A FURTHER PROPERTY OF SPHERICAL ISOMETRIES

RYOTARO TANAKA

(Received 13 January 2014; accepted 6 February 2014; first published online 15 May 2014)

Abstract

In this paper, it is proved that every isometry between the unit spheres of two real Banach spaces preserves the frames of the unit balls. As a consequence, if X and Y are n-dimensional Banach spaces and T_{0} is an isometry from the unit sphere of X onto that of Y then it maps the set of all $(n-1)$-extreme points of the unit ball of X onto that of Y.

2010 Mathematics subject classification: primary 46B04; secondary 46B20.
Keywords and phrases: Tingley's problem, isometric extension problem, frame, k-extreme point.

1. Introduction

Throughout this paper, the term 'Banach space' always means a real Banach space. Let X and Y be Banach spaces. Then the classical Mazur-Ulam theorem states that if $T: X \rightarrow Y$ is a surjective isometry then T is affine. In 1972, Mankiewicz [17] extended this result by showing that if $U \subset X$ and $V \subset Y$ are open and connected and $T_{0}: U \rightarrow V$ is a surjective isometry then there exists a surjective affine isometry $T: X \rightarrow Y$ such that $T_{0}=\left.T\right|_{U}$. From this, in particular, it turns out that every isometry from the unit ball of X onto that of Y can be extended to an isometric isomorphism between X and Y. Motivated by this observation, Tingley [22] proposed in 1987 the following problem. For a normed space X, let S_{X} denote its unit sphere.

Tingley's problem. Let X and Y be Banach spaces. Suppose that $T_{0}: S_{X} \rightarrow S_{Y}$ is a surjective isometry. Then, does T_{0} have a linear isometric extension $T: X \rightarrow Y$?

As the first result on this topic, it was shown in the same paper that $T_{0}(-x)=-T_{0} x$ for all $x \in S_{X}$ if both X and Y are finite dimensional. This problem is also known as the isometric extension problem. Many papers, especially in the last decade, have been devoted to the problem, and it has been solved positively for some classical Banach spaces; see, for example, $[1,6,10,16,23,24]$.

Recently some mathematicians began to attack the problem on more general spaces. In 2011, Cheng and Dong [3] studied somewhere-flat spaces. One year later, it was

[^0]shown by Kadets and Martín [15] that the problem has an affirmative answer for finitedimensional polyhedral Banach spaces. Ding and Li [8] studied it using the notion of a sharp corner point and Tan and Liu [19] introduced the Tingley property and obtained results on almost-CL-spaces. However, surprisingly, Tingley's problem remains open even if $X=Y$ and X is two dimensional. In [20], new methods and some results on the two-dimensional Tingley problem were given. The survey of Ding [7] is a good starting point for understanding the history of the problem.

The aim of this paper is to give a further geometric property of spherical isometries by using the frame of the unit ball of Banach spaces, which can be understood as a natural generalisation of the set of all the weakest k-extreme points. To do this, a simple characterisation of the frame of the unit ball is given. We also mention two problems which arise from our main result.

2. Preliminaries

Let X be a Banach space, and let B_{X} denote the unit ball of X. A subset F of B_{X} is said to be an exposed face if $F=f^{-1}(\{1\}) \cap B_{X}$ for some support functional f of B_{X}. Let v be the spherical image map from S_{X} into $S_{X^{*}}$, that is, $v(x)=\left\{f \in S_{X^{*}}: f(x)=1\right\}$. We remark that $f^{-1}(\{1\})=x+\operatorname{ker} f$ whenever $f \in v(x)$. In what follows, for each $f \in v(x)$, the exposed face $(x+\operatorname{ker} f) \cap B_{X}$ is denoted by $F(f)$ for short. Let $E(f)$ be the relative boundary of $F(f)$ with respect to the affine hyperplane $f^{-1}(\{1\})$. Then the frame of B_{X} is defined by $\operatorname{frm}\left(B_{X}\right)=\bigcup\left\{E(f): f\right.$ is a support functional for $\left.B_{X}\right\}$. This was first introduced in [18] to construct a new calculation method for the DunklWilliams constant (compare [14]). Its geometric and topological properties were studied in [21]. Suppose now that $\operatorname{dim} X \geq k+1$. Then, an element $x \in S_{X}$ is said to be a k-extreme point of B_{X} if $\left\{x_{i}\right\}_{i=1}^{k+1} \subset S_{X}$ and $x=(k+1)^{-1} \sum_{i=1}^{k+1} x_{i}$ imply the linear dependence of $\left\{x_{i}\right\}_{i=1}^{k+1}$. The set of all k-extreme points of B_{X} is denoted by $\operatorname{ext}_{k}\left(B_{X}\right)$. We remark that 1 -extreme points are just extreme points in the usual sense, and that $\operatorname{ext}_{k}\left(B_{X}\right) \subset \operatorname{ext}_{k+1}\left(B_{X}\right)$ for all $k \in \mathbb{N}$. This means that the notion of a $(k+1)$-extreme point is weaker than that of a k-extreme point for each positive integer k.

