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Abstract

Answer-Set Programming (ASP) is a powerful and expressive knowledge representation paradigm with
a significant number of applications in logic-based AI. The traditional ground-and-solve approach, how-
ever, requires ASP programs to be grounded upfront and thus suffers from the so-called grounding bot-
tleneck (i.e., ASP programs easily exhaust all available memory and thus become unsolvable). As a rem-
edy, lazy-grounding ASP solvers have been developed, but many state-of-the-art techniques for grounded
ASP solving have not been available to them yet. In this work we present, for the first time, adaptions to
the lazy-grounding setting for many important techniques, like restarts, phase saving, domain-independent
heuristics, and learned-clause deletion. Furthermore, we investigate their effects and in general observe a
large improvement in solving capabilities and also uncover negative effects in certain cases, indicating the
need for portfolio solving as known from other solvers.
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1 Introduction

Answer-Set Programming is employed in many application areas (Falkner et al. 2018) because
ASP offers a rich first-order declarative knowledge representation language, and powerful rea-
soning systems are available. For hard, practical configuration problems such as the Partner Units
Problem (Aschinger et al. 2011; Teppan 2017), for example, ASP was applied successfully off-
the-shelf. However, there are practical problem instances in configuration, scheduling, and plan-
ning, where pure ASP systems based on the traditional ground-and-solve approach cannot com-
pute solutions because of excessive main-memory consumption in the grounding phase, which
is frequently superlinear in the size of the input (Falkner et al. 2018).

One way to tackle the grounding issue is by grounding lazily only those parts of a first-order
theory which are actually needed to solve the problem at hand. This lazy grounding is a bottom-
up procedure that interleaves grounding and solving in such a way that parts of the grounding are
constructed when the solver needs them. There exist a number of lazy-grounding ASP solvers,
GASP (Palù et al. 2009), Omiga (Dao-Tran et al. 2012), ASPeRiX (Lefèvre et al. 2017) and
the recently introduced ALPHA (Weinzierl 2017). Only the latter integrates lazy grounding with
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a conflict-driven clause-learning (CDCL) solver, hence it currently is the most efficient lazy-
grounding system for ASP solving.

Nevertheless, ALPHA only realizes a subset (cf. Weinzierl 2017; Leutgeb and Weinzierl 2017)
of the techniques usually employed in ground-and-solve ASP systems, whose efficiency is largely
due to their use of a wide range of CDCL techniques for efficient SAT solving (Gebser et al. 2012;
Alviano et al. 2017). Thus the search performance of ALPHA is significantly worse than that of
ground-and-solve systems on problems where grounding itself is not an issue. Lazy grounding at
its core contains some specific restrictions (e.g. guessing on all atoms is not allowed) that are of
no concern for the techniques employed in ground-and-solve systems. Hence, one cannot simply
add lazy grounding on top of the existing solving techniques. Quite the contrary, each technique
from ground-and-solve systems must be checked for suitability to the lazy-grounding setting
individually. In particular, restarts, phase saving, domain-independent heuristics, and learned-
clause deletion, which are crucial methods in grounded ASP solving to deal with hard problem
instances, are not available to lazy-grounding solvers.

In this work we show how these methods must be enhanced to enable efficient search for
answer sets based on lazy-grounding ASP solving. Our contributions are as follows.

• An investigation into the techniques of restarts, phase saving, domain-independent heuris-
tics, and learned-clause deletion, determining compatibility with lazy grounding.

• Enhancing these methods to fit the lazy-grounding setting, investigating their effects and
creating novel adaptions to work around issues specific to lazy grounding.

• Specifically, the introduction of domain-independent VSIDS-like heuristics that use atom-
dependency information to assign atom-activity scores to ground rules.

• An integration of the enhanced methods in the latest version of ALPHA.
• An evaluation of the above methods on worst-case scenarios for lazy grounding (and AL-

PHA), where grounding is easy but problem solving is challenging. Our evaluations show
signifiant runtime improvements, i.e. up to a factor of three. Furthermore, our experiments
also indicate that the novel techniques introduce no obstacle for solving instances that are
hard to ground.

This paper starts with an introduction of the basics of ASP in Section 2. In Section 3 we recap
the principles of several state-of-the-art techniques for grounded ASP solving and show their en-
hancements and the adaptions required for lazy-grounding systems. The runtime improvements
of these new techniques are exemplified in Section 4. Section 5 discusses related work and Sec-
tion 6 concludes.

