J. Austral. Math. Soc. (Series A) 26 (1978), 220-226

ON KY FAN’S MINIMAX PRINCIPLE

E. TARAFDAR and H. B. THOMPSON

(Received 23 January; revised 9 April 1977)

Communicated by N. Smythe

Abstract

A generalized version of the Knaster—-Kuratowski-Mazurkiewicz theorem is obtained and
used to generalize Ky Fan’s minimax principle. This result is applied to a variational inequality.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 47H0S, secondary 47H10.

1. Introduction

In Ky Fan (1972) Ky Fan has proved a minimax principle by using his
own generalized version (Ky Fan (1961)) of Knaster - Kuratowski — Mazur-
kiewicz’s theorem. In a joint paper Brezis, Nirenberg, and Stampacchia (1972)
have given a further extension of Knaster-Kuratowski-Mazurkiewicz’s
theorem and applied this extended theorem to a number of problems
including a generalized Ky Fan’s minimax principle. In this note we have
obtained a result which is analogous to the extended Knaster—-Kuratowski-
Mazurkiewicz theorem of Brezis—Nirenberg-Stampacchia. Using our result
we have proved a Ky Fan’s minimax principle which includes the correspond-
ing theorem of Brezis—Nirenberg—-Stampacchia. We have also shown that our
result is also applicable to the types of problems considered in Brezis,
Nirenberg, and Stampacchia (1972). Our approach is via a simple fixed point
theorem of Browder (1968) and is different from that in Brezis, Nirenberg,
and Stampacchia (1972) and Ky Fan (1972).

The authors wish to thank Professor R. Vyborny for suggesting the topic.

2

In the sequel, E will denote a Hausdorff topological vector space. For

any finite subset {x,, x>, --*, x.} of E, {x1, x5, -+, x.) will denote the convex
220
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hull of {x,, x5, -+, x.}. We first consider the following lemma (sece Brezis,
Nirenberg, and Stampacchia (1972), p. 2).

Lemma 2.1. Let X be a nonempty subset of E. To each x € X, let a
nonempty subset F(x) of E be given such that

(1) F(xo)= L is compact for some x,€ X

(ii) the convex hull of every finite subset {x,, x>, -+, x,} of X is contained
in the corresponding union U7, F(x.);

(iii) for each x € X, the intersection of F(x) with any finite dimensional
subspace is closed;

(iv) for every convex subset D of E the following equality holds

{ N F(x)) nD-= (ernDF(x)> nD.

xEXND

Then M,cxF(x)# ¢.
The above lemma is a slight generalization of Ky Fan’s generalization (see Ky
Fan (1961) Lemma 1, p. 305) of the well known classical finite dimensional
result of Knaster—-Kuratowski-Mazurkiewicz (1929).

To obtain our lemma we shall use the following fixed point theorem of
Browder (1968), Theorem 1, p. 285.

THEOREM 2.1. (Browder). Let K be a compact convex subset of E. Let T be
a multi-valued mapping of K into 2* such that

(1) for each x € K, T(x) is a nonempty convex subset of K

(ii) for each x €K, T'(x)={y EK :x € T(y)} is open in K.
Then there is a point xo, € K such that x, € T(x,).
We now prove the following preliminary lemma.

Lemma 2.2. Let X be a nonempty subset of E. To each x € X, let a
nonempty set F(x) of E be given such that

(a) x € F(x) for each x € F(x);

(b) F(x,) is compact for some x, € X ;

(c) for each finite subset {x;, x,,---,x,} of X and each x €S, =
(X1, X2, ***, X,) = the convex hull of {x,x; ', x.}, the set A(x)=
{y ES.N X :x& F(y)} has the property that whenever A (x) is nonempty, it
contains a nonempty convex subset H(x) such that the set P(x)=
{y €S.:x& H(y)} is closed;

(d) F(xo) N F(x) is closed for each x € C.
Then MN,ex F(x)# ¢.

Proor. In view of (b) and (d) it suffices to prove that (7, F(x;) # ¢ for
each finite subset {xi, x2, -+, x.} of X. On the contrary we suppose that for
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some finite subset {x,, X, - - -, X} of X we have (%, F(x;) = ¢. Then for each
X €S ={x1,X2,7" ", %) the set A(x)={y € S. N X :x& F(y)} is nonempty.
Indeed, at least one of the points x;, i =1,2,---,k must be in A(x), for
otherwise (1%, F(x;) would be nonempty. We now define a multi-valued
mapping T:S.—2% by T(x)= H(x), x € S.; T is well defined by virtue of
(c). Nowforeachx €S, T'(x)={yESc:x ET(y)}={y ESc:x EH(y)} =
complement of P(x) in Sx which is an open set in S, by condition (¢) (P(x)
being closed in Si). Hence by the fixed point theorem of Browder therc is a
point xo € Sx such that x, € T(x,). But then by definition of T(x,) we have
xo & F(xo) which contradicts (a). Thus 1%, F(x;)# ¢.
We are now in a position to prove our main lemma.