For finite-dimensional spaces, the set $\operatorname{frm}\left(B_{X}\right)$ has the following characterisation.
Theorem 2.1 [21]. Let X be an n-dimensional Banach space. Then $\operatorname{frm}\left(B_{X}\right)=$ $\operatorname{ext}_{n-1}\left(B_{X}\right)$.

This shows that $\operatorname{frm}\left(B_{X}\right)$ is a natural generalisation of the set of all the weakest k-extreme points of the unit ball.

We have another characterisation which has no restrictions on the dimension of the space.

Theorem 2.2 [21]. Let X be a Banach space. Then

$$
\operatorname{frm}\left(B_{X}\right)=\bigcup\left\{\operatorname{ext}\left(B_{M}\right): M \text { is a two-dimensional subspace of } X\right\}
$$

Some basic properties of $\operatorname{frm}\left(B_{X}\right)$ are collected in the following theorem. An element x in a Banach space X is said to be Birkhoff orthogonal to $y \in X$, denoted by $x \perp_{B} y$, if $\|x+t y\| \geq\|x\|$ for all $t \in \mathbb{R}$; see Birkhoff [2], Day [4, 5] and James [11-13].

Theorem 2.3 [21]. Let X be a Banach space.
(i) Suppose that $x \in S_{X}$. Then $x \in \operatorname{frm}\left(B_{X}\right)$ if and only if there exists $y \in X \backslash\{0\}$ such that $x \perp_{B} y$ and $\|x+t y\|>1$ for all $t>0$.
(ii) The set $\operatorname{frm}\left(B_{X}\right)$ is symmetric, that is, $\operatorname{frm}\left(B_{X}\right)=-\operatorname{frm}\left(B_{X}\right)$.
(iii) Let M be a closed subspace of X. Then $\operatorname{frm}\left(B_{M}\right) \subset \operatorname{frm}\left(B_{X}\right) \cap M$.
(iv) If X is infinite dimensional, then $\bigcup_{k \in \mathbb{N}} \operatorname{ext}_{k}\left(B_{X}\right) \subset \operatorname{frm}\left(B_{X}\right)$.
(v) The set $\operatorname{frm}\left(B_{X}\right)$ is always closed, and is connected if $\operatorname{dim} X \geq 3$.

3. A further property

We start this section with the following simple characterisation of $\operatorname{frm}\left(B_{X}\right)$.
Theorem 3.1. Let X be a Banach space, and let $x \in S_{X}$. Then $x \notin \operatorname{frm}\left(B_{X}\right)$ if and only if $\left(x+t B_{X}\right) \cap S_{X}$ is convex for some $t>0$.
Proof. Suppose that $x \notin \operatorname{frm}\left(B_{X}\right)$. Then x is a smooth point of B_{X} by [21, Lemma 4.1], and we have $x+r B_{\operatorname{ker} v(x)} \subset F(v(x))$ for some $r>0$. Putting $t=r /(2+r)$, it follows that $\left(x+t B_{X}\right) \cap S_{X}=x+t B_{\operatorname{ker} v(x)}$. Indeed, for each $y \in x+t B_{X}$, one has $y=x+t z$ for some $z \in B_{X}$, or

$$
\begin{aligned}
(2+r) y & =(2+r) x+r z \\
& =(2+r+r\langle z, v(x)\rangle) x+r(z-\langle z, v(x)\rangle x) \\
& =(2+r+r\langle z, v(x)\rangle)\left(x+\frac{r}{2+r+r\langle z, v(x)\rangle}(z-\langle z, v(x)\rangle x)\right) .
\end{aligned}
$$

