TOPOLOGICAL HOMOTHETIES ON
COMPACT METRIZABLE SPACES

LUDVIK JANOS

Notation and definitions.

Definition 1. Let (X, p) be a metric space and ¢: X — X a continuous self-
mapping of X. We shall call ¢ and a-contraction on (X, p) if and only if « € [0, 1)
and Vx, v € X: p(¢(x), ¢(¥)) < ap(x, v). We shall call ¢ an a-homothety on
(X, p)ifand only if @ > 0 and Vx, vy € X: p(¢(x), ¢(3)) = ap(x, ).

Definition 2. Let X be a metrizable topological space and ¢: X - X a
continuous self-mapping of X. We shall call ¢ a topological a-coniraction on X
if and only if there exists a metric p on X inducing the given topology and
such that ¢ is an a-contraction on (X, p). Similarly, we introduce a topological
a-homothety.

Remark. 1f ¢: X — X is a homeomorphism and at the same time a topo-
logical a-contraction on X, we say that ¢ is a topologically a-contractive
homeomorphism on X. If ¢: X — X is defined on the metric space (X, p),
then the statement: ¢ is a topological a-contraction on X is to be understood
without regarding the particular metric, taking into account only the topology
on X defined by p.

Our main objective in this paper is to characterize topological a-homotheties
of compact metrizable spaces by a very simple condition, namely:

If ¢: X —» X is a homeomorphism of a compact metrizable space X into
itself and o € (0, 1), then ¢ is a topological a-homothety on X if and only if
the intersection (MNy—1¢"(X) of all iterated images of X is a singleton.

LemMa 1. Let (A, p) be a bounded metric space and : A — A a continuous
mapping of A into itself. Then, for any a € (0, 1) the expression p*(x, y),
defined by

P*(xr y) = supn{a”p(tp”(x), ‘//”(y))},
is a metric on A, and is topologically equivalent to p, where the supremum is
taken over the set of all non-negative integers n = 0, 1, 2, ... and Y°(x) stands
for x.

Proof. To show that p* is a metric it is only necessary to check the triangle
inequality for p*. Let x,y € A ; then, following the definition of p*, the number
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p*(x, ) is the supremumof theset { p (x, ¥),ap (¥ (), ¥ (¥)), a2 (¥* (x), Y2 (¥)), . . .}
Since p is bounded and « € (0, 1), the supremum is attained on this set, and,

therefore, for each pair x, y € A there exists an integer # such that p*(x, y) =
o (Y (x), ¥*(v)). We now let x, y, 2 € 4 be given points in 4, then p*(x, z) =
ofp(Y¥(x), ¢¥(2)) for some k and applying the triangle inequality for p on the
points ¢*(x), ¢*¥(y), and ¢*(z), we have that

ofp (¥ (x), ¥*(2)) = o"p (¥ (%), ¥*(y)) + "o (¥*(v), ¥*(2)),

and since &*p(¥*(x), ¥*(y)) = p*(x, ¥) and fp(¥*(y), ¥*(2)) = p*(3, 2), the
triangle inequality follows. To prove the equivalence of p* with p, we observe
that p(x, y) < p*(x, v); thus, there is only to show that

p (%, ) — 0= p* (2, x) — 0.

Let us suppose that this is not the case. Then, since p (hence, also, p*) is
bounded, there exists a sequence {x,} and a point x € 4 such that

p(x,, x) >0 and p*(x,, x) >a >0

for some positive a. Since for each n = 1, 2, ... there exists a non-negative
integer k, such that p*(x,, x) = a*p (¥ (x,), ¥**(x)), we have that

afrp (YFr (), P (x)) — a > 0.
If the sequence {k,} were not bounded, this is not possible, since then,
lim inf ofrp (Y*(x,), ¢F»(x)) = 0.

If the sequence {%,} is bounded, then at least one of the integers k,, say &, is
infinitely repeated, and there exists a subsequence {x;} of {x,} such that

a*p (P (xm), ¥*(x)) = a > 0.

This, however, contradicts the supposition that p(x,, x) — 0 since ¢ is assumed
to be continuous, and our theorem follows.

LEMMA 2. Let (X, p) be ¢ bounded metric space and ¢: X — X an a-contrac-
tive homeomorphism of (X, p) into itself, and suppose that there exists a bounded
metric space (X*, p*) such that

(1) X C X*and p(x, v) = p*(x, y) on X and

(i) there exists a continuous mapping ¥, ¥: X* — X* such that ¢ (x) = ¢~1(x)
for x € ¢(X).

Then ¢ is a topological a-homothety.

Proof. Since ¢ is an a-contraction with respect to p, we have that p*(¢(x),
() = ap*(x, y) for all x, y € X since p* coincides with p on X. Following
Lemma 1, the metric p**, defined by

p**(x, ¥) = sup,{a”p* W (x), ¥"(¥))},

defines a metric on X*, equivalent to p*. Let now x, y € X ; then, the number
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p** (x, v) is the maximum of the set
{p*(x, 9), ap* (P (%), ¥ (), e?p*Y* (%), ¥2(¥)), - .

and similarly, the number p**(¢(x), ¢(y)) is (taking into account that
Y(¢(x)) = x on X) the maximum of the set

{p*(@(x), (), ap*(x, ), a®p* (Y (x), ¥(¥)), . . .}

But since p*(x, y) = p(x, y) and p*(¢(x), ¢(¥)) = p(o(x), () (x, y € X),
we have that p*(¢(x), ¢(y)) = ap*(x, y), therefore the maximum is equal to
the maximum of the set {ap*(x, ¥), a20* (¥ (x), ¥(»)), ...}, and we have the

equality p**(¢(x), ¢(¥)) = ap**(x, y) forx, y € X.
Now we have prepared our way to prove the crucial lemma.

LeMMA 3. Let X be a compact metrizable space and ¢: X — X a topologically
a-contractive homeomorphism on X. Then ¢ is a topological a-homothety on X.

Proof. There exists a topological embedding u: X — H of X into the Hilbert
cube H, and identifying X with u(X) we can consider X to be a closed subset
of H. Since ¢(X) is compact in X and ¢! is continuous on ¢ (X), the theorem
of Tietze ensures that the function ¢~! can be extended over H, i.e., there
exists ¢: H — H such that ¢(x) = ¢~ 1(x) forx € ¢(X) C X C H.

Since ¢ is a topological a-contraction on X, there exists a metric p on X
such that ¢ is an a-contraction on (X, p). Since X is closed in H, the metric p
defined on X can be extended over H (see 1). Denoting this extension of p by
p¥*, we have a metric space (H, p*), homeomorphic to the Hilbert cube, and
therefore bounded, and we see that the metric space (H, p*), together with
the mapping ¢: H — H, satisfies the conditions imposed on (X*, p*) in Lemma
2, which proves our assertion. The consequence of this lemma is our main
theorem.

TaEOREM. Let X be a compact melrizable space, ¢ a homeomorphism of X
into itself, and « € (0, 1). Then ¢ is a topological a-homothety on X if and only if
the intersection of all iterated images ¢"(X) of X is a one-point set, i.e., if and
only if there exists an a € X such that

Proof. In view of (2), the last condition implies that ¢ <s a topological
a-contraction and, therefore, a topological a-homothety because of our Lemma 3.
If, on the other hand, ¢ is a topological a-homothety, then ¢*(X) shrinks,
evidently, to the fixed point a.
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