2 Preliminaries

Let C be a finite set of constants, V be a set of variables and P be a finite set of predicates. An
atom is an expression p(t1, . . . , tn) where p is an n-ary predicate and t1, . . . , tn ∈ C ∪V are terms,
and a literal is either an atom a or its default negation not a. An ASP program P is a finite set of
(normal) rules of the form

h← b1, . . . , bm, not bm+1, . . . , not bn.

where h and b1, . . . ,bm are positive literals (i.e. atoms) and not bm+1, . . ., not bn are negative
literals. Given a rule r, we denote by H(r) = {h}, B(r) = {b1, . . . ,bm, not bm+1, . . . ,not bn},
B+(r) = {b1, . . . ,bm}, and B−(r) = {bm+1, . . . , bn} the head, the body, the positive body, and
the negative body of r, respectively. If H(r) = /0, r is a called a constraint, and a fact if B(r) = /0.
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Given a literal l, set of literals L, or rule r, we denote by vars(l), vars(L), or vars(r) the set of
variables occurring in l, L, or r, respectively. A literal l or rule r is ground if vars(l) = /0 or
vars(r) = /0, respectively. The set of all ground atoms is denoted by Atgrd. A program P is ground
if all its rules r ∈ P are ground.

An interpretation I ⊆ Atgrd satisfies a ground rule r, denoted I |= r, if B+(r)⊆ I∧B−(r)∩ I = /0
implies H(r)⊆ I and H(r) 6= /0. I is an answer set of a ground program P if I is the subset-minimal
model of PI , where PI = {r ∈ P | B+(r) ⊆ I ∧B−(r)∩ I = /0} is the so-called FLP reduct, the
set of rules whose body is satisfied by I (Faber et al. 2011). A (partial) assignment A is a set of
signed atoms where A+ denotes the atoms assigned a positive truth value and A− those assigned
a negative truth value in A. Given an atom at the result of applying a substitution σ : V → C

to at is denoted by atσ ; this is extended in the usual way to rules r, i.e., rσ for a rule of the
above form is hσ ← b1σ , . . . ,bmσ ,not bm+1σ ,not bnσ . The grounding of a rule is given by
grd(r) = {rσ | σ is a substitution for all v ∈ vars(r)} and the grounding grd(P) of a program P
is given by grd(P) =

⋃
r∈P grd(r). The answer sets of a non-ground program P are given by the

answer sets of grd(P).
Lazy grounding is an approach to tackle the grounding bottleneck inherent in traditional

ground-and-solve systems which makes programs whose grounding exceeds available memory
unsolvable. We describe lazy grounding only briefly here and refer to Weinzierl (2017) and Leut-
geb and Weinzierl (2017) for a detailed account of the lazy-grounding ASP system ALPHA.
Computing all answer sets such that grd(P) is constructed lazily is typically done by a loop
composed of two phases: given a partial assignment (that is initially empty), first ground those
rules that potentially fire under the current assignment, second expand the current assignment
(using propagation and guessing). If the loop reaches a fixpoint, i.e., no more rules potentially
fire and nothing is left to propagate or guess on, and no constraints are violated, then the current
assignment is an answer set.

One important difference to ground-and-solve is that a lazy-grounding solver does not guess
on each atom whether it is true or false, but it guesses about ground instances of rules whether
they fire or not. This is correct due to the underlying solving mechanisms based on computation
sequences and avoids generating completion nogoods (cf. Clark 1977; Gebser et al. 2012) in
most cases. This has the advantage that less space is occupied by completion nogoods and the
drawback that the solver lacks information, like in the following example:

p(X)← q(X ,Y ).

If the solver knows that, say, p(13) must be true, in lazy grounding the solver generally does not
know if there are any rules that can derive p(13) but have not yet been grounded, and therefore
cannot conclude that one of these rules must fire.

3 State-of-the-Art Solving Techniques

In the following we discuss several important state-of-the-art techniques for ASP solving and
investigate their adaption to the lazy-grounding setting. Since many of the techniques for effi-
cient ASP solving originate in SAT solving, there are many similarities to SAT techniques. As
mentioned in the previous section, lazy-grounding ASP solving imposes additional restrictions
that are neither considered in SAT solving nor in the traditional approach for ASP solving, like
the fact that not all ground atoms are known from the beginning. Hence one cannot just put
lazy grounding on top of the existing technologies, but each technology must be individually
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checked for compatibility with the lazy-grounding approach. Bomanson et al. (2019), for exam-
ple, uncovered that supporting aggregates with a lazy-grounding ASP solver requires a sequential
enumeration of all ground terms that will appear during the run of the solver. In the ground-and-
solve approach this enumeration is trivially found by simply looking at the full grounding of the
input program, while in lazy grounding the solver must provide special facilities to enable an
efficient enumeration that does not rely on knowing all ground rules in advance. Similarly, while
virtually all ground-and-solve systems do a Clark’s completion to represent rules by clauses (or
nogoods), in the lazy-grounding approach the full completion cannot be obtained in advance
without grounding the input program fully. Bogaerts and Weinzierl (2018) have developed on-
demand computation of justifications in order to get around the issues of missing knowledge
from the Clark’s completion. Luckily, the techniques we investigate here turned out to be rather
well-behaved, requiring less adaptions. Nevertheless, there were still some surprising challenges
we had to overcome.