We now remark that

$$
\frac{1}{2+r+r\langle z, v(x)\rangle}(z-\langle z, v(x)\rangle x) \in B_{\operatorname{ker} v(x)}
$$

since $\|z-\langle z, v(x)\rangle x\| \leq 2$ and $2+r+r\langle z, v(x)\rangle \geq 2$, which implies that

$$
y \in \frac{2+r+r\langle z, v(x)\rangle}{2+r}\left(x+r B_{\operatorname{ker} v(x)}\right) \subset \frac{2+r+r\langle z, v(x)\rangle}{2+r} S_{X} .
$$

This shows $y \in S_{X}$ if and only if $\langle z, v(x)\rangle=0$, and hence we obtain $\left(x+t B_{X}\right) \cap S_{X} \subset$ $x+t B_{\mathrm{ker} v(x)}$. The other inclusion is obvious.

Conversely, we assume that $\left(x+t B_{X}\right) \cap S_{X}$ is convex for some $t>0$. Suppose that there exists $y \in S_{X}$ such that $x \perp_{B} y$ and $\|x+r y\|>1$ for all $r>0$. Let $z(r)=$ $\|x+r y\|^{-1}(x+r y)$ for all $r \in \mathbb{R}$. Then we have $\max \{\|z(r)-x\|,\|z(-r)-x\|\} \leq t$ for some $r>0$, that is, $z(r), z(-r) \in\left(x+t B_{X}\right) \cap S_{X}$. However, putting $k=(\|x+r y\|+\|x-r y\|) / 2$ and $\lambda=\|x+r y\| /(\|x+r y\|+\|x-r y\|)$, one obtains $k>1$ and $x=k((1-\lambda) z(r)+$ $\lambda z(-r))$. This is a contradiction, which, together with Theorem 2.3(i), proves the theorem.

As a consequence, we obtain another formulation of $\operatorname{frm}\left(B_{X}\right)$.

Corollary 3.2. Let X be a Banach space. Then

$$
\operatorname{frm}\left(B_{X}\right)=\left\{x \in S_{X}:\left(x+t B_{X}\right) \cap S_{X} \text { is not convex for all } t>0\right\} .
$$

For our purpose, we need three lemmas which can be essentially found in Cheng and Dong [3]; see also Holmes [9, Exercise 2.18] for the first one. The proofs are given only for the sake of completeness, and based on the original ones except for the former half of the third one.

For each $x \in S_{X}$, let $\operatorname{st}\left(x, S_{X}\right)=\left\{y \in S_{X}:\|x+y\|=2\right\}$. Then we remark that $C \subset \operatorname{st}\left(x, S_{X}\right)$ whenever C is a convex subset of S_{X} and $x \in C$.

Lemma 3.3. Let X be a separable Banach space. Suppose that C is a maximal convex subset of S_{X}. Then $C=\operatorname{st}\left(x, S_{X}\right)$ for some $x \in C$.

Proof. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a dense subset of C, and let $x_{0}=\sum_{n} 2^{-n} x_{n}$. Then, for each $f \in v\left(x_{0}\right)$, we have $f\left(x_{n}\right)=1$ for all $n \in \mathbb{N}$, which implies that $C \subset F(f)$. This and the maximality of C together imply that $C=F(f)$. Now, take an arbitrary $y \in \operatorname{st}\left(x_{0}, S_{X}\right)$. For an element g of $v\left(2^{-1}\left(x_{0}+y\right)\right.$), one has $g\left(x_{0}\right)=g(y)=1$, or $g \in v\left(x_{0}\right)$ and $y \in F(g)=C$. This completes the proof.

For a subset A of a Banach space, let $[A]$ be the closed linear span of A.
Lemma 3.4. Let X and Y be Banach spaces, and let A be a separable subset of X. Suppose that $T_{0}: S_{X} \rightarrow S_{Y}$ is a surjective isometry. Then there exist separable subspaces $X_{0} \subset X$ and $Y_{0} \subset Y$ such that $A \subset X_{0}$ and $T_{0}\left(S_{X_{0}}\right)=S_{Y_{0}}$.

