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Abstract

To address the question of how to deliver time-sensitive software for cyber-physical systems
(CPS) requires a range of modelling and analysis techniques to be developed and integrated.
A number of these required techniques are unique to time-sensitive software where timeliness is
a correctness property rather than a performance attribute. This paper focuses on how to obtain
worst-case estimates of the software’s execution time; in particular, it considers how workload
models are derived from assumptions about the system’s run-time behaviour. The specific
contribution of this paper is the exploration of the notion that a system can be subject to more
than one workload model. Examples illustrate how such multi-models can lead to improved
schedulability and hence more efficient CPS. An important property of the approach is that the
derived analysis exhibits model-bounded behaviour. This ensures that the maximum load on
the system is never higher than that implied by the individual models.

Introduction

The safety properties of most safety-critical cyber-physical systems (CPS) must be verified
before they may be deployed in the field. Since such verification occurs prior to run-time, it is
typically performed upon carefully constructed models of the run-time behaviour that the
system is expected to exhibit. Such models are designed to emphasise the salient features of
interest from the perspective of verification. In particular the verification of timing correctness
properties (e.g., that deadlines are met) is usually done by the application of results from
real-time scheduling theory. The models used in this theory make assumptions regarding the
form of the workload that will need to be accommodated and the characteristics of the platform
upon which such executions will occur.

The sporadic task model is one that is commonly applied in real-time CPS. The workload is
defined by a number of concurrently executing tasks, each of which gives rise to an unbounded
sequence of jobs. A minimum interval of time (called the task period) must elapse between
consecutive jobs from the same task. Every job must complete by a defined deadline. Once the
platform is identified, the resource requirements of each task can be obtained. For example, with
a single processor pre-emptive platform the key modelling assumption is that each job has a
known worst-case execution time (or WCET) that upper-bounds it actual execution time.

During the planning and verification phases of the system’s development a run-time
scheduling protocol is chosen, such as fixed-priority (FP) scheduling. All such protocols are
coupled to some form of analysis, such as response time analysis (RTA) for FP scheduling
(Joseph and Pandya 1986; Audsley et al. 1993), that ensures that if all the assumptions about the
application, the platform and the scheduling protocol are correct then every job of each task will
complete its execution prior to its deadline.

The validity of the verification depends upon the actual workload, platform and run-time
scheduler being compliant with the model assumptions. But to deliver a well-engineered
and energy efficient system also requires the model assumptions to be realistic, that is,
to not be excessively pessimistic. Pragmatically we also require that the associated analysis be
comprehensible and hence potentially part of a safety case for the CPS.

The recent rapid development of Machine Learning techniques has led to the widespread use
of Deep Neural Nets (DNNs) within autonomous resource-constrained CPS. One of their
primary applications is to undertake classification exercises. Here a complex chain of DNNs is
used to ‘understand’ the dynamic environment within which the CPS is operating (Razavi
et al. 2022).

Many of these CPS are employed (or are been considered for employment) in safety-critical
applications and require accurate predictions to be delivered in real time using limited
computing resources (this is sometimes called ‘edge AI’where the efficient execution of machine
intelligence algorithms on embedded edge devices is required (Chen and Ran 2019;
Yao et al. 2017).

In this paper we aim to deliver more efficient CPS of this kind by exploring the use of
Multi-Models: defining the behaviour required of the system by not one but a collection of
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integrated models. Distinct models may reflect different modes of
operation of the system, different states of the environment, or
different users/stakeholders of the system. The notion of integrated
multi-models is a generalisation of the hierarchical models used to
definemixed-criticality systems (MCSs). We therefore next review
this material before returning to defining multi-models and to
giving examples of the benefits of their use.

Background

MCSs, widely studied in the real-time scheduling literature,
provide an illustrative example of the use of multi-models for
representing complex components. Each task in the task model
proposed by Vestal (Vestal 2007) is characterised by multiple
WCET parameter values representing different estimates that may
be trusted to different levels of assurance. Each task is also assigned
a criticality level, which is, informally speaking, an indicator of the
importance of that task to overall system correctness.

From an analysis standpoint the important property of the Vestal
model is not somuch the notion of criticality but the fact that the task
set under inspection hasmore than one workloadmodel (Burns 2019;
Burns and Baruah 2023). Vestal suggests that different stakeholders
would want to assign different values to one of the parameters (the
WCET) characterising each task: in effect there is not one but a
collection of models that are being applied to the task set, each
modelling the system from a somewhat different perspective.

Since the 2007 publication of Vestal’s paper there have been
over 500 papers produced that have extended and utilised this
notion of MCS (see Burns and Davis 2022, 2017). There have also
been a number of papers that have criticised the Vestal approach
(Graydon and Bate 2013; Esper et al. 2015; Paulitsch et al. 2015;
Ernst and Natale 2016; Esper et al. 2018). Much of this criticism is
based on different views as to the meaning of ‘criticality’. However,
the rich body of results that have appeared under the umbrella of
MCS do not require or assign any particular meaning to the term
‘criticality’; what they utilise and exploit is the idea that there
is more than one interpretation of the temporal properties
(i.e., model parameters) of the tasks under consideration.