3.1 Restarts

Restarts originate in the observation of SAT solvers exhibiting heavy-tailed behaviour, i.e., when
solving a set of SAT instances, the majority of the time is consumed by a relatively small number
of instances that often time out while the majority of instances are solved in relatively little time.
For those instances with a long run time, the search seemingly gets stuck in some part of the
search space and restarting the search in a new part of the search space helps (Gomes et al.
2000). Upon restarting all decisions of the solver are undone, i.e., restarts are a backjump to
decision level 0. Importantly, restarts do not discard learned clauses and they do not reset the
search heuristics, i.e., highly active atoms (cf. Section 3.3 for details) before the restart are still
considered by the heuristics as highly active after the restart.

Even though restarts provide the solver with the possibility to go into a completely different
part of the search space after a restart, practical experience showed that this is not optimal as it
is likely that the search gets stuck there again, while all recent knowledge (e.g. learned clasues)
has become mostly useless in the new search area. Therefore, restarts are even more efficient if
combined with phase saving (cf. Section 3.2), which leads the solver again into the same area
of the search space as it was before. This has the important effect that learned clauses are still
useful while the restart effectively re-orders the sequence in which atoms have been guessed:
after a restart highly active atoms are chosen first, which leads to conflicts arising much earlier
than before the restart. Intuitively the binary search (sub-)tree with conflicts at each of its leaves
is now much more shallow as it contains fewer irrelevant choices. These kind of restarts are
very effective in uncovering implicit information about the problem instance and restarts in rapid
succession significantly improve solving efficiency.

There are two principled ways for solvers to restart: static restart sequences trigger a restart
after a fixed number of conflicts, while adaptive (or dynamic) restarts trigger a restart whenever
the solver detects that it is not learning useful clauses. Static restart sequences often use the so-
called Luby sequence (cf. Luby et al. 1993), while adaptive restarts (cf. Audemard and Simon
2012) issue a restart not in a fixed sequence depending on the number of conflicts encountered
by the solver, but measure the quality of learned clauses to decide whether a restart is appro-
priate. Adaptive restarts use the LBD (Literals Blocks Distance) measure for quality of learned
clauses (cf. Audemard and Simon 2009), which intuitively counts the number of decision levels
of the literals appearing in the clause at the time the clause is learned. The lower the LBD value,
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the better the clause will likely perform in the remainder of the search. Adaptive restarts now
compare an average of the LBD value of learned clauses for the recent conflicts with the average
for the entire search to that point, and issue a restart if the recently learned clauses have signif-
icantly worse LBD than the average of the whole run. Computing these moving averages was
later improved by Biere and Fröhlich (2018) to consider exponential moving averages, which
allow evaluation without needing to queue all recently learned LBD values.

Restarts for lazy grounding. ALPHA now combines both restart strategies: adaptive restarts
(which usually are quick to trigger a restart) and static restart sequences that allow exponen-
tially increasing runs where no restart is triggered. The static restart sequence is a Luby-sequence
which is computed quickly by reluctant doubling (proposed by Donald E. Knuth in his SAT’12
talk), the state-of-the-art in most SAT solvers now. For adaptive restarts ALPHA uses the expo-
nential moving averages on LBD values as described above. Note that ALPHA currently does not
update LBD values, as some SAT solvers do.

Since ALPHA follows the original computation sequence (cf. Lefèvre et al. 2017) for lazy-
grounding answer-set computation, picking atoms for guessing is restricted. First, only atoms
that represent the body of a rule with negation can be valid choice points1, and second, from
these valid choice points only those where the positive body of the rule is already derived may
be picked for guessing (cf. Weinzierl (2017) for details). This severly restricts the order in which
atoms are chosen by the solver, i.e., it may forbid the solver from branching on the most ac-
tive atom(s). As a consequence of that, restarts are less effective for the current lazy-grounding
approach than they are for ground-and-solve ASP systems.

Luckily, for many search problems this negative effect does not manifest, namely those where
all potential choices are available to the solver right from the beginning. An example of such a
problem is graph colouring where each choice point colors a vertex of the input graph. After a
restart all choice points are valid, hence a restart is indeed re-ordering atoms as in the ground-
and-solve cases.