Proof. Let $M_{1}=[A]$ and $N_{1}=\left[T_{0}\left(S_{M_{1}}\right)\right]$, respectively. Define the closed subspaces $M_{k} \subset X$ and $N_{k} \subset Y$ inductively by $M_{k}=\left[T_{0}^{-1}\left(S_{N_{k-1}}\right)\right]$ and $N_{k}=\left[T_{0}\left(S_{M_{k}}\right)\right]$ for all $k \geq 2$. Then one can show that $M_{0}=\bigcup_{k \in \mathbb{N}} M_{k}$ and $N_{0}=\bigcup_{k \in \mathbb{N}} N_{k}$ have the desired properties.

Lemma 3.5. Let X and Y be Banach spaces. Suppose that $T_{0}: S_{X} \rightarrow S_{Y}$ is a surjective isometry. If C is a maximal convex subset of S_{X}, then $T_{0}(C)$ is a maximal convex subset of S_{Y}.

Proof. Once it has been proved that the lemma is true for separable Banach spaces, then one can prove the general case from it. Indeed, applying the preceding lemma to each finite subset $A \subset C$, we have separable subspaces $M_{A} \subset X$ and $N_{A} \subset Y$ such that $A \subset M_{A}$ and $T_{0}\left(S_{M_{A}}\right)=S_{N_{A}}$. Let $C_{A}=C \cap M_{A}$, and let K_{A} be a maximal convex subset of $S_{M_{A}}$ such that $C_{A} \subset K_{A}$. Then the separability of M_{A} ensures that $T_{0}\left(K_{A}\right)$ is a maximal convex subset of $S_{N_{A}}$, or conv $T_{0}\left(C_{A}\right) \subset S_{N_{A}}$, which in turn implies that conv $T_{0}(C) \subset S_{Y}$. Let K be a maximal convex subset of S_{Y} such that $T_{0}(C) \subset K$. Using the above argument for T_{0}^{-1} and K, we also have $C \subset T_{0}^{-1}(K) \subset \operatorname{conv} T_{0}^{-1}(K) \subset S_{X}$. This shows $T_{0}(C)=K$, as desired.

Now, suppose that both X and Y are separable. Then Lemma 3.3 assures that $C=\operatorname{st}\left(x, S_{X}\right)$ for some $x \in C$. Let K be a maximal convex subset of S_{Y} such
that $T_{0} x \in K$. Then, similarly by Lemma 3.3, there exists $y \in K$ such that $K=\operatorname{st}\left(y, S_{Y}\right)$. We observe that $x \in T_{0}^{-1}(K)=\operatorname{st}\left(-T_{0}\left(-y_{0}\right), S_{X}\right)$ means $-T_{0}\left(-y_{0}\right) \in C$. This and the convexity of C guarantee that $C \subset T_{0}^{-1}(K)$, or conv $T_{0}(C) \subset S_{Y}$. The proof is completed by an argument similar to that at the end of the preceding paragraph.

Remark 3.6. The finite-dimensional case of the preceding lemma is due to Tingley [22, Lemma 13].

We now present a further geometric property of spherical isometries.
Theorem 3.7. Let X and Y be Banach spaces. Suppose that $T_{0}: S_{X} \rightarrow S_{Y}$ is a surjective isometry. Then $T_{0}\left(\operatorname{frm}\left(B_{X}\right)\right)=\operatorname{frm}\left(B_{Y}\right)$.

Proof. Let $x \notin \operatorname{frm}\left(B_{X}\right)$. Then Theorem 3.1 guarantees that $\left(x+t B_{X}\right) \cap S_{X}$ is convex for some $t>0$. Let C be a maximal convex subset of S_{X} such that $\left(x+t B_{X}\right) \cap S_{X} \subset C$. From the identity $\left(x+t B_{X}\right) \cap S_{X}=\left(\left(x+t B_{X}\right) \cap S_{X}\right) \cap C$, we obtain

$$
\begin{aligned}
\left(T_{0} x+t B_{Y}\right) \cap S_{Y} & =T_{0}\left(\left(x+t B_{X}\right) \cap S_{X}\right) \\
& =T_{0}\left(\left(\left(x+t B_{X}\right) \cap S_{X}\right) \cap C\right) \\
& =\left(\left(T_{0} x+t B_{Y}\right) \cap S_{Y}\right) \cap T_{0}(C) \\
& =\left(T_{0} x+t B_{Y}\right) \cap T_{0}(C) .
\end{aligned}
$$

Applying Lemma 3.5, one has that $T_{0}(C)$ is also a maximal convex subset of S_{Y}. Thus the set $\left(T_{0} x+t B_{Y}\right) \cap S_{Y}$ is convex, which, together with Theorem 3.1, implies that $T_{0} x \notin \operatorname{frm}\left(B_{Y}\right)$.

