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Abstract

Let A be a unital C*-algebra. Let (B, E) be a pair consisting of a unital C*-algebra B containing A as a
C*-subalgebra with a unit that is also the unit of B, and a conditional expectation E from B onto A that is
of index-finite type and of depth 2. Let B be the C*-basic construction induced by (B, E). In this paper,
we shall show that any such pair (B, E) satisfying the conditions that A’ N\ B = C1 and that A’ N By is
commutative is constructed by a saturated C*-algebraic bundle over a finite group. Furthermore, we shall
give a necessary and sufficient condition for B to be described as a twisted crossed product of A by its
twisted action of a finite group under the condition that A’ N By is commutative.

2000 Mathematics subject classification: primary 46L.08; secondary 46L.40.
Keywords and phrases: conditional expectations, C*-algebraic bundles, depth 2, initial C*-algebras,
Watatani index, twisted actions, twisted crossed products.

1. Introduction

The Jones index theory on type II; factors [11] caused a revolutionary change to
the theory of operator algebras. The paragroup theory due to Ocneanu [18, 19] and
the classification results for subfactors due to Popa [25, 26] should be mentioned in
particular. The Jones index theory was extended to unital C*-algebras by Watatani [35]
and many interesting results of C*-index theory can be found in the work of Izumi [8].

In this paper, we consider a condition for an inclusion of unital C*-algebras,
denoted by £° in Section 2, which is stronger than the depth 2 requirement and
which characterizes subfactors arising from crossed products by outer actions of finite
groups [16]. It is known that the condition £ does not characterize crossed product
inclusions of C*-algebras because of the presence of a K-theoretical obstruction.
We show that the condition £° is still useful for characterizing inclusions arising
from saturated C*-algebraic bundles over finite groups instead of those arising from
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crossed products. In Section 3, we prove that an inclusion induced by a saturated
C*-algebraic bundle over a finite group is of index-finite type and depth 2. In Section 4,
we construct a saturated C*-algebraic bundle over a finite group from an inclusion of
C*-algebras satisfying the condition. In Section 8, we shall give a necessary and
sufficient condition for a saturated C*-algebraic bundle over a finite group to be de-
scribed as a twisted crossed product with the finite group. We shall also prove that any
C*-algebraic bundle over a finite group can be constructed as a corner of a crossed
product inclusion of C*-algebras after stabilization.

When i =1, 2, let p; be a projection in a C*-algebra C. We write p; ~ p» in C
if p1 is Murray—von Neumann equivalent to p; in C.

2. Three sets and their equivalence relations

Let A be a unital C*-algebra. Let (B, E) be a pair consisting of a unital C*-
algebra B including A with a common unit, and a conditional expectation E from
B onto A that is of index-finite type and of depth 2. Let £ be the set of all such
pairs. Let (B, E), (D, F) € L. We say that (B, E) is equivalent to (D, F), we write
(B, E) ~ (D, F), if there exists an isomorphism 7 of B onto D such that E = F o 7.
We denote by [B, E] the equivalence class of (B, E) in £ and by £/~ the set of all
equivalence classes of elements in L. Let L0 be the set of all elements (B, E) € £ such
that A’ N B = C1 and A’ N B; is commutative, where Bj is the C*-basic construction
induced by (B, E). Let £9/~ be the set of all equivalence classes of elements in L0

Let B = {B;};ec be a C*-algebraic bundle over a finite group G such that B, = C,
where e is the unit element in G and C is a unital C*-algebra. We say that B is
saturated if B;Bs = B, for all 1, s € G (see Fell and Doran [6]). Let D, B: be
the graded C*-algebra induced by B = {B;};cG, which is defined in Exel [5], where
we regard B; as a closed subspace of @, ; By for all € G. Let B={B;};ec and
D = {Dp}hen be C*-algebraic bundles over the finite groups G and H, whose fibers
at the unit element are equal to C. We say that B is equivalent to D, we write B ~ D, if
there exists an isomorphism A of G onto H satisfying the condition that, for all ¢ € G,
there exists a linear isomorphism 7; of B; onto Dj ) such that 75 (xy) = 7, (x) 7, (y)
and m,—1 (x*) = m;(x)*, for all x € B; and y € By, and 7, =id on B, = D, = C. Let
M be the set of all saturated C*-algebraic bundles over finite groups whose fiber at
the unit element is equal to the unital C*-algebra A. We can easily see that the above
relation is an equivalence relation in M by routine computations. We denote by [5]
the equivalence class of B in M and by M/~ the set of all equivalence classes of B
in M.

