A NEW PROOF OF A WATSON'S FORMULA

BY
KRZYSZTOF STEMPAK

Abstract

A new proof of a product formula for Laguerre polynomials, due originally to Watson, is given. Considering the commutative Banach algebra of radial functions on the Heisenberg groups $\mathbf{H}_{n}, n \geqq 2$, we observe that Watson's formula holds for $z=1,2$, $3, \ldots$. Then, applying a complex function theory argument, we establish the validity of this formula for other complex values of z, i.e. for $\operatorname{Re} z>-1 / 2$.

In 1939 Watson, (cf. [6]), established a product formula for Laguerre polynomials which may be rewritten in the following form: for $\operatorname{Re} z>-1 / 2, x$, $y \in \mathbf{R}, k=0,1,2,3, \ldots$, we have

$$
\begin{align*}
L_{k}^{z}\left(x^{2}\right) L_{k}^{z}\left(y^{2}\right) & =\frac{2^{z-1 / 2} \Gamma(z+k+1)}{k!\pi^{1 / 2}} \int_{0}^{\pi} e^{x y \cos \theta} \frac{J_{z-1 / 2}(x y \sin \theta)}{(x y \sin \theta)^{z-1 / 2}} \tag{1}\\
& \times L_{k}^{z}\left(x^{2}+y^{2}-2 x y \cos \theta\right) \sin ^{2 z} \theta d \theta
\end{align*}
$$

Here, $L_{k}^{z}, k=0,1,2, \ldots$, denote the Laguerre polynomials of order z

$$
\begin{equation*}
L_{k}^{z}(t)=\sum_{j=0}^{k}\binom{k+z}{k-j} \frac{(-t)^{j}}{j!} \tag{2}
\end{equation*}
$$

and J_{ν} means the Bessel function defined for $\operatorname{Re} \nu>-1 / 2$ by

$$
\begin{equation*}
J_{\nu}(t)=(t / 2)^{\nu} \Gamma(\nu+1 / 2)^{-1} \Gamma(1 / 2)^{-1} \int_{0}^{\pi} e^{i t \cos \theta} \sin ^{2 \nu} \theta d \theta . \tag{3}
\end{equation*}
$$

The aim of this note is to prove (1) using the Heisenberg group approach and a theorem of Carlson, (cf. [5]).

First we establish (1) for $z=1,2,3, \ldots$ To do this fix a positive integer $n \geqq 2$ and consider the $2 n+1$ dimensional Heisenberg group $\mathbf{H}_{n}=\mathbf{R}^{n} \times$ $\mathbf{R}^{n} \times \mathbf{R}$ with the multiplication given by

[^0]$$
\left(\bar{x}_{1}, \bar{y}_{1}, t_{1}\right)\left(\bar{x}_{2}, \bar{y}_{2}, t_{2}\right)=\left(\bar{x}_{1}+\bar{x}_{2}, \bar{y}_{1}+\bar{y}_{2}, t_{1}+t_{2}+\bar{x}_{1} \bar{y}_{2}-\bar{x}_{2} \bar{y}_{1}\right)
$$

A function \tilde{f} on \mathbf{H}_{n} is said to be radial if $\tilde{f}(\bar{x}, \bar{y}, t)=f(\|(\bar{x}, \bar{y})\|, t)$ for a function f on $X=\mathbf{R}_{+} \times \mathbf{R}$, where

$$
\|(\bar{x}, \bar{y})\|=\left(\sum_{i=1}^{n}\left(x_{i}^{2}+y_{i}^{2}\right)\right)^{1 / 2}, \bar{x}=\left(x_{1}, \ldots, x_{n}\right), \bar{y}=\left(y_{1}, \ldots, y_{n}\right) .
$$

The function f is then called the radial part of \widetilde{f}. It is known, (cf. [1], [3]), that the space $L_{r}^{1}\left(\mathbf{H}_{n}\right)$ of all integrable, radial functions on \mathbf{H}_{n} forms a commutative (under the convolution on \mathbf{H}_{n}) Banach algebra and for any $k=0,1,2, \ldots$, and $\lambda \in \mathbf{R}, \lambda \neq 0$, the mapping

$$
\begin{equation*}
L_{r}^{1}\left(\mathbf{H}_{n}\right) \ni \tilde{f} \rightarrow \alpha(\tilde{f})=\int_{\mathbf{H}_{n}} \tilde{f} \tilde{\phi}_{\lambda, k} d \bar{x} d \bar{y} d t \tag{4}
\end{equation*}
$$