Finally, since T_{0}^{-1} is also a surjective isometry, we have $T_{0}\left(S_{X} \backslash \operatorname{frm}\left(B_{X}\right)\right)=$ $S_{Y} \backslash \operatorname{frm}\left(B_{Y}\right)$, and the theorem follows from the bijectivity of T_{0}.

By Theorems 2.1 and 3.7, we immediately have the following corollary.
Corollary 3.8. Let X and Y be n-dimensional Banach spaces. Suppose that $T_{0}: S_{X} \rightarrow$ S_{Y} is a surjective isometry. Then $T_{0}\left(\operatorname{ext}_{n-1}\left(B_{X}\right)\right)=\operatorname{ext}_{n-1}\left(B_{Y}\right)$.

We wonder whether Theorem 3.7 and Corollary 3.8 remain true for the sets of all stronger k-extreme points. Namely, does every spherical isometry T_{0} satisfy $T_{0}\left(\operatorname{ext}_{k}\left(B_{X}\right)\right)=\operatorname{ext}_{k}\left(B_{Y}\right)$ for all $k \in \mathbb{N}$? As a remark, it is known that $\operatorname{ext}\left(B_{X}\right) \neq \emptyset$ if and only if $\operatorname{ext}_{k}\left(B_{X}\right) \neq \emptyset$ for some $k \in \mathbb{N}$. A proof of this fact is given here only for the sake of completeness.

Let X be a Banach space, and let $k \in \mathbb{N}$. We first show that $x \notin \operatorname{ext}_{k}\left(B_{X}\right)$ if and only if there exists a subspace M such that $\operatorname{dim} M \geq k$ and $x+t B_{M} \subset S_{X}$ for some $t>0$. Suppose that $x \notin \operatorname{ext}_{k}\left(B_{X}\right)$. Then $x=(k+1)^{-1} \sum_{i=1}^{k+1} x_{i}$ for some linearly independent subset $\left\{x_{i}\right\}_{i=1}^{k+1}$ of S_{X}. We remark that $\operatorname{conv}\left(\left\{x_{i}\right\}_{i=1}^{k+1}\right) \subset F(f)$ whenever $f \in$ $v(x)$. Let $M=\left[\left\{-x+x_{i}\right\}_{i=1}^{k+1}\right]$. It is easy to see that $\left\{-x+x_{i}\right\}_{i=1}^{k}$ is linearly independent, and so $\operatorname{dim} M=k$. Moreover, it follows from the identity $x=(k+1)^{-1} \sum_{i=1}^{k+1} x_{i}$ that $k^{-1}\left(x-x_{j}\right)=k^{-1} \sum_{i \neq j}\left(-x+x_{i}\right) \in-x+F(f)$ for all $1 \leq j \leq k$, which, together with $0 \in-x+F(f)$, implies that k^{-1} absconv $\left(\left\{-x+x_{i}\right\}_{i=1}^{k}\right) \subset-x+F(f)$. This shows $t B_{M} \subset-x+F(f)$ for some $t>0$, or $x+t B_{M} \subset S_{X}$. Conversely, assume that there
exists a subspace M of X such that $\operatorname{dim} M \geq k$ and $x+t B_{M} \subset S_{X}$ for some $t>0$. We remark that $x \notin M$ from the assumption. Let $\left\{e_{i}\right\}_{i=1}^{k}$ be a linearly independent subset of M, and let $e_{k+1}=-\sum_{i=1}^{k} e_{i}$. Putting $L=t^{-1} \max _{1 \leq i \leq k+1}\left\|e_{i}\right\|$, one can show that $\left\{x+L^{-1} e_{i}\right\}_{i=1}^{k+1} \subset S_{X}$ is also linearly independent and that $x=(k+1)^{-1} \sum_{i=1}^{k+1}\left(x+L^{-1} e_{i}\right)$. Hence it follows that $x \notin \operatorname{ext}_{k}\left(B_{X}\right)$. We note that this equivalence easily shows $\operatorname{ext}_{k}\left(B_{X}\right) \subset \operatorname{ext}_{k+1}\left(B_{X}\right)$ for all $k \in \mathbb{N}$.

