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PERMANENTS OF RANDOM DOUBLY STOCHASTIC 
MATRICES 

R. C. GRIFFITHS 

1. Introduction. The permanent of an n X n matrix A = (ai3) is defined as 

n 

per04) = X) I ! a>iati), 

where Sn is the symmetric group of order n. For a survey article on permanents 
the reader is referred to [2]. An unresolved conjecture due to van der Waerden 
states that if A is an n X n doubly stochastic matrix; then per (A) ^ n\/nn, 
with equality if and only if A = Jn = (1/n). For an n X n matrix A define 

Po(A) = 1 and Pr(A), r = 1, 2, . . . , n, as the average of the I I perma
nents of sub-matrices obtained by deleting n — r rows and n — r columns of 
A. A generalization of the van der Waerden conjecture is that if A is an n X n 
doubly stochastic matrix; then Pr(A) ^ rl/nr, r = 2, 3, . . . , n, with equality 
if and only if A = Jn. 

Suppose Qi, (?2, • • • , Qn\ is the set of n X n permutation matrices; then any 
n X n doubly stochastic matrix A has a decomposition 

A = cxQix + c2Qi2 + . . . + ctQit, 

where t ^ n2 — n + 1, ct > 0, i = 1, 2, . . . , t and J^ct = 1 (see e.g. [3]). This 
note studies permanents of random doubly stochastic matrices of the form 

(1) 2(c) = clYl + c2T2 + . . . + cmTm, 

where Ti, T2, . . . , Tm is a set of mutually independent, identically distributed 
random matrices such that 

(2) Prob. ( I \ = Qj) = (n\)-\ j = 1, 2, . . . , «!, 

ct ^ 0 and ^c t = 1. Throughout T and Œ will refer to random matrices given 
by (1) and (2). E will denote the expected value operator. 

2. Expected values of random permanents. 

LEMMA. If B is an n X n matrix and c a constant; then 

EPr(B + cT) = g ( r
k J ^Pk(I)P^(B)9 r = 0, 1, . . . , ». 
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Proof. Denote by Qrn the set of all I J subsets of r distinct elements from 

(1, 2, . . . , n). For any n X n matrix B, B[a\P]f a, P £ Qrn, will denote the 
submatrix obtained by deleting all rows other than those numbered in a and 
all columns other than those numbered in p. B(a\/3) will denote the sub-matrix 
obtained by deleting those rows numbered in a and those columns numbered 
in p. By definition 

Pr(B + cT) = (n ) 2 £ per(B[a\f3] + cT[a\fl). 

A result needed is the expansion 

(3) per(C + D ) = i : £ per(C(y\5)) per(D[y\8]), 
k=0 •y.SÇ.Qkr 

for any r X r matrices C and D (see e.g. [2]). Placing C = .B[a|/8] and D = 
cr[a|/3]in (3); 

(4) E per (B[a\fi + cT[a\0}) 

= Z I c*per(BI«|/3](7|«))Eper(r[«|0][7|*]) 

= Z E ck per(£[« - 7 | 0 - «])E per(r[7 |«]). 
&=0 y,ô£Qkr 

Summation in (4) is taken over y C. a, ô C. P-

Eper(r[T |5]) = (niy1 £ per(&[7 |a]) 

= (n)1 z 
= (W)_1 X 

per(/[7 |*]) 
yZQkn 

_ per(/[7 |«]), 
àÇQkn 

because there are k\(n — k)l permutations of the rows (columns) of / which 
leave per ( / [ T | 5 ] ) unaltered. 

E p e r (T[y\S]) = P*(/) f 

since it does not depend on 7, 8 £ Qkn. For a fixed 0 G Q(r-k)n there are 

( j ) pairs (a, 7), a 6 Qm, 7 G (?*„, 7 C a for which « - 7 = 0. 

Averaging over a, 0 € Ç™ in (4), 

EPr(B + cr) 

- É (J)VJ\-,(B)J%(/). 
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THEOREM 1. 

(5) EPr(Q) = r\ £ (rl/nl . . . r^n^f1. . . n^'W1. . . cm
Tm, 

ri+r2+...+ rm=r 

where U{k) = n(n — 1 ) . . . (n — fe + 1). 

