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A NEW PROOF OF A WATSON'S FORMULA 

BY 

KRZYSZTOF STEMPAK 

ABSTRACT. A new proof of a product formula for Laguerre poly­
nomials, due originally to Watson, is given. Considering the commu­
tative Banach algebra of radial functions on the Heisenberg groups 
Hn, n ^ 2, we observe that Watson's formula holds for z = 1,2, 
3, . . . . Then, applying a complex function theory argument, we 
establish the validity of this formula for other complex values of z, 
i.e. for Re z > - 1 / 2 . 

In 1939 Watson, (cf. [6] ), established a product formula for Laguerre poly­
nomials which may be rewritten in the following form: for Re z > —1/2, x, 
y <E R, k = 0, 1, 2, 3, . . . , we have 

(i) L K * W ) = 2Z~'/2r(z :/2
k+1} / ; e—j^y*r°l 

* * k\mX12 J° (xy sin 0)z~l/2 

X Lz
k(x

2 + y2 - 2xy cos 0) sin2z OdO. 

Here, Lz
k, k = 0, 1, 2 , . . . , denote the Laguerre polynomials of order z 

and Jv means the Bessel function defined for Re v > —1/2 by 

(3) Jv{t) = (t/2fT(v 4- l / 2 ) _ 1 r ( l / 2 ) - 1 Jo eltcos6 sin2 ' OdO. 

The aim of this note is to prove (1) using the Heisenberg group approach and 
a theorem of Carlson, (cf. [5] ). 

First we establish (1) for z = 1, 2, 3, . . . . To do this fix a positive integer 
n ^ 2 and consider the In + 1 dimensional Heisenberg group Hn = R" X 
R" X R with the multiplication given by 
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(*,, yx, tx)(x29 y2, t2) = (xx + x2, yx + y2, tx + t2 + xxy2 - x2yx) 

A function / on Hn is said to be radial if f(x9 y, t) = / ( || (x9 y) ||, /) for a 
function / o n I = R + X R, where 

II (x9 y) II = ( 2 (x? + >>z
2) ) , x = (x„ . . . , xn)9 y = (yl9..., j j . 

The funct ion/ is then called the radial part off It is known, (cf. [1], [3] ), that 
the space Lr(Hn) of all integrable, radial functions on Hn forms a commutative 
(under the convolution on Hn) Banach algebra and for any k = 0, 1, 2, . . . , and 
X G R, À ¥= 0, the mapping 

(4) Ll(Hn) 3 / -» « ( / ) = ^ ]\kdxdydu 

where 

^ ( * , * 0 - (" + * ~ 1 P ^ - ( ^ I I ^ I I 2 ^ - ^ IXIII Of, y) II2) . 

gives a multiplicative functional on Lr(Hn). 
Now, for / , g G Lj(Hw) with the radial parts / , g respectively, denote by 

f * g the radial part of the convolution / * g on Hn given by 

f(xx, yX9 Tx) = JRln+l / ( (x1? yl9 tx)(-x9 -y9 -t) )g(x9 y9 t)dxdydt. 

(We abuse the notation slightly by using the same symbol * to denote the con­
volution in Wn and this given by (5) ). 

Using the polar coordinates in Hn 

2n-\ 2 / i - l 

xx = r i l sin <f>-, xt = r cos <f>i_x YL sin <f>-, 2 ^ / = n9 1' ¥^ n9 

y = i y - i 

2 « - l 

# = r cos *„+,-_! I i sin <j>j9 \ ^ i ^ n9 i ¥= n - \9 
7 = / i + l 

2 w - l 

xw = r cos <#>2w_2 sin $2n_x, yn__x = r cos <j>n_x H sin fy 
j = n 

where r > 0, 0 < <j>x < 2TT9 0 < <J>y < 77, 7 = 2, 3, . . . , In — 1, one can verify, 
(cf. also [4] ), that 

(5) / * g(x9 t) = j x T*uf{x9 t)g(y, u)dlin(y9 u). 

Here d[in{y9 u) = o(n)y2n~ldydu where o(n) is a constant that comes from polar 
coordinates and the generalized translations Ty'u, y = 0, u e R, are given by 
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(6) 
n - 1 f77 (m 

IT 

X f((*2 + y2 ~ 2xy cos0)1 / 2 , 

t - u + xy cos <f> sin 0) s in 2" - 3 <J> s in 2" - 2 OdfydO. 

Equivalently, 

« - 1 fx+y f 
(6)' ' 

- l 

X /(v, t - u + 2s • A(x, y, v) )Wx<y(v, s )<//!„ (v, s) 

where the function WXY, defined on [ \x — y\, x + y] X [ — 1, 1], is 

y
 IT (xyv) 

and A(x, j , v), for v e [ |x — j | , JC + y], means the area of a triangle with sides 
x, y, v. 