Now, suppose that $\operatorname{ext}_{k}\left(B_{X}\right) \neq \emptyset$ for some $k \in \mathbb{N}$. Take an arbitrary $x \in \operatorname{ext}_{k}\left(B_{X}\right)$. We assume that $x \notin \operatorname{ext}\left(B_{X}\right)$. Then there exist two distinct elements $y, z \in S_{X}$ and $s \in(0,1)$ such that $x=(1-s) y+s z$. Let $z(t)=(1-t) y+t z$ for all $t \in \mathbb{R}$. Since the function $t \rightarrow\|z(t)\|$ is convex, it follows that $\left\{t \in \mathbb{R}: z(t) \in S_{X}\right\}=\left[t_{1}, t_{2}\right]$ for some $t_{1} \leq 0$ and $1 \leq t_{2}$. Without loss of generality, we may assume that $t_{1}=0$ and $t_{2}=1$. It is enough to prove that $y \in \operatorname{ext}_{k-1}\left(B_{X}\right)$. To this end, suppose on the contrary that $y \notin \operatorname{ext}_{k-1}\left(B_{X}\right)$. As was shown above, there exists a subspace M of X such that $\operatorname{dim} M \geq k-1$ and $y+t B_{M} \subset S_{X}$ for some $t>0$. Let $\left\{e_{i}\right\}_{i=1}^{k-1}$ be a linearly independent subset of S_{M}. Then one has $x \pm(1-s) t e_{i} \in F(f)$ for all $1 \leq i \leq k-1$ whenever $f \in v(x)$. Putting $r=\min \{1-s, s,(1-s) t\}$ and $e_{k}=z-y$, it follows that $r>0$ and absconv $\left(\left\{r e_{i}\right\}_{i=1}^{k}\right) \subset-x+F(f)$. This guarantees that there exists $r_{0}>0$ such that $x+r_{0} B_{N} \subset S_{X}$, where $N=\left[\left\{e_{i}\right\}_{i=1}^{k}\right]$. Since it can be shown that $\operatorname{dim} N=k$, we have $x \notin \operatorname{ext}_{k}\left(B_{X}\right)$ by the argument in the preceding paragraph, which is a contradiction that proves $y \in \operatorname{ext}_{k-1}\left(B_{X}\right)$. Thus $\operatorname{ext}\left(B_{X}\right) \neq \emptyset$ follows by an induction, and so we should assume that $\operatorname{ext}\left(B_{X}\right) \neq \emptyset$ when considering the above problem.

We finally mention two problems which naturally arise from Theorem 3.7. The first one is a Mazur-Ulam type problem.

Problem 3.9. Let X and Y be Banach spaces. Suppose that $T_{0}: \operatorname{frm}\left(B_{X}\right) \rightarrow \operatorname{frm}\left(B_{Y}\right)$ is a surjective isometry. Then, does T_{0} have a linear isometric extension $T: X \rightarrow Y$?

Of course this is more difficult than Tingley's problem unless the following one is solved positively.

Problem 3.10. Let X and Y be Banach spaces. Suppose that $T_{0}: \operatorname{frm}\left(B_{X}\right) \rightarrow \operatorname{frm}\left(B_{Y}\right)$ is a surjective isometry. Then, does T_{0} have an isometric extension $\widetilde{T_{0}}: S_{X} \rightarrow S_{Y}$?

Remark 3.11. If no assumptions are added, both Problems 3.9 and 3.10 have negative answers in the case $\operatorname{dim} X=\operatorname{dim} Y=2$. Indeed, let $X=Y=\ell_{\infty}^{2}$. Then $\operatorname{frm}\left(B_{X}\right)=$ $\operatorname{ext}\left(B_{X}\right)=\{(1,1),(1,-1),(-1,1),(-1,-1)\}$. Define an operator T_{0} on $\operatorname{frm}\left(B_{X}\right)$ by $T_{0}(1,1)=(1,1), T_{0}(1,-1)=(1,-1), T_{0}(-1,1)=(-1,-1)$ and $T_{0}(-1,-1)=(-1,1)$. This is a counterexample of the problems since T_{0} does not map antipodal pairs of points to such pairs. Hence, in the case $\operatorname{dim} X=\operatorname{dim} Y=2$, we at least need an assumption which implies $T_{0}(-x)=-T_{0} x$ for all $x \in \operatorname{frm}\left(B_{X}\right)$.