Lemma 2.3. Let X be a nonempty subset of E. To each x € X, let a
nonempty subset F(x) of E be given such that

(a) x € F(x) for each x € X;

(B) F(x0)= L is compact for some x,€ X

(y) for each finite subset {xi,x,,---,x.} of X and each x€S, =
(X1, X2, ", xa) the set A(x)={y € S. N X :x& F(y)} has the same property as
laid down in (c) of Lemma 2.2.

(8) for each x € X, the intersectior. of F(x) with any finitc dimensional
subspace is closed ;

(w) the Brezis—Nirenberg-Stampacchia condition holds, that is, for every
convex subset D of E we have (i ) cexnn F(x))ND =(MN,ex. F(x))ND.

Then () ,cxF(x)# ¢

Proor. We may assume xo=0. Let (E;)ie; be the class of all finite
dimensional subspaces of E ordered by inclusion i.e. i ) means E; CE.
Restricting to E; the conditions of Lemma 2.2 apply to X; = X NE; and
F(x)= F(x)N E.. Clearly (a) and (c) are satisfied and (b) and (d) follow from
(B) and (8). By Lemma 2.2 there is u; € L N E; satisfying

u, E F,(x)CF(x) forevery x€X.
We now repeat the argument of Brezis, Nirenberg, and Stampacchia (1972).
Let ¢ = U,=:{u;} and so u € F(z) for u € ¢; and z € x; and hence ¢, C
N.c. F(2). . -
Suppose £ € [,c; p—which is non-empty since ¢; C L is compact and let

ip be such that x € E,. For any x € X we can find i Z i, such that x € E.
We have

fe?&nEic( N F(z)) NE= N FG)

2E€EX;

by (w). Therefore ¥ € F.(x) CF(x) and consequently £ € (), cx F(x).
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3. Comparison between Lemma 2.1 and Lemma 2.3

(A). If condition (y) of Lemma 2.3 is strengthened to the condition:

(y) for each x€S,={(x1,Xz" """, %Xn) the set A(x)=
{y €S.N X :x & F(y)} is convex, then Lemma 2.3 follows from Lemma 2.1.

To show this, it is enough to show that (y) implies condition (ii) of
Lemma 2.1. Let (a) hold and {x,, x», - - -, x.} be any finite subset of X. Suppose
(ii) fails and S, =(x,, xo, **, x,) € U, F(x:). Then there is x € S, with
xZ UL F(x), x =2 Ax, A 20, and 2, A =1. Since x& F(x;), x; €
A(x)foralli=1,2,--- n,and hence x = X} Aix; € A(x) by (y)". This means
that xZ F(x) contradicting (a). Thus (ii) of Lemma 2.1 and Lemma 2.3
follows from Lemma 2.1.

ReMmark. It is inferesting to note that in this case we can take
H(x)=A(x) for each x € X since P(x)={yE€S.:x€H(y)=A{y)}=
{y €8S.:xZ F(y)} is automatically closed by ().

(B). Lemma 2.1 applies to the following example although Lemma 2.3
does not apply.

Let E be the plane R* S ={(u,v)ER*: —1=u,v=1}, and X =
{(u,v)ES:jul=]vi=1} For x=(j)eX set F(x)={(u,v)ER*:0=
iu,jo = 1}. Clearly Lemma 2.1 applies and by inspection M,ex F(x) = {0,0)}.
That Lemma 2.3 does not apply can be seen as follows. For x in § let
A(x)={yESNX:x& F(y)} so that for x# (0,0), A(x) is a non-empty
subset of X. Let H(x) be a non-empty convex subset of A (x) for x # (0,0).
Suppose H'(x)={y € S:x € H(y)}isopenin S forallx in S. Now H '(x) is
empty for x not in X and since H(x) is a single element for x# (0,0)
non-empty H '(x) are disjoint. Now U,cx H '(x) = S —{(0,0)} is connected
which is a contradiction.

(C). Lemma 2.3 applies to the following example although Lemma 2.1
does not apply.

Let E be the reals, F(—3)={x ER:-3=x= -2 or [x|=1} and
F3)={x ER:2=x =3 or|x|=1}. Clearly Lemma 2.1 does not apply since
{-3,3]is not asubset of F(3)U F(—3). Now Lemma 2.3 applies since for x in
[-3,3,A(x)={y €[-3,3] N {—3,3}:xZ F(y)} and we may choose

H(X):{—3’ for X}>1
3, for x<—1.