where

$$
\widetilde{\phi}_{\lambda, k}(\bar{x}, \bar{y}, t)=\binom{n+k-1}{k}^{-1} e^{i \lambda t} e^{-(|\lambda| / 2)\|(\bar{x}, \bar{y})\|^{2}} L_{k}^{n-1}\left(|\lambda|\|(\bar{x}, \bar{y})\|^{2}\right)
$$

gives a multiplicative functional on $L_{r}\left(\mathbf{H}_{n}\right)$.
Now, for $\widetilde{f}, \widetilde{g} \in L_{r}^{1}\left(\mathbf{H}_{n}\right)$ with the radial parts f, g respectively, denote by $f * g$ the radial part of the convolution $\tilde{f} * \widetilde{g}$ on \mathbf{H}_{n} given by

$$
\tilde{f}\left(\bar{x}_{1}, \bar{y}_{1}, \bar{t}_{1}\right)=\int_{\mathbf{R}^{2 n+1}} \tilde{f}\left(\left(\bar{x}_{1}, \bar{y}_{1}, t_{1}\right)(-\bar{x},-\bar{y},-t)\right) \widetilde{g}(\bar{x}, \bar{y}, t) d \bar{x} d \bar{y} d t .
$$

(We abuse the notation slightly by using the same symbol $*$ to denote the convolution in \mathbf{H}_{n} and this given by (5)).

Using the polar coordinates in \mathbf{H}_{n}

$$
\begin{gathered}
x_{1}=r \prod_{j=1}^{2 n-1} \sin \phi_{j}, x_{i}=r \cos \phi_{i-1} \prod_{j=1}^{2 n-1} \sin \phi_{j}, 2 \leqq i \leqq n, i \neq n, \\
y_{i}=r \cos \phi_{n+i-1} \prod_{j=n+1}^{2 n-1} \sin \phi_{j}, 1 \leqq i \leqq n, i \neq n-1, \\
x_{n}=r \cos \phi_{2 n-2} \sin \phi_{2 n-1}, y_{n-1}=r \cos \phi_{n-1} \prod_{j=n}^{2 n-1} \sin \phi_{j},
\end{gathered}
$$

where $r>0,0<\phi_{1}<2 \pi, 0<\phi_{j}<\pi, j=2,3, \ldots, 2 n-1$, one can verify, (cf. also [4]), that

$$
\begin{equation*}
f * g(x, t)=\int_{X} T^{y, u} f(x, t) g(y, u) d \mu_{n}(y, u) \tag{5}
\end{equation*}
$$

Here $d \mu_{n}(y, u)=\sigma(n) y^{2 n-1} d y d u$ where $\sigma(n)$ is a constant that comes from polar coordinates and the generalized translations $T^{y, u}, y \geqq 0, u \in \mathbf{R}$, are given by

$$
\begin{align*}
T^{y, u} f(x, t) & =\frac{n-1}{\pi} \int_{0}^{\pi} \int_{0}^{\pi} \tag{6}\\
& \times f\left(\left(x^{2}+y^{2}-2 x y \cos \theta\right)^{1 / 2}\right. \\
& t-u+x y \cos \phi \sin \theta) \sin ^{2 n-3} \phi \sin ^{2 n-2} \theta d \phi d \theta
\end{align*}
$$

Equivalently,

$$
\begin{align*}
T^{y, u} f(x, t) & =\frac{n-1}{\pi} \int_{|x-y|}^{x+y} \int_{-1}^{1} \tag{6}\\
& \times f(v, t-u+2 s \cdot \Delta(x, y, v)) W_{x, y}(v, s) d \mu_{n}(v, s)
\end{align*}
$$

where the function $W_{x, y}$, defined on $[|x-y|, x+y] \times[-1,1]$, is

$$
W_{x, y}(v, s)=2^{2 n-3} \frac{n-1}{\pi} \frac{\Delta(x, y, v)^{2 n-3}}{(x y v)^{2 n-2}}\left(1-s^{2}\right)^{n-2},
$$

and $\Delta(x, y, v)$, for $v \in[|x-y|, x+y]$, means the area of a triangle with sides x, y, v.