References

[1] G. An, 'Isometries on unit sphere of $\left(l^{\beta_{n}}\right)$ ', J. Math. Anal. Appl. 301 (2005), 249-254.
[2] G. Birkhoff, 'Orthogonality in linear metric spaces', Duke Math. J. 1(2) (1935), 169-172.
[3] L. Cheng and Y. Dong, 'On a generalized Mazur-Ulam question: Extension of isometries between unit spheres of Banach spaces', J. Math. Anal. Appl. 377 (2011), 464-470.
[4] M. M. Day, 'Polygons circumscribed about closed convex curves', Trans. Amer. Math. Soc. 62 (1947), 315-319.
[5] M. M. Day, 'Some characterizations of inner-product spaces', Trans. Amer. Math. Soc. 62 (1947), 320-337.
[6] G. G. Ding, 'The isometric extension problem in the unit spheres of $l^{p}(\Gamma)(p>1)$ type spaces', Sci. China Ser. A. 46 (2003), 333-338.
[7] G. G. Ding, 'On isometric extension problem between two unit spheres', Sci. China Ser. A. 52 (2009), 2069-2083.
[8] G. G. Ding and J. Z. Li, 'Sharp corner points and isometric extension problem in Banach spaces', J. Math. Anal. Appl. 405 (2013), 297-309.
[9] R. B. Holmes, Geometric Functional Analysis and its Applications, Graduate Texts in Mathematics, 24 (Springer, New York, 1975).
[10] Z. B. Hou and L. J. Zhang, 'Isometric extension of a nonsurjective isometric mapping between the unit spheres of $A L^{p}$-spaces $(1<p<\infty)$ ', Acta Math. Sinica (Chin. Ser.) 50 (2007), 1435-1440.
[11] R. C. James, 'Orthogonality in normed linear spaces', Duke Math. J. 12 (1945), 291-302.
[12] R. C. James, 'Inner products in normed linear spaces', Bull. Amer. Math. Soc. 53 (1947), 559-566.
[13] R. C. James, 'Orthogonality and linear functionals in normed linear spaces', Trans. Amer. Math. Soc. 61 (1947), 265-292.
[14] A. Jiménez-Melado, E. Llorens-Fuster and E. M. Mazcuñán-Navarro, 'The Dunkl-Williams constant, convexity, smoothness and normal structure', J. Math. Anal. Appl. 342 (2008), 298-310.
[15] V. Kadets and M. Martín, 'Extension of isometries between unit spheres of finite-dimensional polyhedral Banach spaces', J. Math. Anal. Appl. 396 (2012), 441-447.
[16] R. Liu, 'Isometries between the unit spheres of l^{β}-sum of strictly convex normed spaces', Acta Math. Sinica (Chan. Ser.) 50 (2007), 227-232.
[17] P. Mankiewicz, 'On extension of isometries in normed linear spaces', Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 367-371.
[18] H. Mizuguchi, K.-S. Saito and R. Tanaka, 'On the calculation of the Dunkl-Williams constant of normed linear spaces', Cent. Eur. J. Math. 11(7) (2013), 1212-1227.
[19] D. N. Tan and R. Liu, 'A note on the Mazur-Ulam property of almost-CL-spaces', J. Math. Anal. Appl. 405 (2013), 336-341.
[20] R. Tanaka, 'Tingley's problem on symmetric absolute normalized norms on \mathbb{R}^{2}, Acta Math. Sin. (Engl. Ser.), to appear.
[21] R. Tanaka, 'On the frame of the unit ball of Banach spaces', Cent. Eur. J. Math., to appear.
[22] D. Tingley, 'Isometries of the unit sphere', Geom. Dedicata 22 (1987), 371-378.
[23] J. Wang, 'On extension of isometries between unit spheres of $A L_{p}$-spaces $(0<p<\infty)$ ', Proc. Amer. Math. Soc. 132 (2004), 2899-2909.
[24] X. Yang, 'On extension of isometries between unit spheres of $L_{p}(\mu)$ and $L_{p}(v, H)(1<p \neq 2, H$ is a Hilbert space)', J. Math. Anal. Appl. 323 (2006), 985-992.

RYOTARO TANAKA, Department of Mathematical Science, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
e-mail: ryotarotanaka@m.sc.niigata-u.ac.jp

[^0]: (C) 2014 Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