Then H(x) is a convex subset of A(x) and H '(x) is open in [—3,3]. The
other conditions of Lemma 2.3 are clearly satisfied.
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4. Applications

THEOREM 4.1. (Minimax priciple). Let K be a non-empty convex subset of
E and f(x,y) be a real valued function defined on K X K such that

(i) f(x,x)=0 for each x €K;

(ii) for each finite subset {x1, x>, -, x.} of Kand x € S, = (x,, X2, "+, X.)
the set A(x)={y € S, :f(x,y) >0} if non-empty contains a non-empty convex
subset H(x) such that the set

P(x)={y €S.:xZ H(y)}

is closed;

(iii) for each y € K, f(x,y) is a lower semicontinuous function of x on the
intersection of K with any finite dimensional subspace of E;

(iv) there is a compact subset L of E and y, € L N K such that f(x,y,) >0
forx EK,xZ L,

(v) whenever x,y €K and x. is a net on K converging to x, then
f(xe, 1= 1t)x +1y) =0 for every t €[0,1] implies f(x,y)=0.
Then there is a point xo € L N K such that

f(x0,y)=0 forall yeKk.
In particular, Inf,cx sup,ex f(x,y)=0.
Proor. For each z € K we set
F(z)={x €K :f(x,z)=0}.

For each finite subset {x;, x5, ---, x.} of K and x € S, = {x,, X2, - -, x..) the set
Ax)={yE€S.:x€F(y)l={y €S.:f(x,y)>0} has the property (y) of
Lemma 2.3 by (ii). While (a), (8) and (w) of Lemma 2.3 follow from (i), (iii)
and (v) respectively (to see that (v) implies (w) we refer to proof of application
2, Brezis, Nirenberg, and Stampacchia (1972), p. 4. Finally by (iv), F(y,) is
compact and hence we have (8) of Lemma 2.3. Thus by Lemma 2.3 there is a
point x, € L N K such that

x0€ [ F(x), thatis, f(x,,y)=0 forall ye&KkK

x€K
We note that x, € L by virtue of (iv).

CoroLLARY 4.1. (Brezis Nirenberg and Stampacchia (1972)). Let K be a
non-empty convex subset of E and f(x,y) be a real valued function defined on

K %X such that
@iy f(x,x)=0 for each x € K;
(i)Y for every x € K, the set {y € K :f(x,y)>0} is convex;
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(iii)’ the condition (iii) of Theorem 3.1 holds;

(iv) the condition (iv) of Theorem 3.1 holds;

(v) the condition (v) of Theorem 3.1 holds.
Then there exists a point xo &€ L N K such that

f(xe,y)=0 forall y€eK.
Proor. As before we set
Fz)={x€K:f(x,z)=0} foreach z€K

The set A'(x)={y € K:f(x,y)>0} is convex by (iiy. Hence for any finite
subset {x;, x;,---,x.} of K and x €S, =(x;, x2,-*-, x.) the set A(x)=
{y €S. :f(x,y) >0} is convex. Now we choose H(x)= A (x) for each x € K.
The set P(x)={y € S.:x € H(y)} is closed by (iii) because of the reason
given in the remark following (A). Thus the conclusion of the corollary follows
from the Theorem 4.1.

CoroLrary 4.2. (Ky Fan (1972)). Let K be a non-empty compact convex
subset of E and f(x,y) be a real valued function defined on K x K such that

©) f(x,x)=0 for each x €K

(00) for each x € K, the set {y :f(x,y)>0} is convex;

(000) foreachy € K, f(x,y) is a lower semicontinuous function of x on K.
Then there is a point xo € K such that f(xo,y)=0 for all y € K.

Proor. This follows from Corollary 4.1.

Let E be Hausdorff topological vectors space over the reals and K be a
subset of E. Then a mapping A of K into E* is called pseudomonotone if,
whenever x, is a net in K converging to x with lim sup(Ax., x. — x) =0 then
liminf(Ax., x. — y)= (Ax,x —y). Here (.,.) denotes the pairing between E *
and E.

CoRrOLLARY 4.3. (Brezis (1968), Corollary 29). Let K be convex subset of
E (over reals) and let f(x,y)=(Ax,x —y)+ ¢(x)— ¢(y) where A is a
pseudo -monotone mapping from K into E* and ¢ is a lower semicontinuous
convex function. In addition we assume that A is continuous from any finite
dimensional subspace of E to the weak topology of E* and condition (iv) of
Corollary 4.1 holds. Then there exists xo€ L N K such that (Axo,Xo—y)+
d(x0)— P (y)=0 for all y e K.

Proor. The conditions (iY, (i)', and (iii)’ of Corollary 4.1 follow im-
mediately. To verify that (v)' holds, see the proof of application 3, Brezis,
Nirenberg, and Stampacchia (1972), p. 5.
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