Recent work has illustrated (Burns et al. 2019; Jones and
Burns 2020; Burns and Jones 2022) how the run-time behaviour of
a simple MCS may be specified by using Rely Conditions
(Assumptions) and Guarantee Conditions (Obligations). In the
mixed-criticality (MC) framework there is a ‘degraded’mode with
weaker Assumptions and weaker Obligations into which the
system will transition following an ‘over-run’ fault (i.e., a task
executing for more than its assumed WCET). In this degraded
mode only the higher-criticality jobs are guaranteed to meet their
deadlines. This is an example of a hierarchical multi-model.

It is sometimes convenient to interpret assumption–obligation
specifications in terms ofmappings. Under such an interpretation,
the assumptions specify the set of all behaviours of the
environment for which the system is expected to behave correctly;
the obligations specify the corresponding correct system behav-
iours. Then correct system execution maps each assumed behaviour
of the environment to some correct system behaviour – see the top
diagram of Figure 1. The middle diagram in this Figure depicts a
MCS with a hierarchical relationship between the assumptions and
obligations. The bottom diagram generalises this relationship;
there are overlapping sets of assumptions leading to overlapping
obligations. In both of these situations, correct behaviour of the
system requires at least one of the sets of assumptions to
remain true.

Analysis of MCS multi-models

Vestal’s MC model, and much of the subsequent literature on MC,
is based on the sporadic taskmodel.With this model each task, τi is
defined by 4 parameters: Ci – WCET, Ti – Period (the minimum
time between successive job releases from the same task), Di –
Deadline (the relative deadline of the task, any job released at time t
must compete before t þ Di) and Li the criticality level of the task.

As discussed above, each task has a WCET parameter for each
criticality level and these values increase as one moves up the
criticality ladder. Each task and the complete CPS itself is defined
over a sequence of criticality modes. If at some time t the system is
in mode L then only tasks of criticality level L or higher need to be
guaranteed to execute correctly. And these guarantees must be
made based on the assumption that all tasks can execute up to, but
not beyond, the WCET value associated with L.

Priority assignment is crucially important in FP scheduling. For
task systems that have relative deadline equal to period the rate
monotonic priority assignment (RMPA) scheme is optimal (i.e.,
will lead to a schedulable task set if there exists any feasible priority
ordering).1 With RMPA priorities are ordered according to period
(T) – the shorter the period the higher the priority. When relative
deadlines (D) are shorter than period then the deadline monotonic
assignment (DMPA) scheme is optimal. Here relative deadlines are
used to order the priorities – the shorter the relative deadline the

Figure 1. The top diagram depicts system execution as a mapping from a set A of
assumed behaviours of its environment to a setO of system behaviours that fulfils its
obligations. The middle diagram depicts amixed-criticality system in which the sets of
assumptions and obligations satisfy a subset/ super-set relationship. And the bottom
diagram depicts the execution of multi-model systems with overlapping integrated
assumptions and obligations.
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higher the priority. The final case to cover is when some of the tasks
have relative deadlines that are larger than their periods. These
tasks will on average finish before they are re-released, but in the
worst-case jobs from the same task can overlap. With these
arbitrary deadlines neither RMPA or DMPA is optimal, but
fortunately an optimal assignment algorithm does exist – this is
known as Audsley’s Algorithm (Audsley 1990).

The standard way of analysing a system to determine that all
deadlines will be met is to apply RTA (Joseph and Pandya 1986;
Audsley et al. 1993). As the name implies, this involves computing
(see eq. (1)) the longest completion time (response time, Ri) for
each task and checking that this is not greater than the task’s
relative deadline (i.e., ensuring that Ri � Di;8i).

Ri ¼ Ci þ
X

τj2hpðiÞ
Ri

Tj

" #
Cj; (1)

where hp ið Þ is the set of tasks that have a higher priority than τi.
This equation is solved using the standard techniques for solving
recurrence relations (i.e., fixed point iteration).

With a MC model Audsley’s optimal priority assignment
algorithm can again be applied to maximise schedulability. In
effect the algorithm delivers a priority ordering that is adequate
(i.e., leads to a schedulable system) but also maximises the
priorities of the higher-criticality tasks. RTA can also be adapted to
test for the schedulability of a MCS (Baruah, Burns, and Davis
2011). Unfortunately this adaptation is not straightforward. As a
system transfers from one criticality level to the next a number of
tasks will have theirWCET budgets increased, whilst others will no
longer be supported. This complex transition can temporarily
increase the load on the system. As a result, analysis needs to be
developed that can accommodate this criticality mode change.
Many forms of such analysis have been published (see the
following review papers for coverage of the many contributions in
this area: Burns and Davis 2022, 2017; Guo and Baruah 2017;
Arbaud, Juhász, and Jantsch 2018; Yoon et al. 2018; Althebeiti
2020; Cinque et al. 2022; Chai et al. 2019) a number of which have
been later shown to contain errors. They differ in the assumptions
made, the tightness of the analysis and the level of degraded service
allowed for those tasks that are no longer guaranteed.