It is clear that the mapping $L_{r}^{1}\left(\mathbf{H}_{n}\right) \ni \widetilde{f} \rightarrow \psi(\tilde{f})=f \in L^{1}\left(\mu_{n}\right)$, where $L^{1}\left(\mu_{n}\right)=L^{1}\left(X, d \mu_{n}\right)$, establishes an isometric isomorphism between the Banach algebras $L_{r}^{1}\left(\mathbf{H}_{n}\right)$ and $L^{1}\left(\mu_{n}\right)$, if the multiplication in the second space is given by (5). The fact that $L^{1}\left(\mu_{n}\right)$ with (5) as the multiplication forms a commutative Banach algebra may also be easily verified using

$$
\begin{equation*}
W_{x, y}(v, s) d \mu_{n}(v, s) d \mu_{n}(x, t)=W_{v, y}(x, s) d \mu_{n}(x, t) d \mu_{n}(v, s) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{X} W_{x, y}(v, s) d \mu_{n}(v, s)=1 \tag{8}
\end{equation*}
$$

Moreover, (7) implies

$$
\begin{equation*}
\left\langle T^{y, u} f, g\right\rangle=\left\langle f, T^{y,-u} g\right\rangle \tag{9}
\end{equation*}
$$

say, for $f \in L^{1}\left(\mu_{n}\right)$ and $g \in L^{\infty}\left(\mu_{n}\right)$, where

$$
\langle f, g\rangle=\int_{X} f g d \mu_{n}
$$

Put

$$
\phi_{\lambda, k}(x, t)=\binom{n+k-1}{k}^{-1} e^{i \lambda t} \exp \left(-\frac{|\lambda|}{2} x^{2}\right) L_{k}^{n-1}\left(|\lambda| x^{2}\right) .
$$

Since (4) gives a multiplicative functional on $L_{r}^{1}\left(\mathbf{H}_{n}\right)$ then also $\beta(f)=$ $\alpha\left(\psi^{-1}(f)\right)$ establishes a multiplicative functional on $L^{1}\left(\mu_{n}\right)$, that is

$$
\begin{equation*}
\beta(f * g)=\beta(f) \beta(g) \tag{10}
\end{equation*}
$$

for all $f, g \in L^{1}\left(\mu_{n}\right)$. But, clearly, $\beta(f)=\left\langle f, \phi_{\lambda, k}\right\rangle$ and so, combining (9), (10) and the fact that $\phi_{\lambda, k}$ is continuous we get

$$
\begin{equation*}
\phi_{\lambda, k}(x, t) \phi_{\lambda, k}(y, u)=T^{y,-u} \phi_{\lambda, k}(x, t) \tag{11}
\end{equation*}
$$

for every $(x, t),(y, u) \in X$. Now, taking $\lambda=1$ in (11) and using the identity

$$
\int_{0}^{\pi} \cos (a \cos \phi)(\sin \phi)^{2 n-3} d \phi=\pi^{1 / 2} 2^{n-3 / 2} \Gamma(n-1) J_{n-3 / 2}(a) a^{3 / 2-n}
$$

we easily get (1) for $z=n-1$ and therefore (1) is showed for $z=1,2,3, \ldots$.
To get other values of z we use Carlson's theorem, (cf. [5], p. 186): If an analytic function $f(z)$ on the half-space $\operatorname{Re} z>-\delta, \delta>0$, satisfies $|f(z)| \leqq C$ $\exp (k|z|)$ for $\operatorname{Re} z \geqq 0$, with $k<\pi, C>0$ and $f(n)=0$ for $n=1,2,3, \ldots$, then $f=0$ identically. So, fix $x, y \geqq 0$ and $k \in \mathbf{N}$. Then both sides of (1) are analytic functions of $z, \operatorname{Re} z>-1 / 2$. To obtain the required growth conditions note, that in fact, both sides of (1) are polynomially bounded on $\operatorname{Re} z>0$. Indeed, using (2) we get

$$
\begin{equation*}
\left|L_{k}^{z}(t)\right| \leqq C(1+|z|)^{k} \tag{12}
\end{equation*}
$$

with a constant $C>0$ independent of $t \in[a, b]$, for any bounded interval $[a, b]$. Therefore,

$$
\left|L^{z}\left(x^{2}\right) L^{z}\left(y^{2}\right)\right| \leqq C(1+|z|)^{2 k}
$$