For problems where guesses are “stacked”, however, the negative effects of restarting are vis-
ible. Examples of that are planning problems where a choice on the second action may become
valid only after the first action was chosen. Clever reformulation of the problem may avoid that
issue, but this is beyond the scope of this work.

3.2 Phase Saving

Phase saving (or progress saving) is a technique that focuses the search on a specific part of the
search space even after backjumping or restarts. Phase saving means to save the last assigned
value of each atom and whenever a choice is to be made on any atom, its last assigned value is
taken (cf. Pipatsrisawat and Darwiche 2007). It does not matter if the last value was assigned
due to a choice or propagation. The effect of phase saving is that when the solver is backjump-
ing or restarting, the search is again approaching the same point in the search space (i.e., the
same candidate answer set). The effect of phase saving alone seems to be less significant, but in
conjunction with restarts it has a tremenduous impact on performance (cf. Elffers et al. 2018).
It effectively makes the solver approach the same point in the search space but from another di-
rection and leads to the new perspective of a solver as “clause generating machinery”. With the

1 This alone is known to be not optimal on certain input programs, cf. Anger et al. (2006).
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combination of phase saving and restarts the uncovered clauses are small in size and pertinent to
a small portion of the search space, hence much more focused than without those techniques.

Phase saving for lazy grounding. Phase saving can be adapted to lazy grounding by adding an
array that keeps, for each known ground atom, its last assigned truth value. Specific to lazy
grounding, this array needs to grow in size during the run of the solver as a lazy-grounding
solver uncovers ground atoms step by step. We observed that the initial value for phases has a
significant impact on whether an instance can be solved or not. Note that if an atom is guessed
whose truth value already is must-be-true, then the phase is not considered but true is chosen
directly, as otherwise a conflict would arise immediately.

Our experiments include several settings for the initial phase: all false, all true, and random.
Selecting one or the other makes a difference depending on the instance and it seems unlikely that
one or the other is always best. The experiments show however that all true seems to be slightly
more favourable though. The initially all false setting corresponds to the MiniSat setting while
the initially all true setting effectively corresponds to what CLINGO is doing. Note that CLINGO

actually uses true only for atoms representing rule bodies, but since ALPHA only guesses on
atoms representing rule bodies, it coincides with the all true setting.

3.3 Domain-Independent Heuristics

Heuristics for answer-set solving can roughly be classified as follows: domain-independent heuris-
tics do not take the nature of the problem at hand into account, whereas domain-specific heuristics
have to be tailored to a specific problem. Domain-specific heuristics are covered by Taupe et al.
(2019), accordingly we focus on domain-independent heuristics in this work. VSIDS (Variable
State Independent Decaying Sum) (Moskewicz et al. 2001) and BerkMin (Goldberg and Novikov
2002) are prominent domain-independent heuristics originally developed for SAT but also suc-
cessfully employed for ASP solving (in CLASP (Gebser et al. 2012) and WASP (Alviano et al.
2013)).

They assign a so-called activity to every atom that counts the number of times a clause con-
taining this atom contributed to a conflict. The activity of each atom is periodically divided by a
constant (i.e., it is “decayed”) to reduce the influence of conflicts further in the past. When asked
for an atom, the heuristics choose the most active one. Other counters are maintained as well
to enable the choice of which truth value to assign. BerkMin additionally organizes the set of
conflict clauses as a chronologically ordered stack, thereby preferring atoms in recent conflicts.
This is done to have regard to the fact that the set of atoms responsible for conflicts may change
very quickly.

Atom activities are typically initialized by MOMs (Maximum Occurrences in clauses of Min-
imum size) (Gebser et al. 2013; Pretolani 1993). A MOMs score for an atom is an estimate to
what extent other atoms are affected when this atom is assigned. For each atom, the MOMs score
is a function of the number of nogoods involving the atom in a positive literal and the number of
nogoods involving the atom in a negative literal.

A direct application of BerkMin or VSIDS to a lazy-grounding ASP solver like ALPHA is
challenging, because such a solver differs in many important ways from a solver adhering to
the classical ground-and-solve paradigm. One major difference is that not all ground rules, and
consequently not all ground literals and atoms, are known at any given time to a lazy-grounding
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solver. Because of this, a heuristic applied to lazy grounding can only incorporate atoms that are
already known to the solver.