One of the objectives of the approach developed in this paper is
to remove the need for this complex mode change analysis.

Multi sporadic task model

We consider a multi-model specification approach to be very
general, and applicable to modelling a variety of different
situations, with the different models accorded different interpre-
tations. Here are some examples.

Different environmental conditions.ACPS that is intended to
operate in several different environmental conditions may be
expected to behave differently under these different conditions.
Assumptions concerning different environmental conditions will
give rise to different workload models even if the Obligations are
the same for all valid assumptions.

Different stakeholders. It may sometimes be the case that
rather than developing individual bespoke systems for several
different stakeholders, it is more efficient to develop a single CPS
that is capable of meeting all their needs. Here, the Assumptions
may be the same but the Obligations differ.

Different levels of service. With a system that is defined to be
resilient to faults and partial failures, different assumptions may
relate to different fault models, with the corresponding obligations
defining degraded (fault-tolerant) levels of service.

Illustrations of these applications of the multi-model idea are
presented below.

Types of multi-model

Generalising from the representation of MCS as multi-models,
three forms of relationship between the individual models within a
Multi-Model framework have been defined (Burns and Baruah
2023):

1. independent multi-models – all Assumptions hold at all
times and all Obligations must always be satisfied.

2. integrated multi-models – at least one set of Assumptions-
Obligations pairings must always be satisfied.

3. hierarchical multi-models – at least one set of Assumption–
Obligations pairings must always be satisfied, and there is a
hierarchical relationship between both the Assumptions and
the corresponding Obligations.

Independent multi-models are straightforward as all Obligation
must always be satisfied. Hierarchical Multi-models are well
illustrated by the extensive literature on MCSs. The remainder of
this paper concentrates on integratedmulti-models. As the purpose of
this contribution is to demonstrate the usefulness of adopting an
integratedmulti-model approach, we introduce the key notions of the
multi-model idea via a running example that employs a generalisation
of the sporadic task model that was introduced in Section 1.

Integrated multi-models

Consider a CPS that performs some form of classification. There
are various sensors that are polled by three tasks executing at three
different rates/periods. A single processor is employed and the
tasks are scheduled pre-emptively using the FP scheme with
priorities assigned optimally using DMPA.

The work to be undertaken by each of these three tasks is
dependent upon the assumptions made about the conditions and
constraints of the environment.

As a simple illustrative example consider a system that outputs
the number and breed of a group of Cats and Dogs in a sensed
environment.2 A simple narrative is used to illustrate the main
features of the approach and to clearly demonstrate the benefits
that can be gained from its adoption.

To bound the work that needs to be undertaken there must be a
bound on the number of pets (Cats and Dogs). Let us suppose that the
use case for this system additionally notes that there can be a few Cats
and a lot of Dogs or a lot of Cats and few Dogs, but never a significant
number of both. This leads to two distinct sets of assumptions (A1 and
A2) about the worst-case run-time conditions of the environment.
Each Assumption is a boolean predicate; so, for example:

A1¼def NDogs � 7 ^ NCats � 2

A2¼def NCats � 6 ^ NDogs � 1

The environment can be relied upon to behave according to
these assumptions: they form part of the system’s specification. At
least one set of assumptions will be true at all times.
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The first four columns in Table 1 defines the workload model
for when A1 applies:

• The first task, τp, manages the sensors and undertakes
other necessary computations. It has the shortest period and a
fixed WCET across all assumptions about the load on the
system.

• Task τc is primarily responsible for the classification of Cats
and has a period3 of 10, a deadline of 10 for each released job
and aWCET, givenA1, of 2 (to reflect that there are at most 2
Cats).

• Task τd is concerned with the classification of Dogs. It has a
longer period of 14 (to reflect some temporal difference
between the sensed objects) and a WCET of 7 (as that is the
maximum number of Dogs when A1 applies).

Both τc and τd are structured to first take in data about the
environment, then process this data and finally to output the
results of this processing.

The tasks in Table 1 (and all subsequent tables) are presented in
priority order, so τp has the highest priority and τd the lowest (as
determined by DMPA).

The final column in Table 1 is the result obtained by applying
RTA to this workload model. To be schedulable the worst-case
response time for each task must be no greater than the specified
(relative) deadline. The response times contained in Table 1 are
obtain from the application of eq. (1). For example, the first
estimate of Rd , is 7. Putting 7 into the RHS of eq. (1) delivers 11
(7þ 2þ 2). Continuing with 11 delivers 14 (7þ 3þ 4). Repeating
with the input of 14 results in 14, and hence 14 is the worst-case
response time for τd .

