PERMANENTS OF RANDOM DOUBLY STOCHASTIC MATRICES

R. C. GRIFFITHS

1. Introduction. The permanent of an $n \times n$ matrix $A=\left(a_{i j}\right)$ is defined as

$$
\operatorname{per}(A)=\sum_{\alpha \in S_{n}} \prod_{i=1}^{n} a_{i \alpha(i)}
$$

where S_{n} is the symmetric group of order n. For a survey article on permanents the reader is referred to [2]. An unresolved conjecture due to van der Waerden states that if A is an $n \times n$ doubly stochastic matrix; then per $(A) \geqq n!/ n^{n}$, with equality if and only if $A=J_{n}=(1 / n)$. For an $n \times n$ matrix A define $P_{0}(A)=1$ and $P_{r}(A), r=1,2, \ldots, n$, as the average of the $\binom{n}{r}^{2}$ permanents of sub-matrices obtained by deleting $n-r$ rows and $n-r$ columns of A. A generalization of the van der Waerden conjecture is that if A is an $n \times n$ doubly stochastic matrix; then $P_{r}(A) \geqq r!/ n^{r}, r=2,3, \ldots, n$, with equality if and only if $A=J_{n}$.

Suppose $Q_{1}, Q_{2}, \ldots, Q_{n!}$ is the set of $n \times n$ permutation matrices; then any $n \times n$ doubly stochastic matrix A has a decomposition

$$
A=c_{1} Q_{i_{1}}+c_{2} Q_{i_{2}}+\ldots+c_{i} Q_{i t}
$$

where $t \leqq n^{2}-n+1, c_{i}>0, i=1,2, \ldots, t$ and $\sum c_{i}=1$ (see e.g. [3]). This note studies permanents of random doubly stochastic matrices of the form

$$
\begin{equation*}
\Omega(\bar{c})=c_{1} \Gamma_{1}+c_{2} \Gamma_{2}+\ldots+c_{m} \Gamma_{m} \tag{1}
\end{equation*}
$$

where $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{m}$ is a set of mutually independent, identically distributed random matrices such that
(2) Prob. $\left(\Gamma_{i}=Q_{j}\right)=(n!)^{-1}, \quad j=1,2, \ldots, n!$,
$c_{i} \geqq 0$ and $\sum c_{i}=1$. Throughout Γ and Ω will refer to random matrices given by (1) and (2). E will denote the expected value operator.

2. Expected values of random permanents.

Lemma. If B is an $n \times n$ matrix and c a constant; then

$$
\mathrm{E} P_{r}(B+c \Gamma)=\sum_{k=0}^{r}\binom{r}{k}^{2} c^{k} P_{k}(I) P_{r-k}(B), \quad r=0,1, \ldots, n
$$

Received November 28, 1972.

Proof. Denote by $Q_{r n}$ the set of all $\binom{n}{r}$ subsets of r distinct elements from $(1,2, \ldots, n)$. For any $n \times n$ matrix $B, B[\alpha \mid \beta], \alpha, \beta \in Q_{r n}$, will denote the submatrix obtained by deleting all rows other than those numbered in α and all columns other than those numbered in β. $B(\alpha \mid \beta)$ will denote the sub-matrix obtained by deleting those rows numbered in α and those columns numbered in β. By definition

$$
P_{r}(B+c \Gamma)=\binom{n}{r}^{-2} \sum_{\alpha, \beta \in Q_{r n}} \operatorname{per}(B[\alpha \mid \beta]+c \Gamma[\alpha \mid \beta])
$$

A result needed is the expansion
(3) $\operatorname{per}(C+D)=\sum_{k=0}^{T} \sum_{\gamma, \delta \in Q_{k r}} \operatorname{per}(C(\gamma \mid \delta)) \operatorname{per}(D[\gamma \mid \delta])$,
for any $r \times r$ matrices C and D (see e.g. [2]). Placing $C=B[\alpha \mid \beta]$ and $D=$ $c \Gamma[\alpha \mid \beta]$ in (3);
(4) $\quad \mathrm{E} \operatorname{per}(B[\alpha \mid \beta]+c \Gamma[\alpha \mid \beta])$

$$
\begin{aligned}
& =\sum_{k=0}^{r} \sum_{\gamma, \delta \in Q_{k r}} c^{k} \operatorname{per}(B[\alpha \mid \beta](\gamma \mid \delta)) \mathrm{E} \operatorname{per}(\Gamma[\alpha \mid \beta][\gamma \mid \delta]) \\
& =\sum_{k=0}^{r} \sum_{\gamma, \delta \in Q_{k r}} c^{k} \operatorname{per}(B[\alpha-\gamma \mid \beta-\delta]) \mathrm{E} \operatorname{per}(\Gamma[\gamma \mid \delta])
\end{aligned}
$$