It is clear that the mapping L\(Hn) ^ f —> \p(f) = / e Ll(jin), where 
L (fxn) = L (X, d[in), establishes an isometric isomorphism between the Banach 
algebras Lr(Hn) and L (juw), if the multiplication in the second space is given by 
(5). The fact that L (nn) with (5) as the multiplication forms a commutative 
Banach algebra may also be easily verified using 

(7) Wi,/v, s)diin(v, s)diin{x, t) = Wv^y(x, s)dnn(x, t)diin(y, s) 

and 

(8) JxWxy(v,s)dlin(v,s)=\. 

Moreover, (7) implies 

(9) <jy% g) = (f, r ^ - " g > 

say, f o r / <= L'(/x„) and g e L°°(fx„), where 

Put 

*Ux, t) = (n + k
k~ * ) " > e x p ( - ^ 2 ) Ll~\ \\\x\ 

Since (4) gives a multiplicative functional on Lr(Hw) then also fi(f) = 
a(\p~\f) ) establishes a multiplicative functional on Ll(iin), that is 

(10) P(f*g) = Kf)P(g) 
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for a l l / , g e L\[xn). But, clearly, /3(f) = </, 4>u> and so, combining (9), (10) 
and the fact that <pXk is continuous we get 

for every (x, /), (j>, u) e X Now, taking X = 1 in (11) and using the identity 

j l cos(a cos tf>)(sin <t>)2n~3 d<j> = <nx/22n~V2T{n - l)Jn_3/2(a)a3/2~n, 

we easily get (1) for z = n — 1 and therefore (1) is showed for z = 1, 2, 3, . . . . 
To get other values of z we use Carlson's theorem, (cf. [5], p. 186): If an 

analytic function/(z) on the half-space Re z > — 8, 8 > 0, satisfies \f(z) | ^ C 
exp(Jfc|z| ) for Re z ^ 0, with k < IT, C> 0 and / (« ) = 0 for « = 1, 2, 3, . . . , 
t h e n / = 0 identically. So, fix x, y ^ 0 and A: G N. Then both sides of (1) are 
analytic functions of z, Re z > — 1/2. To obtain the required growth conditions 
note, that in fact, both sides of (1) are polynomially bounded on Re z > 0. 
Indeed, using (2) we get 

(12) |L |(0I ^ C(l + \z\)\ 

with a constant C > 0 independent of t e [a, b], for any bounded interval [a, b]. 
Therefore, 

\Lz(x2)Lz(y2) | ^ C(l + |z|)2*. 

On the other hand, using (3), we obtain 

(13) | (2/t)z-l/2Jz_l/2(t) I ^ |T(z) I^IXRe *)IXRe z + 1/2)"1, 

for Re z > 0 and / ^ 0. Since, by (12), 

(14) \Lz
k(x

2 + y2 - 2xy cos fl) | g C(l + |z| ) \ 0 < 0 < 77, 

and also 

J * sin2Rez 0d0 = r(l/2)T(Re z 4- l/2)T(Re z + l ) " 1 , Re z > 0, 

we estimate R(z), the right side of (1), by 

\R(z)\* C l r ( Z t A t 1 } ' r ( R e z + D- ' rCRezXl + |z |)* 

^ C(l + \z\fk 

where Re z > 0. This, in virtue of Carlson's theorem, concludes the proof 
of( l ) . 

REMARK. Recently, (cf. [2] ), C. Markett has given another, analytic proof of 
(1). His approach is based upon an investigation of the Laguerre translation 
operator T"(f, x), a i^ —1/2, which for a sufficiently smooth function / is 
defined as the solution u(x, t), symmetric in x, t ^ 0, of the associated Cauchy 
problem 
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(Da
x - D*)u(x, t) = 0, 

u(x, 0) - f(x), ut(x, 0) = — u(x, O|r=o 

Here the singular differential operator Da is given by 

dx x dx 

The crucial point of this proof consists in finding an explicit form of the 
corresponding Riemann function. Note, that Markett's approach does not 
distinguish between the classical formula of Watson (Re z > —1/2) and the 
limiting case z = — 1/2 (cf. [2] for more details). Note also that our underlying 
differential operator is the second order partial differential operator 

32 2a + 1 3 2 3 2 

L = —« H + x 2' * > 0, / e R, 

(cf. [4] for details) and the generalized translations associated with L are 
positive operators (which is obviously not true for the Laguerre translation 
operators T"(f, x) mentioned above). 
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0 < t g X 

= 0, x > 0. 
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