(6) E ( P r ( û ) | r , f . . . , r w ) 

Tl+T2+...+ Tt = T 

'Prt\Ct^t + • • • + CmYm), 

/ = l , 2 , . . . , r a , will be proved by induction; then it follows that 

(7) EP r (0) = EE(P r(Q) | rm) 

£ (r\/ni. . . rMl)*Pn ( / ) . . . P r<. (/)*ir l . . . ^ " \ 
ri+r2+. . .+ rt»=r 

If t = 1, (6) is trivially true, assume it true for t = 1, 2, . . . , q. 

(8) E (P , (0 ) | r s + 1 r B ) 

= E(E(Pr(fl)|r„.... rm)|rs+1 rM) 

£ (r!/ri!. . . rt\)'PT1 ( / ) . . . P ^ ( J ) C l " . . . c ^ " 1 

• E(Pr,(c8r4 + . . . + 

Using Lemma 1 with J5 = cg+iTq+i + . . . + and r — rff, 

(9) E(Pr,(csr5 + . . . + cmrm)|r 
r" (r Y 

Substituting (9) in (8) completes the induction proof. 

PT(J) = I I can be calculated by a combinatorial argument or by com

paring the expansion obtained from (3) ; 

per(Z/+ J) = f, (*)Vp r(/)(« - r)\, 

with the known expansion [2] 

per(zI+J) =nljt, zr/rl, 

where J = (1). 

Placing PT(I) = I J in (7) completes the proof. 

https://doi.org/10.4153/CJM-1974-057-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-057-4


PERMANENTS 6 0 3 

COROLLARY 1. 

(r\/nr)(l + ( X ct*)Mr ~ 1)/») < EPr(i2) < (rl/nr) 

X(l+(T,Ci')eirlr-nir(r-l)). 

Proof. 

nit)-
1 = fTtU (1-q/n)-1 

q=l 

>n-t(l+ S q/n) 

= * r ' ( l + i * ( / - l ) / » ) , s o 

(10) « (^ f 1 . . . n{rm)-
1 > n-T{l + £ huifi - l ) / « ) . 

nu)~
l < n~l expl Z (1 — q/n)~lq/n\ 

< ?T ' exp ( ]C ( ! - ( » - 1 ) / » ) " V » ) 

= ?z~'exp(J/(/ — 1)), so 

(11) wen)-1. . . «en»)"1 < n~rexp(ij^ rt(ri - 1)) 

< »" r( l + i S r,(r, - 1) exp(Jr(r - 1))). 

Using the inequalities (10) and (11) in (5) and noting that 

D (r! /n! . . . rm!) D r4(rf - l ) C l
r i . . . cm

rra = r(r - 1) £ ^2, 

completes the proof. 
Corollary 1 compares EPr(fi) with Pr(Jn) ; S^i2 is a measure of the variation 

of 0 from Jn. If ||i4|| = ( I > i / ) 1 / 2 for any matrix A ; then 

var. | |0 - J"w||2 = 23 v a r - w ^ 
'̂ 

= Z) Z) c /va r . ytj 
a Q 

Q 

where K is a positive constant. 

COROLLARY 2. 7/ fli, 122, . . - is a sequence of random doubly stochastic matrices 
such that var. \\Qt — Jn\\

2 —> 0 as i —> oo, /Aew EP r(fi t) —> r\/nr as i —> oo . 

Actually Corollary 2 is a very weak result, if var. 1112€ — Jn\\
2 —> 0 as i —> oo ; 

then the sequence Î2i, S22, . . . converges in probability to Jw and Pr(Q*) con
verges in probability to rl/nT. 
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COROLLARY 3. / / Wi, W2, . . . , Wm are mutually independent, identically 
distributed random variables with a common probability density function 

{n\)~lwne-w, w > 0, 

and U is a random variable, independent of Wi, W2, . . . , Wm, with a probability 
density function 

e~u, u > 0, 

and 

v = Y.CiWt-\ 

then 

EPr(Q) = E(UV)', r = 0, 1, . . . , ». 

Proof. 

E(uvy 
= EU £ (rl/nl.. . rJW1 . . . cm

r"EWrn . . . EW,~rm 

ri+T2+...+ rm==r 

= rl X (rl/nl . . . rm\)cil . . . cm
Tmn{ri)~

l . . . n{Tm)~
x 

ri+T2+...+Tm=r 

= EP r(Q). 

COROLLARY 4. {(nr/rl)KPr(il)}
1/T is a strictly increasing function of 

r = 1, . . . , n. 