Clearly the system is schedulable (all job deadlines for all tasks
will be satisfied) under the assumption that the system is executing
within an environment defined byA1. The fact that the deadline of
τd is 14 and the worst-case response time is also 14 shows that the
task set is on the cusp of being unschedulable.

A similar workload model can be derived for whenA2 applies –
this is given in Table 2. Again the task set is deemed to be
schedulable.

We now have two models for the same system. Appropriate
analysis for both models shows that each leads to an implementa-
tion that will meet all deadlines.4 The assumptions for the two
models must of course be valid, as must the predicate that asserts
that at least one set of assumptions is always true.

If this multi-model approach was not adopted then one would
need to employ the traditional method of using a single model that
captures the worst-case behaviour of each task. The assumptions
for the single model (A) must capture all possible behaviours, so

A ¼def NDogs � 7 ^ NCats � 6

This leads to the workload model in Table 3.
The table shows that the worst-case response time of the lowest

priority task is unbounded and hence cannot be less than the finite
deadline defined for the task – the task set is unschedulable. (This
could also be observed by noting that the tasks’ utilisation –
WCET/Period – sum to greater than one (i.e., 1/5þ 6/10þ
7/14 = 1.3) – which for a single CPU platform is clearly infeasible.)

To cope with this inability to schedule the assumed worst-case
workload the hardware platform would need to be upgraded.
Either a faster processor would need to be used or a second
processor added. Both would have cost and performance
implications. The single set of assumptions (A) could now be
accommodated, but at run-time the extra capabilities would never
be required: the environment would never produce the scenario of
7 Dogs and 6 Cats. The two-model specification allows the real
worst-case behaviours to be represented with the result that the
extra hardware is not required.

At run-time the system’s initial behaviour will, typically, be
compatible with both models. Hence both sets of assumptions are
true, and there is again a single model with a basic set of
assumptions, A0:

A0 ¼def A1 ^A2

that is,

A0 ¼def NDogs � 1 ^ NCats � 2

Table 4 defines an upper bound on the workload model that
sustains A0. With these lower estimates for WCET the RTA
computes worst-case response times that easily satisfy the
deadlines.

As long as the assumptions represented by this minimal
workload are true we say that the system’s environment is in state
S0.5 If A1 applies, but not A0 (and hence not A2 either) then the

Table 1. Workload model for when A1 applies

Task Period Deadline WCET ResponseTime

τp 5 3 1 1

τc 10 10 2 3

τd 14 14 7 14

Table 2. Workload model for when A2 applies

Task Period Deadline WCET ResponseTime

τp 5 3 1 1

τc 10 10 6 8

τd 14 14 1 9

Table 3. Single Workload model for when A applies

Task Period Deadline WCET ResponseTime

τp 5 3 1 1

τc 10 10 6 8

τd 14 14 7 1

Table 4. Workload model for when A0 applies

Task Period Deadline WCET ResponseTime

τp 5 3 1 1

τc 10 10 2 3

τd 14 14 1 4
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system is in state S1. Similarly if A2 applies, but not A0 (or A1)
then the system is in state S2. If follows that the systemmust always
be in exactly one of these three states (as depited in Figure 2).

As long as each job completes before it has executed for the
WCET bounds given in Table 4 (i.e., 1, 2 and 1, respectively, for the
three tasks) then the system will remain in state S0. This
corresponds to the environment containing at most two Cats and
one Dog. However, if a job from the third task executes for more
than 1 (because, say, a second Dog is now present) then the system
will move from state S0 to state S1. The assumptions, A1, remain
true, and the analysis for S1 will guarantee that all deadlines are
met. Assumptions A2 are no longer valid. Task τd although
executing for more than 1 will not execute for more than 7 sinceA1
applies.

Alternatively, whilst in S0 if a job from the second task executes
for more than 2 time units then the system will move to S2.
Assumptions A2 hold, but A1 do not. All deadlines are still met.

For either of the above transitions, we have moved from
behaviour sanctioned by two sets of assumptions, to behaviour
sanctioned by just one.With this simple example this is as far as the
system can move. There are no further models, no fault tolerance
and hence it must be assumed that while in S1 assumptionsA1 will
require the three tasks to have execution times bounded by the
values 1, 2 and 7. And similarly while in state S2 assumptions A2
hold and bound the execution times to 1, 6 and 7.

In each state there is a maximum number of Cats and Dogs
allowed. Once in, for example, state S1 the number of Dogs can
vary between 2 and 7. If they ever drop to 1 then this denotes a state
change to S0. There can also be 0, 1 or 2 Cats in S1; changes to this
number cannot cause a state change. AssumptionsA1 ensures that
a third Cat cannot appear while in S1 (or S0).