Summation in (4) is taken over $\gamma \subset \alpha, \delta \subset \beta$.

$$
\begin{aligned}
\mathrm{E} \operatorname{per}(\Gamma[\gamma \mid \delta]) & =(n!)^{-1} \sum_{j} \operatorname{per}\left(Q_{j}[\gamma \mid \delta]\right) \\
& =\binom{n}{k}^{-1} \sum_{\gamma \in Q k n} \operatorname{per}(I[\gamma \mid \delta]) \\
& =\binom{n}{k}^{-1} \sum_{\delta \in Q k n} \operatorname{per}(I[\gamma \mid \delta])
\end{aligned}
$$

because there are $k!(n-k)$! permutations of the rows (columns) of I which leave per $(I[\gamma \mid \delta])$ unaltered.

E per $(\Gamma[\gamma \mid \delta])=P_{k}(I)$,
since it does not depend on $\gamma, \delta \in Q_{k n}$. For a fixed $\theta \in Q_{(r-k) n}$ there are $\binom{\mathrm{n}-(r-k)}{k}$ pairs $(\alpha, \gamma), \alpha \in Q_{r n}, \gamma \in Q_{k n}, \gamma \subset \alpha$ for which $\alpha-\gamma=\theta$. Averaging over $\alpha, \beta \in Q_{r n}$ in (4),

$$
\begin{aligned}
& \mathrm{E} P_{r}(B+c \Gamma) \\
& \quad=\sum_{k=0}^{r}\binom{n}{r}^{-2}\binom{n-(r-k)}{k}^{2}\binom{n}{r-k}^{2} c^{k} P_{r-k}(B) P_{r}(I) \\
& \quad=\sum_{k=0}^{\Gamma}\binom{r}{k}^{2} c^{k} P_{r-k}(B) P_{r}(I)
\end{aligned}
$$

Theorem 1.
(5) $\quad \operatorname{E} P_{r}(\Omega)=r!\sum_{r_{1}+r_{2}+\ldots+r_{m}=r}\left(r!/ r_{1}!\ldots r_{m}!\right) n_{\left(r_{1}\right)}{ }^{-1} \ldots n_{\left(r_{m}\right)}{ }^{-1} c_{1}{ }^{r_{1}} \ldots c_{m}{ }^{r_{m}}$,
where $n_{(k)}=n(n-1) \ldots(n-k+1)$.
Proof.
(6) $\mathrm{E}\left(P_{r}(\Omega) \mid \Gamma_{t}, \ldots, \Gamma_{m}\right)$

$$
\begin{array}{r}
=\sum_{r_{1+}+r_{2}+\ldots+r_{t}=r}\left(r!/ r_{1}!\ldots r_{t}!\right)^{2} P_{r_{1}}(I) \ldots P_{r_{t-1}}(I) c_{1}^{r_{1}} \ldots c_{t-1}^{r_{t-1}} \\
\\
\quad \cdot P_{r_{t}}\left(c_{t} \Gamma_{t}+\ldots+c_{m} \Gamma_{m}\right),
\end{array}
$$

$t=1,2, \ldots, m$, will be proved by induction; then it follows that
(7) $\quad \mathrm{E} P_{r}(\Omega)=\mathrm{EE}\left(P_{r}(\Omega) \mid \Gamma_{m}\right)$

$$
=\sum_{r_{1}+\tau_{2}+\cdots+r_{m}=r}\left(r!/ r_{1}!\ldots r_{m}!\right)^{2} P_{r_{1}}(I) \ldots P_{r_{m}}(I) c_{1}^{r_{1}} \ldots c_{m}^{\tau_{m}} .
$$