Another major difference lies in the solving mechanism: while a traditional ASP solver can
choose any atom to guess on, ALPHA is restricted to atoms representing rule bodies. In other
words, ALPHA only guesses whether a certain rule fires or not, but it does not guess whether an
atom in a rule’s head or body is true or not. A direct application of BerkMin or VSIDS to ALPHA

would therefore suffer from the fact that choice points comprise only a small portion of all the
literals occuring in clauses (or nogoods) and therefore do not influence activity and sign counters
as much as other atoms.

Heuristics for lazy grounding. Domain-independent heuristics for lazy-grounding ASP solving
were first studied by Taupe et al. (2017). The so-called class of dependency-driven heuristics
has proven particularly useful and has been further improved since. The basic idea is as follows:
since for an ordinary atom b its truth cannot be guessed, find all choice points c (i.e., atoms
representing rule bodies) that have an influence on the truth of b and whenever the activity of b is
to be increased, increase the activity of c instead. By that, choices are not done directly on highly
active atoms but on atoms that have an influence on highly active atoms, i.e., the solver is focused
on (ordinary) active atoms and chooses their truth value indirectly. For an atom b there are two
ways how the guessing alone may influence its value: either by firing a rule r with H(r) = b or
by firing a rule r′ with b ∈ B−(r′), since the firing of a rule makes all the atoms in the negative
body false and the head true.2

ALPHA’s dependency-driven VSIDS implementation maintains choice points in a heap data
structure, which enables efficient access to the choice point with the highest activity. After choos-
ing an applicable choice point, the sign is chosen by phase saving unless the atom is already as-
signed must-be-true, in which case true is chosen. At every conflict for all atoms b encountered
in the (CDCL-style) conflict analysis, the activity of b is increased as follows: if b represents a
choice point, its activity is increased; if b is an ordinary atom the activity of all known choice
points that influence b is increased. This activity increment (initially 1) is divided by 0.92 after
every conflict, i.e., the increment increases with every conflict. This is a state-of-the-art way of
realizing the decay of activities by increasing the activity increment instead. The relative order
of activities stays the same as with the decaying, but only the most recent value needs to be
adapted instead of decaying all activity values of all atoms. Internally, atom activities are stored
as double-precision floating point values and whenever the activity of an atom exceeds 10100, all
activities are normalized (divided by 10100). The increment is also normalized.

ALPHA’s dependency-driven MOMs implementation used to initialize atom activities is in-
spired by CLINGO’s implementation and also exploits dependencies as described above. When a
new nogood is produced by the grounder, the activities of all choice points that have an influence
on one of the literals in the new nogood are updated to their current MOMs value.

2 Note that B+(r) is not affected because those atoms already have to be true for the rule to be a valid choice point. Also,
H(r) is not necessarily affected if the rule is guessed to not fire, because there might be other rules with the same head,
and for the atoms in B−(r) it is only known that one of them must be true to conform the rule not firing.
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3.4 Learned-clause Deletion

Conflict-driven learning, usually considered the most important technique for SAT solving (and
ASP solving), leads to many additional clauses being learned during search. Since each learned
clause must be stored, this increases the clause database significantly during the runtime of a
solver (in the order of thousands of new clauses per second). However, the more clauses the
clause database contains, the more time is required for propagation, hence propagation speed
decreases with more clauses being present. This holds true even in the presence of efficient
propagation techniques like two-watched-literals, or its adaption to the lazy-grounding setting
(cf. Leutgeb and Weinzierl 2017). Therefore, the learned-clause database is regularly cleaned
(Eén and Sörensson 2003).

Some learned clauses must be excluded from being deleted, namely those that are locked,
i.e., clauses that imply one of the currently assigned literals. Since each learned clause helps to
identify portions of the search space where no solution (or answer set) can be found, deleting
the wrong clauses may increase the search space to consider as the solver has to re-evaluate
portions of the search space that otherwise would be excluded by a learned clause. There are
several ways to identify clauses that are seemingly not important. The first is an activity counter
that is incremented whenever a clause occurs in some conflict analysis, i.e., it contributes to a
conflict. Clauses with low activity are then deleted first as they do not contribute much to the
overall search performance. The second way is to use the LBD measure to determine a clauses
quality (Audemard and Simon 2009). Again, clauses with a poor LBD value (i.e., whose LBD is
high) are deleted first. A combination of both is also common, where activity is used to identify
clauses for removal, but clauses with exceptionally good LBD value are kept regardless.

Learned-clause deletion for lazy grounding. The technique of learned-clause (or nogood) dele-
tion requires no special adaptions to fit the lazy-grounding setting and we observed no particular
effects when realizing it in ALPHA. The implementation in ALPHA in general mimics the default
behaviour of CLINGO and so clause database cleaning is run after initial 2000 conflicts and that
value increases by 100 for each cleaning cycle. The whole sequence is reset after 20 cycles.

