; « ) = *"(*;«) =f Uminf^x + <u) - <f>(x)]/t,

for each x near x and u in I .

We also recall the definition of a compactly Lipschitzian mapping:
DEFINITION 7: [12]

The mapping g is said to be (atrongly) compactly Lipschitzian at a point a G X if there
is a mapping K from X into the set of nonempty (strongly) compact subsets of Y and
a mapping r from X x X into [0, oo) such that:

(2) there is £ > 0 such that for each h G SEX, x€a + SEX and t G (0,

f-1^* + th)-g(x)} G JT(fc) + ||fc|| r(x;th)BY;

(3) -K(0) = {0} and the set set-valued mapping K is upper semicontinuous

(that is, for each u G X and e > 0, there is J > 0 such that K(u') C

K(u) + eBy for each u' G « + 5Bx ).
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136 D. Ralph [8]

If g is compactly Lipschitzian at every x G X then g is said to be locally compactly
Lipschitzian.

Note that if Y is finite dimensional and g is Lipschitz near x with Lipschitz
constant k > 0, then we see that g is compactly Lipschitzian at each point near x by
taking K(h) = k \\h\\ c l l y . In infinite dimensions, if g is continuously differentiable
with Jacobian Vg(x) at x, then by taking K{h) = Vg(x)h we see that g is compactly
Lipschitzian at x. For more examples of compactly Lipschitzian functions see Thibault
[17].
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