If $t=1,(6)$ is trivially true, assume it true for $t=1,2, \ldots, q$.
(8) $\mathrm{E}\left(P_{r}(\Omega) \mid \Gamma_{q+1}, \ldots, \Gamma_{m}\right)$

$$
=\mathrm{E}\left(\mathrm{E}\left(P_{r}(\Omega) \mid \Gamma_{q}, \ldots, \Gamma_{m}\right) \mid \Gamma_{q+1}, \ldots, \Gamma_{m}\right)
$$

$$
=\sum_{r_{1}+r_{2}+\ldots+r_{q}=r}\left(r!/ r_{1}!\ldots r_{q}!\right)^{2} P_{r_{1}}(I) \ldots P_{r_{q-1}}(I) c_{1}^{r_{1}} \ldots c_{q-1}^{r_{q-1}}
$$

$$
\cdot \mathrm{E}\left(P_{r_{q}}\left(c_{q} \Gamma_{q}+\ldots+c_{m} \Gamma_{m}\right) \mid \Gamma_{q+1}, \ldots, \Gamma_{m}\right) .
$$

Using Lemma 1 with $B=c_{q+1} \Gamma_{q+1}+\ldots+c_{m} \Gamma_{m}$ and $\Gamma=\Gamma_{q}$,

$$
\begin{align*}
& \mathrm{E}\left(P_{\tau_{q}}\left(c_{q} \Gamma_{q}+\ldots+c_{m} \Gamma_{m}\right) \mid \Gamma_{q+1}, \ldots, \Gamma_{m}\right) \tag{9}\\
& \quad=\sum_{k=0}^{\tau_{q}}\binom{r_{q}}{k}^{2} c_{q}{ }^{k} P_{k}(I) P_{r_{q-k}}\left(c_{q+1} \Gamma_{q+1}+\ldots+c_{m} \Gamma_{m}\right)
\end{align*}
$$

Substituting (9) in (8) completes the induction proof.
$P_{r}(I)=\binom{n}{r}^{-1}$ can be calculated by a combinatorial argument or by comparing the expansion obtained from (3);

$$
\operatorname{per}(z I+J)=\sum_{r=0}^{n}\binom{n}{r}^{2} z^{r} P_{r}(I)(n-r)!
$$

with the known expansion [2]

$$
\operatorname{per}(z I+J)=n!\sum_{r=0}^{n} z^{\tau} / r!
$$

where $J=(1)$.
Placing $P_{r}(I)=\binom{n}{r}^{-1}$ in (7) completes the proof.

Corollary 1.

$$
\begin{aligned}
\left(r!/ n^{r}\right)\left(1+\left(\sum c_{i}{ }^{2}\right) \frac{1}{2} r(r-1) / n\right)< & \mathrm{E}_{r}(\Omega)<\left(r!/ n^{r}\right) \\
& \times\left(1+\left(\sum c_{i}^{2}\right) e^{\frac{1}{2} r(r-1)} \frac{1}{2} r(r-1)\right) .
\end{aligned}
$$

Proof.

$$
\begin{aligned}
n_{(t)^{-1}} & =n^{-t} \prod_{q=1}^{t-1}(1-q / n)^{-1} \\
& >n^{-t}\left(1+\sum_{q=1}^{t-1} q / n\right) \\
& =n^{-t}\left(1+\frac{1}{2} t(t-1) / n\right), \text { so }
\end{aligned}
$$

$$
\begin{equation*}
\left.n_{\left(r_{1}\right)}\right)^{-1} \ldots n_{\left(r_{m}\right)}^{-1}>n^{-r}\left(1+\sum \frac{1}{2} r_{i}\left(r_{i}-1\right) / n\right) \tag{10}
\end{equation*}
$$

$$
n_{(t)}^{-1}<n^{-t} \exp \left(\sum_{q=1}^{t-1}(1-q / n)^{-1} q / n\right)
$$

$$
<n^{-t} \exp \left(\sum_{q=1}^{t-1}(1-(n-1) / n)^{-1} q / n\right)
$$

$$
=n^{-t} \exp \left(\frac{1}{2} t(t-1)\right), \text { so }
$$

$$
\begin{align*}
\left.n_{\left(r_{1}\right)}\right)^{-1} \ldots n_{\left(r_{m}\right)}^{-1} & <n^{-r} \exp \left(\frac{1}{2} \sum r_{i}\left(r_{i}-1\right)\right) \tag{11}\\
& <n^{-r}\left(1+\frac{1}{2} \sum r_{i}\left(r_{i}-1\right) \exp \left(\frac{1}{2} r(r-1)\right)\right)
\end{align*}
$$