On the other hand, using (3), we obtain

$$
\begin{equation*}
\left|(2 / t)^{z-1 / 2} J_{z-1 / 2}(t)\right| \leqq|\Gamma(z)|^{-1} \Gamma(\operatorname{Re} z) \Gamma(\operatorname{Re} z+1 / 2)^{-1} \tag{13}
\end{equation*}
$$

for $\operatorname{Re} z>0$ and $t \geqq 0$. Since, by (12),

$$
\begin{equation*}
\left|L_{k}^{z}\left(x^{2}+y^{2}-2 x y \cos \theta\right)\right| \leqq C(1+|z|)^{k}, \quad 0<\theta<\pi \tag{14}
\end{equation*}
$$

and also

$$
\int_{0}^{\pi} \sin ^{2 \operatorname{Re} z} \theta d \theta=\Gamma(1 / 2) \Gamma(\operatorname{Re} z+1 / 2) \Gamma(\operatorname{Re} z+1)^{-1}, \quad \operatorname{Re} z>0
$$

we estimate $R(z)$, the right side of (1), by

$$
\begin{aligned}
|R(z)| & \leqq C \frac{|\Gamma(z+k+1)|}{|\Gamma(z)|} \Gamma(\operatorname{Re} z+1)^{-1} \Gamma(\operatorname{Re} z)(1+|z|)^{k} \\
& \leqq C(1+|z|)^{2 k}
\end{aligned}
$$

where $\operatorname{Re} z>0$. This, in virtue of Carlson's theorem, concludes the proof of (1).

Remark. Recently, (cf. [2]), C. Markett has given another, analytic proof of (1). His approach is based upon an investigation of the Laguerre translation operator $T_{t}^{\alpha}(f, x), \alpha \geqq-1 / 2$, which for a sufficiently smooth function f is defined as the solution $u(x, t)$, symmetric in $x, t \geqq 0$, of the associated Cauchy problem

$$
\begin{array}{ll}
\left(D_{x}^{\alpha}-D_{t}^{\alpha}\right) u(x, t)=0, & 0<t \leqq x \\
u(x, 0)=f(x), \quad u_{t}(x, 0)=\frac{\partial}{\partial t} u(x, t)_{\mid t=0}=0, & x>0
\end{array}
$$

Here the singular differential operator D^{α} is given by

$$
D_{x}^{\alpha}=\frac{d^{2}}{d x^{2}}+\frac{2 \alpha+1}{x} \frac{d}{d x}-x^{2} .
$$

The crucial point of this proof consists in finding an explicit form of the corresponding Riemann function. Note, that Markett's approach does not distinguish between the classical formula of Watson ($\operatorname{Re} z>-1 / 2$) and the limiting case $z=-1 / 2$ (cf. [2] for more details). Note also that our underlying differential operator is the second order partial differential operator

$$
L=\frac{\partial^{2}}{\partial x^{2}}+\frac{2 \alpha+1}{x} \frac{\partial}{\partial x}+x^{2} \frac{\partial^{2}}{\partial t^{2}}, \quad x>0, t \in \mathbf{R}
$$

(cf. [4] for details) and the generalized translations associated with L are positive operators (which is obviously not true for the Laguerre translation operators $T_{t}^{\alpha}(f, x)$ mentioned above).

Acknowledgements. I am indebted to Andrzej Hulanicki for his insightful remark that initiated this paper as well as to Piotr Biler for a suggestion. I would like also to thank the referee for pointing out to me reference [2].

References

[^1]
[^0]: Received by the editors October 19, 1986, and, in revised form, June 4, 1987.
 Key words: Laguerre polynomials, Heisenberg groups.
 AMS Subject Classification (1985): Primary 33A65; Secondary 33A75, 43A80.
 (c) Canadian Mathematical Society 1987.

[^1]: 1. A. Hulanicki and F. Ricci, A Tauberian theorem and tangential convergence for bounded harmonic functions on balls in \mathbf{C}^{n}, Inventiones math. 62 (1980), pp. 325-331.
 2. C. Markett, A new proof of Watson's product formula for Laguerre polynomials via a Cauchy problem associated with a singular differential operator, SIAM J. Math. Anal. 17 (1986), pp. 1010-1032.
 3. F. Ricci, Harmonic analysis on groups of Type H, (preprint).
 4. K. Stempak, An algebra associated with the generalized sublaplacian, Studia Math. 88 (1988), pp. 245-256.
 5. E. C. Titchmarsh, The theory of functions, Oxford Univ. Press, 1939.
 6. G. N. Watson, Another note on Laguerre polynomials, J. London Math. Soc. 14 (1939), pp. 19-22.

 Institute of Mathematics
 University of Wroclaw
 Pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland (current address)

 ## AND

 Department of Mathematics
 The University of Georgia Athens, Georgia 30602, USA