With the above example we have a system defined by two
models. These two models share a sub-model that defines when
bothmodels apply. This leads to the possibility, in a systemwith an
extended life, that at different times different models will apply. For
example, the environment could at some point consist of mainly
Dogs, but later after a period with few, or no, animals a
predominance of Cats could occur. In terms of applicable
assumptions, the system moves from A0 to A1, back to A0 and
then toA2. For reasons that are explained below we do not want to
allow behaviour that is equivalent to a move directly from S1 to S2
or S2 to S1.

Model-bounded behaviour

To obtain the most schedulability benefit from the multi-model
approach we require that it is sufficient for each workload model to
be schedulable. We do not want a rapid transition from, say, S2 to
S1, to place a load on the system that is higher than that induced by
either model.

For example, if there was a rapid movement from an
environment with 6 Cats and 1 Dog to one with 6 Dogs and 1
Cat then τd could suffer interference of 6 from τc and then have to
execute for 6 itself. With τp executing for 1 in every 5, this means
that τd may have a response time of over 14 and hence miss its
deadline – see Figure 3.

This rapid movement from one model to the other produces a
scenario that has worse temporal behaviour than either of the
individual models.

In Section 2.1, it was noted that mode changes in MCSs suffer
from this problem. A system can be schedulable in both the LO-
criticality and HI-criticality modes but not during the transition
between modes. More general analysis of mode change protocols
(Sha et al. 1989; Burns and Quiggle 1990; Tindell, Burns, and
Wellings 1992; Pedro and Burns 1998; Tindell and Alonso 1996;
Emberson and Bate 2007; Real and Crespo 2004; Azim and
Fischmeister 2016; Henzinger, Horowitz, and Kirsch 2001) also
have to develop analysis that can address the worst-case mode
change behaviour. However, in this paper we are addressing multi-
model specifications, not multi-modal behaviours. In the latter it is
reasonable for a system to transition from one mode to another
(e.g., when a fault causes a task to overrun), but individual models
focus on allowable extreme behaviours; for instance in the above
example either an extreme number of Dogs, or of Cats, but not
both. It is reasonable to constrain the multi-model framework so
that transitions between when one model applies to when another
model takes over do not result in temporal behaviour that is more
extreme than that defined by the individual models. We refer to
this as model-bounded behaviour (MBB).

As well as delivering an improvement in schedulability, MBB
also has the advantage that the analysis of a CPS defined by amulti-
model is no more complicated than when only one model is
applied. The single model analysis is simply applied separately to
each of the models in the multi-model specification. Complex
scheduling theory and analysis, such as that employed in the mode
change papers referenced earlier, presents a barrier to deployment
in CPS that have a safety dimension: there is no evidence that safety
cases have included arguments for timing correctness of more
sophistication than that implied by the simple sporadic taskmodel.
With MBB the required safety arguments are essentially the same.

Sufficient analysis for MBB

There are a number of ways of ensuring that a specific application
of a multi-model specification has MBB. We could, for example,
require that the environment returns to the conditions in which the
basic assumptions apply between any transition amongst other
specific models. So a transition between there being 6 Cats to 6 or
even 7 Dogs must go via a phase during which there are at most 2
Cats and 1 Dog. In this section we develop sufficient analysis for
MBB. More exact analysis may be possible; here we wish to

Figure 2. The three states of the example system, together with the maximum
number of Dogs and Cats allowed in each state.

Figure 3. The three tasks τp (red), τc (blue) and τd (grey) are released at time 0. At
time 1 task τc executes upon an input with 6 Cats. The environment causes a switch of
models somewhere within the interval 2; 8½ �. At time 8 task τd executes upon an input
with 6 Dogs. At time 14 its deadline elapses but it has only executed for 4 of its required
6 time units.
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demonstrate that there is a straightforward method for checking
that an assumption of MBB is valid. To explain the form that this
analysis takes we again structure the narrative around the simple
example introduced above.

First we need to capture the maximum rate of change that the
environment can impose on the CPS. This will be represented by
the parameter TE – the minimum time between changes to either
the number of Cats or the number of Dogs. So if TE ¼ 3 then it will
take at least 18 time units to move from being in state S1 with 7
Dogs to transitioning to S0 with just one Dog. (Here for ease of
presentation we will use a single ‘rate of charge’ parameter; an
extension to a model in which Dogs and Cats each have their own
TE parameter is straightforward.)

To prevent interference between states S1 and S2 (i.e., to
prevent the analysis of the tasks in state S2 being influenced by the
behaviour of the tasks in S1 and vice versa) it is sufficient to prove
that any round of computation started in S1 (S2, respectively)
must complete before the environment could transition the
system to S2 (S1, resp.). (By ‘round of computation’ we mean
the execution of a job from τd and a job from τc, along with the
necessary executions of τp.) This is also known as the system’s
maximum busy period, with the end of the busy period being
called an idle instant.