At each cleaning, half of the clauses are scheduled for removal. For that, the average activity of
the learned clauses is computed and 1.5 times the average is taken as threshold for removal, i.e.,
clauses with less than 1.5 times the average activity are removed unless they are locked. Locked
clauses are not removed and as soon as half of the clause database has been removed the process
stops, keeping any remaining clauses even if their activity is below the threshold. Note that this
does not guarantee that half of the clauses are actually removed, but it is a sufficiently good and
efficiently computable approximation. Note that clauses with a very good LBD value (≤ 2) are
never removed and they are not considered in the cleaning.

4 Experimental Results

To asses the impact of newly adapted techniques in the lazy-grounding setting, we evaluated
them against six benchmark problems: Graph Colouring, House Reconfiguration Problem (HRP),
Stable Marriage, Partner Units Polynomial (PUP), Non-Partition-Removal-Colouring (NPRC),
and the evaluation of nondeterministic L-Systems (Lindenmayer Systems).

Experimental Setup. Experiments were run on a cluster of machines each with two Intel R©

Xeon R© CPU E5-2650 v4 @ 2.20GHz with 12 cores each, 252 GB of memory, and Ubuntu

https://doi.org/10.1017/S1471068420000332 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000332


Advancing Lazy-Grounding ASP Solving Techniques 617

16.04.1 LTS Linux. Benchmarks were scheduled with the ABC Benchmarking System (Redl
2016) together with HTCondor

TM
.3 Time and memory consumption was measured by PYRUN-

LIM,4 which was also used to limit wall time consumption to 5 minutes per instance and swapping
to 0. ALPHA was used in several configurations to compare the impact of different solving tech-
niques. In every configuration, constraints were grounded permissively and rules were grounded
strictly as suggested by Taupe et al. (2019). When using CLINGO 5.3.0, some techniques not yet
supported by ALPHA were switched off to improve comparability.5 For additional comparisons,
OMIGA (Dao-Tran et al. 2012) was used in learning mode (Weinzierl 2013), and ASPERIX
0.2 (Lefèvre et al. 2017) was used with command-line argument -N 1000000. Moreover, LAZY

WASP (Cuteri et al. 2019), which is a recent ground-and-solve system that incorporates powerful
partial evaluation techniques, was used in its default configuration. Since LAZY WASP requires a
manual splitting of programs into a lazily evaluated part and a part that is evaluated with ground-
and-solve techniques, the splitting was done such that a maximum part is evaluated lazily. All
systems were instructed to search for 10 answer sets.6 The whole set of benchmarks was run
three times; we report median solving times per instance in the discussion of the results below.

Encodings and Instances. The encodings for Graph Colouring and Stable Marriage were taken
from the Fourth Answer Set Programming Competition (Alviano et al. 2013), the former without
modifications, the latter with a choice rule replacing the equivalent disjunctive rule of the orig-
inal. The encoding for HRP was obtained from Friedrich et al. (2011) and adapted to conform
to the input language of ALPHA.7 The encoding for PUP was taken from the Third Answer Set
Programming Competition (Calimeri et al. 2014); choice rules have been used instead of disjunc-
tion. Encoding and all 110 instances for NPRC were taken from Bogaerts and Weinzierl (2018).
For Graph Colouring and PUP, all instances from the ASP Competitions (Calimeri et al. 2014;
Alviano et al. 2013; Calimeri et al. 2016) were used (60 for Graph Colouring, 65 for PUP). For
Stable Marriage, the 341 random instances generated by Taupe et al. (2019) were used again. For
HRP, the 47 instances generated for the ASP Challenge 2019 were used, which include instances
of different problem classes and of varying difficulty and size.8

The evaluation of nondeterministic L-Systems is a novel benchmark. L-Systems (or Linden-
mayer Systems) are types of formal grammars, where production rules expanding symbols into
larger sequences of symbols are applied to an initial starting word in parallel. Such generated
words can be visualised using suitable drawing functions, resulting in fractal structures like,
e.g. the Cantor set, or a fractal tree. Each iteration of the evaluation of an L-System then typ-
ically yields one level of the resulting fractal structure. Our benchmark set is comprised of 39
instances of L-Systems. Some of them are deterministic, some nondeterministic (i.e., multiple
different production rules may be applied to the same symbol). For the latter, additional con-
straints enforce global conditions on the generated words. Since words often grow exponentially
with increased iteration steps, instances only compute few steps (4 to 20) of the given L-System.