Using the inequalities (10) and (11) in (5) and noting that

$$
\sum_{r_{1}+\tau_{2}+\ldots+r_{m}=r}\left(r!/ r_{1}!\ldots r_{m}!\right) \sum r_{i}\left(r_{i}-1\right) c_{1}^{{ }^{\tau_{1}}} \ldots c_{m}^{{ }^{\tau_{m}}}=r(r-1) \sum c_{i}{ }^{2},
$$

completes the proof.
Corollary 1 compares $\mathrm{E} P_{r}(\Omega)$ with $P_{r}\left(J_{n}\right) ; \sum c_{i}{ }^{2}$ is a measure of the variation of Ω from J_{n}. If $\|A\|=\left(\sum a_{i j}{ }^{2}\right)^{1 / 2}$ for any matrix A; then

$$
\text { var. } \begin{aligned}
\left\|\Omega-J_{n}\right\|^{2} & =\sum_{i j} \text { var. } \omega_{i j} \\
& =\sum_{i j} \sum_{q} c_{q}{ }^{2} \text { var. } \gamma_{i j} \\
& =K \sum_{q} c_{q}{ }^{2}
\end{aligned}
$$

where K is a positive constant.
Corollary 2. If $\Omega_{1}, \Omega_{2}, \ldots$ is a sequence of random doubly stochastic matrices such that var. $\left\|\Omega_{i}-J_{n}\right\|^{2} \rightarrow 0$ as $i \rightarrow \infty$, then $\mathrm{E} P_{r}\left(\Omega_{i}\right) \rightarrow r!/ n^{r}$ as $i \rightarrow \infty$.

Actually Corollary 2 is a very weak result, if var. $\left\|\Omega_{i}-J_{n}\right\|^{2} \rightarrow 0$ as $i \rightarrow \infty$; then the sequence $\Omega_{1}, \Omega_{2}, \ldots$ converges in probability to J_{n} and $P_{r}\left(\Omega_{i}\right)$ converges in probability to $r!/ n^{\tau}$.

Corollary 3. If $W_{1}, W_{2}, \ldots, W_{m}$ are mutually independent, identically distributed random variables with a common probability density function

$$
(n!)^{-1} w^{n} e^{-w}, \quad w>0
$$

and U is a random variable, independent of $W_{1}, W_{2}, \ldots, W_{m}$, with a probability density function

$$
e^{-u}, \quad u>0
$$

and

$$
V=\sum c_{i} W_{i}^{-1}
$$

then

$$
\mathrm{E} P_{r}(\Omega)=\mathrm{E}(U V)^{r}, \quad r=0,1, \ldots, n
$$

Proof.

$$
\begin{aligned}
\mathrm{E} & (U V)^{r} \\
& =\mathrm{E} U \sum_{r_{1}+r_{2}+\ldots+r_{m}=r}\left(r!/ r_{1}!\ldots r_{m}!\right) c_{1}^{r_{1}} \ldots c_{m}{ }^{r_{m}} \mathrm{E} W_{1}^{-r_{1}} \ldots \mathrm{E} W_{m}{ }^{-r_{m}} \\
& =r!\sum_{r_{1}+r_{2}+\ldots+r_{m}=r}\left(r!/ r_{1}!\ldots r_{m}!\right) c_{1}{ }^{r_{1}} \ldots c_{m}{ }^{{ }_{m}^{m}} n_{\left(r_{1}\right)}{ }^{-1} \ldots n_{\left(r_{m}\right)}{ }^{-1} \\
& =\mathrm{E} P_{r}(\Omega) .
\end{aligned}
$$

Corollary 4. $\left\{\left(n^{r} / r!\right) \mathrm{E} P_{r}(\Omega)\right\}^{1 / \tau}$ is a strictly increasing function of $r=1, \ldots, n$.

