I. CORES FROM THE OPEN ATLANTIC

CEARA RISE

KNORR 110 82GGC

Giant gravity core raised from RV KNORR by Bill Curry of WHOI.
Holocene $0-19 \mathrm{~cm} 65-75 \% \mathrm{CaCO}_{3}$
Glacial below $19 \mathrm{~cm} 25-30 \% \mathrm{CaCO}_{3}$
The study of this core was carried out cooperatively with Bill Curry of Woods Hole Oceanographic. Our goal was to obtain benthic-planktonic age difference for the glacial section of the core (see Figs 1, 2, Table 1).

References

Broecker, W S, Andrée, M, Bonani, G, Mix, A, Klas, M, Wolfli, W and Oeschger, H, ms in preparation, Differences between the radiocarbon age of coexisting planktonic foraminifera.
Broecker, W S, Andrée, M, Bonani, G, Wolfli, W, Oeschger, H, Klas, M, Mix, A and Curry, W, ms in preparation, The radiocarbon age of deep water in the glacial ocean.
Curry, W, Duplessy, J C, Labeyrie, L and Shackleton, N, in press, Changes in the distribution of deep water $\Sigma \mathrm{CO}_{2}$ between the last glacial and the Holocene: Paleoceanography.

Fig 1. Oxygen isotope record on benthic foraminifera, for KNORR 110-82GGC obtained by Bill Curry of WHOI

KNORR 110 B2GGC CEARA RISE
G. RUB. G.SAC. N.DUT. BENTH.
$\mathrm{mg} / \mathrm{g} \quad \mathrm{mg} / \mathrm{g} \quad \mathrm{mg} / \mathrm{g} \quad \mathrm{mg} / \mathrm{g}$

Fig 2. Abundance ws depth for the three planktonic and the mixed benthics on which ${ }^{14} \mathrm{C}$ measurements were made

TABLE 1
KNORR 110 82GGC Equatorial Atlantic Ceara Rise
Location ($4^{\circ} 20.2^{\prime} \mathrm{N}, 43^{\circ} 29.2^{\prime}$ W) Depth 2816 m

Depth (cm)	Coarse fraction (\%)	$\begin{aligned} & \text { Foram } \\ & \text { sp } \end{aligned}$	$\begin{gathered} \text { Abund } \\ \text { (no./gm) } \end{gathered}$	$\begin{gathered} \text { Abund } \\ (\mathrm{mgm} / \mathrm{gm}) \end{gathered}$	No. tests analyzed	Weight analyzed (mgm)	Date d analy	of AMS lysis	$\begin{aligned} & \text { Age } \\ & \text { (yr) } \end{aligned}$	Ref*
0-3**	32.3	G sacc	265	11.2	216	12.3	-		-	
"	"	G ruber	2840	43.6	463	7.1	-		-	
"	"	P $\overline{\text { obliq }}$	57.7	2.3	201	9.7	-		-	
"	"	$\overline{\mathrm{N}}$ duter	93.2	5.4	161	9.4	-		-	
"	"	$\overline{\mathrm{M}}$ benth	5.7	0.23	247	9.8	-		-	
3-5†	31.8	$\underline{\mathrm{G}}$ sacc	356	22.1	181	11.2	-		-	
"	"	G $\overline{\text { G }}$ ruber	2810	52.1	522	9.7	-		-	
"	"	$\overline{\mathrm{P}}$ obliq	49.8	3.0	161	9.7	-		-	
"	"	$\overline{\mathrm{N}}$ -	76.2	4.8	24	1.5	-		-	
"	"	\bar{M} M benth	-	-	-	-	-		-	
6-8	32.8	$\underline{\mathrm{G}}$ sacc	333	29.1	70	6.1	-		-	
"	"	\bar{G} r ruber	1720	33.1	349	6.7	-		-	
"	"	$\overline{\mathrm{N}}$ -	29.4	1.75	-	-	-		-	
"	"	\bar{M} benth	3.8	-	-	-	-		-	
9-11	30.1	$\underline{\mathrm{G}}$ sacc	464	20.6	153	6.8	-		-	
"	"	$\underline{\text { G }}$ ruber	1720	12.8	566	4.2	-		-	
"	"	$\overline{\mathrm{N}}$ - $\overline{\text { duter }}$	41.0	2.31	-	-	-		-	
"	"	\bar{M} benth	-	-	-	-	-		-	
15-17	26.1		454	28.4	152	9.5	-		-	
"	"	G ruber	1630	20.7	401	5.1	-		-	
"	"	$\underline{\mathrm{N}}$ duter	103	5.37	-	-	-		-	
"	"	\bar{M} benth	9.4	0.35	225	8.2	-		-	
20-23	15.4	\underline{G} sacc	358	20.4	255	14.5 Ap	April 86	12,360	± 190	15
"	"	$\overline{\mathrm{G}}$ r ruber	804	17.8	521	11.5	"	12,040	± 190	15
"	" ${ }^{\prime}$	P obliq	110	6.25	274	15.6		11,950	± 180	
"	" ${ }^{\prime}$	\cdots	58.2	3.9	221	14.8	"	13,350	± 230	15
"	"	\underline{M} benth	7.1	0.22	328	10.4	"	13,160	± 210	
23-25		\underline{G} sacc	-	-	-	-	-	-		
"	"	$\overline{\mathrm{G}}$ ruber	-	-	-	-	-	-		
"	"	\bar{M} benth	-	-	-	-	-	-		
25-28	14.5	$\underline{\mathrm{G}}$ sacc	557	30.8	222	12.3 J	June 86	14,150	± 160	15,16
"	"	G ruber	1010	22.8	500	11.3 J	Jan 87	13,870	± 260	15,16
"	" ${ }^{\prime}$	$\overline{\mathrm{P}}$ obliq	38.2	2.0	254	13.2 J	June 86	12,610	± 140	
"	",	\cdots	143	8.8	213	13.0 J	July 86	13,860	± 190	15,16
"	"	M benth	5.8	0.24	233	9.5 J	June 86	14,930	± 200	16