3 https://github.com/credl/abcbenchmarking, http://research.cs.wisc.edu/htcondor
4 https://alviano.com/software/pyrunlim/
5 CLINGO was used with the switches --sat-prepro=no --eq=0.
6 Obtaining more than one (maybe trivial) answer set is often desirable. The number 10 has been chosen arbitrarily.
7 Currently, ALPHA accepts only a subset of aggregate atoms and no optimization statements.
8 https://sites.google.com/view/aspcomp2019
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All encodings and instances as well as binaries of the ALPHA version used for the experiments
are available on our website.9

Results and Discussion. Figures 1 to 6 show cactus plots for the time consumed to solve each of
the six benchmark problems. They have been created in the usual way, i.e., the x axis gives the
number of instances solved within real (i.e., wall-clock) time given on the y axis. Solving time
per instance is the median across three solver runs. Note that the y axis shows time accumulated
over all solved instances. We compare the runtimes of CLINGO, LAZY WASP, OMIGA, and
ASPERIX to that of various ALPHA configurations. The baseline configuration of ALPHA is its
latest implementation before introduction of the solving techniques presented in this paper, with
permissive lazy grounding of constraints and strict lazy grounding of rules as described by Taupe
et al. (2019). This configuration has been included to be able to study the accumulated effect of
various sets of newly introduced solving techniques, which constitute the other four configura-
tions: Each of those employs our dependency-driven form of VSIDS together with phase saving,
where the default phase is true in two configurations and false in the other two, and restarts are
switched on in two configurations and off in the others.

Figure 1 shows that for the first time, ALPHA is able to solve several hard instances from the
ASP competitions (here for the Graph Colouring problem). This is a breakthrough since those in-
stances are hand-picked to exercise search techniques of ground-and-solve systems, even though
CLINGO and LAZY WASP still outperform ALPHA. All configurations employing additional
solving techniques outperform ALPHA’s baseline. The best configuration even outperforms the
baseline by a factor of three, allowing it to solve 12 instead of the previous 4 instances. Restarts
appear to be a particularly useful improvement for this benchmark, which is in line with our
observation that restarts perform well if choices are not “stacked” on each other, as is the case
here.

As can be seen in Fig. 3, ALPHA also profits from the new solving techniques when solving
HRP. All novel configurations clearly outperform the baseline, solving more instances than the
baseline. None of the various settings, however, clearly performs better than the others for these
HRP instances.

On Stable Marriage (Fig. 2) no improvement can be observed. In fact, the baseline performs
best. At the moment we are not sure why this is the case, but CLINGO’s effortless performance
indicates that there may be some other techniques missing for the lazy-grounding setting. This
is also underscored by LAZY WASP’s performance which is similar to CLINGO’s, since both
employ similar ground-and-solve techniques.

Many more PUP instances can be solved when employing the new solving techniques in-
cluding restarts, even though they consume more time on easier instances compared to some
configurations without restarts (Fig. 4).

Note that all of the above problems are easy to ground, hence lazy grounding is not necessary.
We still picked those to demonstrate that the search performance of lazy grounding is increas-
ingly improving even on problems where lazy grounding per se does not improve performance.
Actually, the above problems all present a worst-case scenario (i.e., compared to ground-and-
solve systems, a lazy-grounding system only lacks some information).

The fifth problem, NPRC, is one where grounding itself is also an issue. As shown in Fig. 5,

9 https://ainf.aau.at/dynacon/
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naive
dependency-driven VSIDS with phase-saving (alltrue)

dependency-driven VSIDS with phase-saving (allfalse)

dependency-driven VSIDS with phase-saving (alltrue) plus restarts

dependency-driven VSIDS with phase-saving (allfalse) plus restarts
clingo
asperix
omiga
lazy wasp

Legend for Figs. 1 to 6.
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Fig. 1. Time consumption on Graph Colouring.
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Fig. 2. Time consumption on Stable Marriage.
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Fig. 3. Time consumption on HRP.
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Fig. 4. Time consumption on PUP.
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Fig. 5. Time consumption on NPRC.
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Fig. 6. Time consumption on L-Systems.
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ALPHA clearly outperforms CLINGO on this problem. With regard to the novel techniques in
ALPHA, on the one hand, there is some variance but no clear improvement over the baseline
however, on the other hand, this indicates that the novel techniques help to solve hard search
problems while introducing no obstacles for solving hard-to-ground instances. The LAZY WASP

system also performs significantly better than CLINGO and comparably to ALPHA. We also noted
that LAZY WASP’s runtime varies wildly even when run repeatedly on the same instance. We cur-
rently have no explanation for this behaviour and guess it might be due to some randomization.