Proof. Using Holder's inequality, 

(» r / r !)EP r(0) = E F l 

< {EF r ( r + 1 ) / r} r / ( r + 1 ){El} 1 / ( r + 1 ) 

= {(n'^/(r + l)l)EPr+1(V)}r^\ 

where V is defined in Corollary 2. 

COROLLARY 5. EPr(£2(c)) is a strictly convex function of c, that is, if 0 < X < 1 
and ci ^ £2, then 

EPr(Û(X£i + (1 - X)c2)) < XEPr(Q(ci)) + (1 - X)EPr(0(c2))f 

r = 2, 3, . . . , n. 

Proof. EÇZ.CtWi~l)T is a strictly convex function of c, where W\, Wi,. . . , Wm 

are defined in Corollary 3. 
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COROLLARY 6. / / 12i and 122 are independent and 0 < X < 1, then 

EPr(XQi + (1 - X)Q2) < XEPr(Qi) + (1 - X)EPr(Q2), 

r = 2, 3, . . . , ». 

Proof. Represent 

fii = aiTi + . . . + a ^ , Q2 = ô i l ^ n + . . . + bqTp+q, 

where Ti, r2 , . . . , TP+q are mutually independent. Corollary 6 is a particular 
case of Corollary 5 where m — p + q, 

Ci = (ai, o2, • • . , ap, 0, . . . , 0) and c2 = (0, . . . , 0, blt b2, . . . , 6tf). 

COROLLARY 7. / / Â = m-1 XT I\ , /Aera 

EPr(Q) g EP r(Û), r = 2 ,3 , . . . , » , 

wi/fe equality if and only if il = £1. 

Proof. Denote by C\, . . . , cm\ vectors formed from the different permutations 
of elements from c, and e = (m~l, . . . , m~l). 

I = (m!)_1X) ci9 

so from Corollary 5, 

EPr(Q) < M r ^ E P r C Q ^ ) ) 

= EPr(S2). 

The inequality is strict unless ct = e for i = 1, 2, . . . , ml, in which case 
12 = Q. 

COROLLARY 8. EPr(fl) w a strictly decreasing function of m, r = 2, 3, . . . , n. 

Proof. Denote by fj the vector with &th element (1 — bjk)/ (m — 1 ), where 5jk is 
the Kronecker delta. Since e = m_1 S / i» Corollary 8 follows from Corollary 5. 

3. A limit theorem. The multivariate central limit theorem gives that as 
m -^ oo , w1/2(S — Jn) converges in probability law to a matrix of normal ran
dom variables; this is used to prove a limit theorem for {m(Pr(ti) — rl/nr); 
r = 2, 3, . . . , n}. J£ will denote convergence in probability law. 

THEOREM 2. 

{w(Pr(Ô) - r\/nT) ; r = 2 , 3 , . . . , » } 

where X has a chi-squared distribution with (n — l ) 2 degrees of freedom. 
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Proof. Using the expansion (3), 

P , (â ) 

= P , (5 - /„ + Jn) 

= r\/nr +(r
2)\r- 2)ln~(r-2)P2(8 - / , ) 

+ g (j)*Pt(a-/Il)P^(y1,)-

By the multivariate central limit theorem 

i f 
w 2 ( 0 - / n ) ^ > A, 

where A is a matrix of normal random variables. Since 

mPk(Q- Jn)^0, k>2, 

it suffices to show 

mP2(Q- Jn)^i(n- 1) ("J *X. 

P2(0 — Jn) = 5I J ||fl — / n | | 2 (the calculation is omitted), so 

W , P 2 ( Ô - / K ) ^ | ( ^ ) " 2 | | A | | 2 -

To calculate the distribution of ||A||2 the covariance matrix of A needs to be 
found. The product of two different elements from Qt is zero if they are in the 
same row or column, or 1 for (n — 2) ! values of i otherwise; which gives 

E7«/y» = (1 - «<r)(l - àjs)(n - 2)\/n\ + dirôJa/n. 

covariance (X^, Xr5) = covariance (Y^-, yrs) 

= (n- \Y^hiT- l/n)(ôjs- 1/n). 

A representation of A is given by 

n n 

(12) \rs = (n - 1)~* J2 X) A^A*ff*cp-i)(ff-i). 

where $ is an (n — 1) X (n — 1) matrix of normal random variables with 
zero means and an identity covariance matrix, and H is an n X n orthogonal 
matrix with ha = n~1/2. To prove (12) only the covariance matrix needs to be 
checked. ||A||2 = (n - l)-1!!^!!2 , which is distributed as (n - l)~lX. 
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