Depth (cm)	Coarse fraction (\%)	Foram sp	$\begin{gathered} \text { Abund } \\ \text { (no. } / \mathrm{gm} \text {) } \end{gathered}$	$\begin{gathered} \text { Abund } \\ (\mathrm{mgm} / \mathrm{gm}) \end{gathered}$	No. Tests analyzed	Weight analyzed (mgm)	$\begin{aligned} & \text { Date of } \\ & \text { d analy } \end{aligned}$		Ref*
28-30	12.3	\underline{G} sacc	-	-	-	-	-	-	
"		$\overline{\mathrm{G}}$ ruber	-	-	-	-	-	-	
"	"	\bar{M} benth	-	-	-	-	-	-	
30-33	6.8	$\underline{\text { G sacc }}$	215	14.9	194	13.5	April 86	$15,100 \pm 250$	15,16
"	"	$\overline{\text { G }}$ ruber	526	10.1	453	8.7	"	$15,450 \pm 260$	15,16
"	"	$\overline{\mathrm{P}}$ obliq	5.7	0.36	-	-	-	-	
"	"	\underline{N}	61.7	3.7	186	11.1	April 86	$15,170 \pm 260$	15,16
"	"	$\overline{\mathrm{M}}$ benth	6.7	0.21	298	9.3	"	$16,350 \pm 280$	16
33-35	9.2	$\underline{\mathrm{G}}$ sacc	-	-	-	-	-	-	
"	"	$\overline{\mathrm{G}}$ r ruber	-	-	-	-	-	-	
"	"	M benth	-	-	-	-	-	-	
35-38	7.4	$\underline{\mathrm{G}}$ sacc	216	16.3	163	12.3	Jan 87	$16,090 \pm 320$	15,16
"	"	$\overline{\mathrm{G}}$ ruber	496	8.7	400	7.0	"	15,870 ± 290	15,16
"	"	$\overline{\mathrm{P}}$ obliq	1.6	0.08	-	-	-	-	
"	"	$\underline{\mathrm{N}}$ duter	58.2	3.5	229	13.7	July 86	16,060 ± 200	15,16
"	"	\bar{M} benth	4.7	0.11	187	4.4	July 86	$16,130 \pm 240$	16
36-38	7.9	G sacc	96.2	9.4	157	15.3	March 87	-	
"	"	$\overline{\mathrm{G}}$ ruber	-	-	-	-	-	-	
"	"	\bar{M} benth	3.4	0.24	58	4.1	March 87	-	
38-40	9.1	$\underline{\mathrm{G}} \mathrm{sacc}$	-	-	-	-	-	-	
"	,	$\overline{\bar{G}}$ ruber	-	-	-	-	-	-	
"	"	\bar{M} 或	-	-	-	-	-	-	
40-43	8.9	\underline{G} sacc	220	15.5	183	13.0	June 86	$16,710 \pm 250$	15,16
"	"	$\overline{\mathrm{G}}$ - ruber	458	13.2	548	15.8	"	17,040 ± 250	15,16
"	"	$\underline{\text { P }}$ obliq	1.4	0.07	-	-	-	-	
"	"	$\overline{\mathrm{N}}$ duter	86.7	6.3	181	13.2	June 86	17,610 ± 280	15,16
"	"	\bar{M} benth	4.5	0.23	193	10.2	"	$17,870 \pm 370$	16
43-45	10.1	\underline{G} sace	-	-	-	-	-	-	
"	"	\underline{G} ruber	-	-	-	-	-	-	
"	"	\bar{M} benth	-	-	-	-	-	-	
45-48	8.6	G sacc	186	22.8	86	9.5	Jan 87	17,780 ± 360	15,16
"	"	\bar{G} ruber	766	14.0	500	12.7	"	$17,430 \pm 340$	15,16
"	"	$\underline{\text { P }}$ Obliq	4.2	0.22	-	-	-	-	
"	"	$\overline{\mathrm{N}}$ duter	52.5	3.4	199	12.9	July 86	17,660 ± 260	15,16
"	"	\bar{M} benth	4.5	0.23	155	5.8	"	$17,900 \pm 640$	16

[^0]
[^0]: *Publication no. in which radiocarbon date has been published (see references cited) **Archive core
 \dagger Working core