Proof. Using Holder's inequality,

$$
\begin{aligned}
\left(n^{\tau} / r!\right) \mathrm{E} P_{r}(\Omega) & =\mathrm{E} V^{r} \mathrm{l} \\
& <\left\{\mathrm{E} V^{\tau(r+1) / r}\right\}^{r /(r+1)}\{\mathrm{E} 1\}^{1 /(r+1)} \\
& =\left\{\left(n^{\tau+1} /(r+1)!\right) \mathrm{E} P_{r+1}(\Omega)\right\}^{\tau /(r+1)}
\end{aligned}
$$

where V is defined in Corollary 2.
Corollary 5. $\mathrm{E} P_{r}(\Omega(\bar{c}))$ is a strictly convex function of \bar{c}, that is, if $0<\lambda<1$ and $\bar{c}_{1} \neq \bar{c}_{2}$, then

$$
\mathrm{E} P_{r}\left(\Omega\left(\lambda \bar{c}_{1}+(1-\lambda) \bar{c}_{2}\right)\right)<\lambda \mathrm{E} P_{r}\left(\Omega\left(\bar{c}_{1}\right)\right)+(1-\lambda) \mathrm{E} P_{r}\left(\Omega\left(\bar{c}_{2}\right)\right)
$$

$r=2,3, \ldots, n$.
Proof. $\mathrm{E}\left(\sum c_{i} W_{i}^{-1}\right)^{r}$ is a strictly convex function of \bar{c}, where $W_{1}, W_{2}, \ldots, W_{m}$ are defined in Corollary 3.

Corollary 6. If Ω_{1} and Ω_{2} are independent and $0<\lambda<1$, then

$$
\mathrm{E} P_{r}\left(\lambda \Omega_{1}+(1-\lambda) \Omega_{2}\right)<\lambda \mathrm{E} P_{r}\left(\Omega_{1}\right)+(1-\lambda) \mathrm{E} P_{r}\left(\Omega_{2}\right)
$$

$r=2,3, \ldots, n$.
Proof. Represent

$$
\Omega_{1}=a_{1} \Gamma_{1}+\ldots+a_{p} \Gamma_{p}, \Omega_{2}=b_{1} \Gamma_{p+1}+\ldots+b_{q} \Gamma_{p+q}
$$

where $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{p+q}$ are mutually independent. Corollary 6 is a particular case of Corollary 5 where $m=p+q$,

$$
\bar{c}_{1}=\left(a_{1}, a_{2}, \ldots, a_{p}, 0, \ldots, 0\right) \text { and } \bar{c}_{2}=\left(0, \ldots, 0, b_{1}, b_{2}, \ldots, b_{q}\right)
$$

Corollary 7. If $\bar{\Omega}=m^{-1} \sum_{1}^{m} \Gamma_{i}$, then

$$
\mathrm{E} P_{r}(\bar{\Omega}) \leqq \mathrm{E} P_{r}(\Omega), \quad r=2,3, \ldots, n
$$

with equality if and only if $\Omega=\bar{\Omega}$.
Proof. Denote by $\bar{c}_{1}, \ldots, \bar{c}_{m}$! vectors formed from the different permutations of elements from \bar{c}, and $\bar{e}=\left(m^{-1}, \ldots, m^{-1}\right)$.

$$
\bar{e}=(m!)^{-1} \sum \bar{c}_{i}
$$

so from Corollary 5 ,

$$
\begin{aligned}
\mathrm{E} P_{r}(\bar{\Omega}) & \leqslant(m!)^{-1} \sum \mathrm{E} P_{r}\left(\Omega\left(\bar{c}_{i}\right)\right) \\
& =\mathrm{E} P_{r}(\Omega)
\end{aligned}
$$

The inequality is strict unless $\bar{c}_{i}=e$ for $i=1,2, \ldots, m$!, in which case $\Omega=\bar{\Omega}$.

Corollary 8. $\mathrm{E}_{r}(\bar{\Omega})$ is a strictly decreasing function of $m, r=2,3, \ldots, n$.
Proof. Denote by \bar{f}_{j} the vector with k th element $\left(1-\delta_{j k}\right) /(m-1)$, where $\delta_{j k}$ is the Kronecker delta. Since $\bar{e}=m^{-1} \sum \bar{f}_{j}$, Corollary 8 follows from Corollary 5.
3. A limit theorem. The multivariate central limit theorem gives that as $m \rightarrow \infty, m^{1 / 2}\left(\bar{\Omega}-J_{n}\right)$ converges in probability law to a matrix of normal random variables; this is used to prove a limit theorem for $\left\{m\left(P_{r}(\bar{\Omega})-r!/ n^{r}\right)\right.$; $r=2,3, \ldots, n\} . \underset{\longrightarrow}{\mathscr{L}}$ will denote convergence in probability law.