Figure 6 shows the results for evaluating nondeterministic L-Systems. This benchmark is
grounding-intense, so CLINGO can only solve the easier instances and partial evaluation tech-
niques of LAZY WASP have no positive effect. ALPHA is able to solve most instances and there
is a clear distinction between those configurations with the initial phase being true and those with
false, as the latter are only able to solve the most simple instances. Whether restarting is enabled
or not seems to make little difference. Both the baseline and the configuration with restarts and
dependency-driven VSIDS solve the same number of instances, though the latter needs a bit more
time. No line for ASPERIX is visible, but it is able to solve the smallest instance.10

In all figures, only few data points can be seen for OMIGA and ASPERIX, because those
systems could only solve very few instances. Furthermore, HRP was not used with OMIGA and
ASPERIX because of the restricted input languages of these systems, and OMIGA produced
several exceptions when trying to solve Stable Marriage instances.

Overall, adapting restarts, phase saving, dependency-driven VSIDS and learned-clause dele-
tion to the lazy-grounding setting is a significant improvement for lazy-grounding ASP solving.
It improves search performance on hard problems, sometimes dramatically, and still allows the
grounding bottleneck to be avoided.

5 Related Work

There are several approaches to tackle the grounding bottleneck of ASP. The grounders of
ground-and-solve systems have, for a long time, been trying to minimize the size of the re-
sulting ground program, which gave rise to intelligent grounding techniques (cf. Gebser et al.
2011; Leone et al. 2006; Calimeri et al. 2017).

A more recent attempt to circumvent the grounding bottleneck is by extending ASP with spe-
cific problem solvers (e.g. temporal (Cabalar et al. 2019), or difference-logic (Abels et al. 2019)
reasoners) (Gebser et al. 2016) and then manually reformulating part of the original problem
in the added formalism. Besides the need to develop and integrate the specific problem solvers,
it requires users of ASP to be knowledgeable in another (unrelated) formalism to solve their
problems.

Another approach aims to tackle the grounding issue by grounding only those parts of a first-
order theory which are actually needed to solve the problem at hand. Several techniques follow
this general idea. Incremental grounding (Gebser et al. 2011), which works for planning and
related types of problems, introduces time steps on-the-fly when the solver notices no solution
exists in the given time window. Partial compilation techniques (Cuteri et al. 2019) are a recent
approach, where a stratifiable part of the program is automatically turned into a lazy propagator.
This successfully addresses the grounding bottleneck for ASP programs with a certain struc-
ture, as also shown by our experiments. It currently requires the user to manually identify the

10 This benchmark could not be run with OMIGA as a bug prevents it from solving such ASP encodings.
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program part that can be turned into a lazy propagator, however. Also top-down lazy-model gen-
eration (De Cat et al. 2015) and top-down stable model generation techniques (Marple et al.
2012; Marple et al. 2017) exist. The former, however, does not work on ASP but the related for-
malism of FO(ID), while the latter, to the best of our knowledge, does not achieve good solving
efficiency.

The first bottom-up lazy-grounding systems available were GASP (Palù et al. 2009) and AS-
PeRiX (Lefèvre et al. 2017). The OMIGA solver (Dao-Tran et al. 2012) uses a Rete-network for
efficient grounding and propagation, but, like its predecessors, does not provide efficient search.

Part of the previous work in ALPHA focused on the formulation and integration of domain-
specific heuristics to solve large-scale instances where such heuristics are known (cf. Taupe
et al. 2019). The introduction of domain-independent state-of-the-art techniques employed for
grounded ASP solving, however, was left open until now.

6 Conclusions and Future Work

Lazy-grounding ASP solvers must address the grounding bottleneck whilst providing problem
solving techniques which allow the solution of hard problem instances. Problem solving tech-
niques which proved to be successful for grounded ASP programs cannot be directly transferred
to lazy-grounding solvers. In this paper we reviewed various problem solving techniques such
as restarts, phase saving, domain-independent heuristics,11 and learned-clause deletion. We pre-
sented enhancements and adaptations such that these techniques are applicable in lazy-grounding
ASP solvers.

Experimental analysis on the ALPHA solver showed significant improvements (up to a factor
of three) on some hard instances while for other problems the additional techniques have no
negative effect. Similarly, as for other solvers, ALPHA comes now with a range of search options
and there does not seem to be a setting that is always preferable. Hence portfolio solving might
improve efficiency further.

As regards future work, we want to investigate further improvements to current solving tech-
niques, like blocking restarts in certain cases. Furthermore, integrating external atoms similar to
those by Eiter et al. (2018) is another goal.
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