With FP scheduling the system’s busy period is exactly the
response time of the lowest priority task; in our example this is task
τd . And it is a well-known property of pre-emptively scheduled
sporadic task systems that no behaviour prior to an idle instant can
impact on, or influence in any way, the subsequent behaviour of the
system.

So, for example, if the system is in S1 with 7 Dogs and
2 Cats then A1 applies and Table 1 shows that the worst-case
response time of task τd is 14. Hence if TE ¼ 4 then in 14 time
units the environment could have altered by a maximum of
14=4d e ¼ 4 changes; that is, a reduction from 7 to 3 Dogs. This
implies that the system will remain in S1; the analysis of S2 will
not be effected by the behaviour of the tasks in S1. We potentially
have MBB.

However, showing that we have the desirable behaviour when
there is the maximum load on the system is not necessarily
sufficient. If there are fewer Dogs then there is less work to do, but
fewer steps are needed to move from S1 to S0 and then S2. In
general it is, unfortunately, not possible to predetermine the worst-
case starting condition of the number of Dogs, and hence all
numbers from 2 to 7 must be examined.

To have MBB, we require that regardless of the starting
condition within S1 there must be an idle instant before the
environment could have moved into state S2. Let Rd nð Þ denote
the response time of task τd when the system is in state S1 and
there are n Dogs. This value is easily obtained from eq. (1) by
using n rather than 7 as computation load Cd and assuming that
there are the maximum number of Cats (i.e., Cc ¼ 2). If the
number of steps is equal to (or greater than) n then the
penultimate step would have reduced the number of Dogs to 1
and hence a state transition from S1 to S0; then the final step
could be an increase in the number of Cats (from 2 to 3) and
hence a transition to S2. This breaks our rule that there must be an
idle instant before S2 can be reached. To deliver MBB, we require
that the idle instant occurs no later then the time at which the
transition to S2 occurs. That is, we require that the number of
steps necessary to transition to state S2 is greater than the
maximum number of steps that the environment can accomplish
in the time it takes to process n dogs; that is:

8n 2 2::7 : n>
Rd nð Þ
TE

� �� �
(2)

Table 5 contains the results from applying eq. (2) for two values
of TE , namely 4 and 5. For TE ¼ 5, all values of n are acceptable.
The most critical point is when n ¼ 2, the minimum number of
Dogs allowed in S1.Within the response time of 5 the environment
could reduce the number of Dogs to 1 and hence the state would
change to S0. But a further state change (if sanctioned) wouldmove
the environment to S2. To ensure that there is an idle instant before
this step it is necessary that TE � 5. If this is the case then we can
assert MBB; if not then it is undecided as we have only derived a
sufficient test.

To complete the analysis we also need to consider S2. Let m
stand for the number of Cats. It can take on the values 3, 4, 5 and 6.
As S0 contains two Cats eq. (2) becomes:

8m 2 3::6 : m>
Rc mð Þ
TE

� �
þ 1

� �
(3)

Table 6 has the results for TE ¼ 5, showing that this remains an
acceptable assumption when initially at state S2:

An examination of the predicate that is represented by eq. (2)
shows that if a value of TE leads to MBB then all larger values will
also lead to this behaviour. This is an example of sustainable
scheduling analysis (Baruah and Burns 2006). It also follows that if
the system is schedulable and all tasks have deadlines no greater
than their periods then if the environment is changing at a slower
rate than the slowest task then the longest task response time will
be shorter than TE and hence at most a single change to the
environment could have occurred before the important idle
instant. To move from S1 to S2 requires a minimum of two steps
and hence MBB. Even if the example was altered so that S0 was a
maximum of zero Cats and zero Dogs it would still take two steps
to move from the domain sanctioned by one model to the domain
sanctioned by the other model. And with the forced idle instant
within these two steps we have MBB. It follows that for any

Table 5. Example values from eq. (2) for TE ¼ 4 and TE ¼ 5

n Rd nð Þ Rd nð Þ
4

l m
Passed Rd nð Þ

5

l m
Passed

7 14 4 Y 3 Y

6 10 3 Y 2 Y

5 9 3 Y 2 Y

4 8 2 Y 2 Y

3 7 2 Y 2 Y

2 5 2 N 1 Y

Table 6. Example values for analysis of S2

m Rc mð Þ Rc mð Þ
5

l m
þ 1 Passed

6 8 3 Y

5 7 3 Y

4 5 2 Y

3 4 2 Y
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example, and any number of models, there is a simple sufficient test
for MBB: TE >max Tið Þ.