Theorem 2.

$$
\begin{aligned}
& \left\{m\left(P_{r}(\bar{\Omega})-r!/ n^{r}\right) ; r=2,3, \ldots, n\right\} \\
& \quad \mathscr{L}
\end{aligned}\left\{\frac{1}{2}(n-1)^{-1} n^{-(r-2)}(r-2)!\binom{r}{2}^{2}\binom{n}{2}^{-2} X ; r=2,3, \ldots, n\right\}, ~ l
$$

where X has a chi-squared distribution with $(n-1)^{2}$ degrees of freedom.

Proof. Using the expansion (3),

$$
\begin{aligned}
& P_{r}(\bar{\Omega}) \\
& \qquad \begin{aligned}
&=P_{r}\left(\bar{\Omega}-J_{n}+J_{n}\right) \\
&=r!/ n^{r}+\binom{r}{2}^{2}(r-2)!n^{-(r-2)} P_{2}\left(\bar{\Omega}-J_{n}\right) \\
&+\sum_{k=3}^{r}\binom{r}{k}^{2} P_{k}\left(\bar{\Omega}-J_{n}\right) P_{r-k}\left(J_{n}\right) .
\end{aligned}
\end{aligned}
$$

By the multivariate central limit theorem

$$
m^{\frac{1}{2}}\left(\bar{\Omega}-J_{n}\right) \xrightarrow{\mathscr{L}} \Lambda,
$$

where Λ is a matrix of normal random variables. Since

$$
m P_{k}\left(\bar{\Omega}-J_{n}\right) \xrightarrow{\mathscr{L}} 0, \quad k>2,
$$

it suffices to show

$$
\begin{gathered}
m P_{2}\left(\bar{\Omega}-J_{n}\right)^{\mathscr{L}} \frac{1}{2}(n-1)\binom{n}{2}^{-2} X . \\
P_{2}\left(\bar{\Omega}-J_{n}\right)=\frac{1}{2}\binom{n}{2}^{-2}\left\|\bar{\Omega}-J_{n}\right\|^{2} \text { (the calculation is omitted), so } \\
m P_{2}\left(\bar{\Omega}-J_{n}\right) \xrightarrow{\mathscr{L}} \frac{1}{2}\binom{n}{2}^{-2}\|\Lambda\|^{2} .
\end{gathered}
$$

To calculate the distribution of $\|\Lambda\|^{2}$ the covariance matrix of Λ needs to be found. The product of two different elements from Q_{i} is zero if they are in the same row or column, or 1 for $(n-2)$! values of i otherwise; which gives

$$
\begin{aligned}
\mathrm{E} \gamma_{i j} \gamma_{r s}=\left(1-\delta_{i r}\right) & \left(1-\delta_{j s}\right)(n-2)!/ n!+\delta_{i r} \delta_{j s} / n \\
\operatorname{covariance}\left(\lambda_{i j}, \lambda_{r s}\right) & =\operatorname{covariance}\left(\gamma_{i j}, \gamma_{r s}\right) \\
& =(n-1)^{-1}\left(\delta_{i r}-1 / n\right)\left(\delta_{j s}-1 / n\right) .
\end{aligned}
$$

A representation of Λ is given by
(12) $\quad \lambda_{r s}=(n-1)^{-\frac{1}{2}} \sum_{p=2}^{n} \sum_{q=2}^{n} h_{r p} h_{s q} \phi_{(p-1)(q-1)}$,
where Φ is an $(n-1) \times(n-1)$ matrix of normal random variables with zero means and an identity covariance matrix, and H is an $n \times n$ orthogonal matrix with $h_{i 1}=n^{-1 / 2}$. To prove (12) only the covariance matrix needs to be checked. $\|\Lambda\|^{2}=(n-1)^{-1}\|\Phi\|^{2}$, which is distributed as $(n-1)^{-1} X$.

References

1. M. Marcus, Inequalities for matrix functions of combinatorial interest, SIAM J. Appl. Math. 17 (1969), 1023-1031.
2. M. Marcus and H. Minc, Permanents, Amer. Math. Monthly 72 (1965), 577-591.
3. H. R. Ryser, Combinatorial mathematics, No. 14 of the Carus Mathematical Monographs, the Mathematical Association of America, 1963.

Macquarie University, N.S.W., Australia;

Monash University,
Clayton, 3168, Australia