To summarise the results presented in this section; we have used
an example with two workload models to show how MBB can be
checked for. This behaviour allows the schedulability of the whole
system to follow directly from the schedulability of each model. To
assert that the whole system has MBB, it is necessary to match the
rate of change of the environment with the periods of the tasks that
make up the CPS. In the usual case where the environment is
changing at a much slower rate than the system’s tasks then the
system always has MBB. In other cases the sufficient test developed
above allows an effective and straightforward check to be made.

Future work will consider if a tractable more exact test can be
developed. We will also allow different aspects of the environment
to have different maximum rates of change (e.g., Dog numbers
changing quicker than Cat numbers). The latter should be an easy
extension to incorporate.

Multi stakeholder example

In the above example, the existence of two models follows directly
from there being two sets of assumptions. The behaviour of the
environment allows these two models to exist and ensures that, in
the absence of faults, at least one of them defines the current
workload on the system. There are however other scenarios that
can benefit frommulti-model specifications. One of which is when
there is only a single set of assumptions but more than one
stakeholder – with each stakeholder requiring different aspects of
the computation to be undertaken and hence give rise to different
estimates of WCETs. Here, the obligations are distinct although
they may overlap.

We adapt the above example so that there is just one set of
assumptions, A, but two stakeholders, SKD and SKC. The first
stakeholder is only interested in the breeds of the Dogs; the second
is only interested in the breeds of the Cats.

A ¼def NCats � 5 ^ NDogs � 5

Initially we assume that there is just one stakeholder, SKP that is
interested in the breeds of both sets of Pets. Table 7 gives the
WCET and Response Times for this situation. Again the lowest
priority task is unschedulable.

The individual stakeholders however require less work to be
done. For example, task τc has less work to do when SKD applies.
Tables 8 and 9 give the workload levels applicable for the two
stakeholders. Both models are schedulable.

When the multi-model specification comes from distinct
stakeholders then it is obviously necessary that only one
stakeholder can be active at any specific time6. Again, a long
running system may change stakeholders but it must be the case
that the change occurs after a period of dormancy in which there
are either no Dogs or Cats to classify or the classification action is

inhibited. The latter being equivalent to there being no stakeholder
for a short period of time. They could be represented by the
workload model in Table 10.

Multiple stakeholders can of course be combined with multiple
environmental conditions. For example, Table 11 considers the
scenario that the original set of assumptions A1 and stakeholder
SKD apply. Note the introduction of a more constraining
stakeholder leads to the response time of τd being reduced from
14 to 10. If the deadline of τd was, say, 12 rather than 14 then this
difference in response time would make the difference between
being schedulable or not.

MC revisited

As discussed in Section 2, one of the motivations for defining the
multi-model approach is to generalise the modelling work that has
been applied in the MC domain. With a MC specification there is
usually a single set of assumptions and a single stakeholder, but
more than one way of characterising the single model. As the
characterisations have the same effects on all the relevant
parameters (e.g., all WCET values increase when one moves from
a LO-criticality model to a HI-criticality model) then the multi-
model is hierarchical. It is also clear that to compensate for the
scheduling parameter getting universally worse, the workloadmust

Table 7. Workload model for when A and SKP applies

Task Period Deadline WCET ResponseTime

τp 5 3 1 1

τc 10 10 5 7

τd 14 14 5 1

Table 8. Workload model for when A and SKD applies

Task Period Deadline WCET ResponseTime

τp 5 3 1 1

τc 10 10 1 2

τd 14 14 5 8

Table 9. Workload model for when A and SKC applies

Task Period Deadline WCET ResponseTime

τp 5 3 1 1

τc 10 10 5 7

τd 14 14 1 8

Table 10. Workload model for when A applies with no Stakeholder

Task Period Deadline WCET ResponseTime

τp 5 3 1 1

τc 10 10 1 2

τd 14 14 1 3

Table 11. Workload model for when A1 and SKD applies

Task Period Deadline WCET ResponseTime

τp 5 3 1 1

τc 10 10 1 3

τd 14 14 7 10
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be reduced in some other way – this is typically done by removing
some tasks from the set that must be declared to be schedulable
(Vestal 2007).

In our running example, assume there are two estimates of
WCET for each task, one derived from measurements (WCET-M)
and applicable to mission-critical systems, the other derived from
static analysis (WCET-A) and applicable to safety-critical systems.
To exploit the same example, assume that we have the following
definition of the system’s assumptions (one set):

A ¼def NCats � 4 ^ NDogs � 4

and that the classification of Cats is safety-critical and Dogs
is mission-critical. The two models now apply to mission critical
and safety-critical behaviour – see Tables 12 and 13. Both models
deliver run-time schedulability.

When the safety-critical model applies, then task τd no longer
generates work that needs to be scheduled and it could therefore be
aborted (or execute in the background). It does not interfere with
the crucial tasks and its performance, if it does execute, then it
could be assigned a quality of service, rather than a correctness,
attribute.

As the transition from mission-critical to safety-critical
behaviour occurs during the application’s execution; for example,
when τc executes for more than 4 without completing, it is not
possible to guarantee MBB. Much of the analysis associated with
MCS is concerned with proving that deadlines will continue to be
met during these transitions. By requiring MBB for the general
integrated multi-model framework we have removed the need to
derive this analysis.

Summary

The toy example used in this narrative has illustrated how a CPS
that is unschedulable if a single model is employed can correctly be
identified as schedulable if a two-model specification is used. The
efficacy of this two-model specification comes from the existence
of two different set of assumptions about the workload of the
system. Examples have also been given of different models
reflecting different stakeholders.

Although only two-model examples were used, the approach
naturally extends to multiple models. It is also possible to combine
integrated multi-models and hierarchical ones. To illustrate this

consider the assumptions represented by A1, that is,
NDogs � 7 ^ NCats � 2. The associated obligations are that the
breeds of these Dogs and Cats must be classified. We could add a
degraded model, A1�, that allows up to, say, 10 Dogs (and 2 Cats)
but after 7 the number of Dogs is counted but the breed is not
computed. This is an example of a hierarchical relationship as
clearly A1 ) A1�.

The integrated multi-model approach defined in this paper
incorporates a non-hierarchical relationship between the models.
It also requires that the defined models, the dynamics of the
environment, the run-time scheduler and the associated analysis
collectively deliver MBB. This ensures that if each model is deemed
to be schedulable then so is the complete system and all its
allowable run-time state changes.

As CPS become more general purpose and the environments in
which they operate become more complicated and multifaceted
there is an increasing need to be more precise about the
assumptions and obligations defining the system’s workload.
The use of more than one workload model is a natural way of
providing this precision.

Conclusion

The specification of all CPS software must capture the assumptions
made about the environment in which the CPS will operate. For
time-sensitive software this must include estimates of the
maximum workload that the CPS can experience. During system
development the validity of these assumptions can be relied upon.
However, a well-engineered CPS (e.g., small footprint and low
power consumption) will require that assumptions about workload
are realistic as well as correct. The assumptions must not include
infeasible scenarios that, if catered for, will lead to over engineered
inefficient solutions. Moreover, the analysis of the temporal
properties of CPS control software must be proved correct using
techniques in which high confidence can be placed. The complex
models and analysis often found in published research papers do
not readily translate into industrial practice.

In this paper, we have developed the notion of multi-model
specifications to allow workload assumptions to more precisely
represent the conditions under which the deployed CPS must
operate. Different environmental conditions, stakeholders and
levels of service give rise to different sets of assumptions and
obligations and therefore different workload models. To collapse
all of these diverse situations into a single model is unnecessary and
leads to over-specified systems. By directly representing different
set of assumptions and obligations as distinct models, we have
enabled the efficient implementation of time-sensitive software for
CPS. As part of this argument in favour of amulti-model approach,
the paper has shown how the commonly used sporadic task model,
pre-emptive FP scheduling and RTA can be applied directly to
integrated multi-model specifications.

Although this paper has focused on timing issues and has
applied the multi-model idea to workload models of time-sensitive
software, the approach can clearly be generalised to apply to other
properties of CPS. For example, power consumption analysis could
be developed using multi-models. For fault-tolerant systems,
different assumptions about the hostility of the environment could
lead to multiple fault models. Although an initial approach here is
likely to be hierarchical (following the MC schemes) a more
comprehensive approach with many sources of disturbance is
likely to benefit from the more general integrated multi-model

Table 12. Workload model for mission-critical behaviour

Task Period Deadline WCET-M ResponseTime

τp 5 3 1 1

τc 10 10 4 5

τd 14 14 4 10

Table 13. Workload model for safety-critical behaviour

Task Period Deadline WCET-A ResponseTime

τp 5 3 1.5 1.5

τc 10 10 7 10
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framework. Whether different levels of security and sources of
intrusion can benefit from multi-modelling is an open issue.
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Notes

1 Issues concerned with priority assignment and response time analysis are
covered in standard textbooks such as Buttazzo 2005; Burns andWellings 2016.
2 This toy example is loosely based on an Identify Friend or Foe (IFF) (Bowden
1985) application system that uses DNN-based image processing (e.g., Gupta,
Pooja, and Kakde 2023) to distinguish between friendly and hostile aircraft and
may further classify each kind.
3 As is usual in papers on scheduling, the time units for the example parameters
are not given; all that is necessary for an example to be meaningful is that all the
parameters are in the same units.
4 But note issues raised in Section 3.1.
5 The three states and the associated transitions (see Figure 2) are only
introduced to clarify the behaviour of amulti-model system; they play no part in
the run-time behaviour of the system.
6 If both stakeholdersmust be accommodated then this would be an example of
an independent multi-model; as both models must be satisfied then this is
equivalent to there being the single stakeholder SKP – and in this example the
workload cannot be scheduled.
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