Let K be the C*-algebra of all compact operators on a countably infinite-
dimensional Hilbert space and denote by C* a stable C*-algebra C ® K for each
C*-algebra C. Let NV be the set of all finite group actions on A*. We define an
equivalence relation in A/ as follows: for all (G, B), (H, y) € N we say that (G, B) is
equivalent to (H, y), we write (G, B) ~ (H, y), if there exists an isomorphism A of
G onto H satisfying the condition that (G, f) is exterior equivalent to (G, yx()). We
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denote by [G, B] the equivalence class of (G, B) in A/ and denote by A/~ the set of
all equivalence classes of (G, B) in V.
For each C*-algebra C, let M (C) be its multiplier algebra. For any automorphism
a of C, we can extend « to a strictly continuous automorphism of M (C) following the
results of Busby [4] or Jensen and Thomsen [9]. We denote it by the same symbol «.
In this paper, we shall use the phrase ‘Hilbert C*-bimodule’ in the sense of Kajiwara
and Watatani [13].

3. Construction of a map from M/~ to L/~

Let B={Bi}iec¢G € M and B =@D,.; B:. Let E be the conditional expectation
from B onto A defined by E (x) = x. forallx =), _; x; € B. We call it the canonical

conditional expectation from B onto A. Since B is saturated, B;B; = A forall 7 € G.

Since A is unital, there exists a finite set {x } L, C B, such that Z"’ 1 xt x’* =1 for all
tegG.
LEMMA 3.1. The set {(x x’*) li=1,2,...,ns, t € G}is aquasi-basis for E.

PROOF. Foralla =) . as € B,

n ny

[N L totk
E E(ax;)x; —E A-1X; X, = a,-1
i=1 i=1

forall t € G. Thus Y, .5 > it E(ax)x!* =3",.; a,-1 =a. Hence the lemma is
proved. O

We denote by |G| the order of G.
COROLLARY 3.2. With the above notation, Index E = |G|.
PROOF. By Lemma 3.1, Index E =), .5 > L, x/x/* =|G]. 0

Let e4 be the Jones projection and let By be the C*-basic construction induced
by E. Let E; be the dual conditional expectation of E from B onto B.

LEMMA 3.3. Lete; = 7’:1 xleax!* forallt € G. Then e, is a projection in A’ N By.
Furthermore, e, is independent of the choice of {xi’ }7’:1.

PROOF. Itis clear that e, is a self-adjoint element in B;. Since x| *x;. € A, by Watatani
[35, Lemma 2.1.1] it commutes with e 4. Thus

E x! eAxt*xleAx E xtx'*x’eAxt* E X eAxl* =e;.
lj 1 lj—

Hence, ¢; is a projection in B;. Furthermore, for all a € A,

ny

ae; =a E xleax!™ = E x x *axleax!™ = E xt eAx;*ax x*=eua

i,j=1 i,j=1
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m;

j=1C B; be another finite set

since x§*axt € A. Hence ¢; € A’ N B;. Now let {yj}
satisfying the condition that Z 2 y; yj* = 1. Then

ng  mg ny o mg
t* I*x l l* t l* l
o= pens =35 S tensttn =33 e =3 e
i=1 i=1 j=1 i=1 j=1
since x{*y’; € A. Therefore, the lemma is proved. O

REMARK 3.4. By easy computations, we can see that e;e; =0 for all ¢, s € G where
t#sand ) ;e = 1.

Let ¢, be as above and let C*(B, ¢;) be a C*-subalgebra of B| generated by B and ¢;
forallt € G.

LEMMA 3.5. With the above notation, C*(B, e;) = B forall t € G.

. -1
PROOF. Since x| x§ cA,

n, i
-1 1 -1 —1 l
E x!ex] E E x! e x x| F=eq x! t t* [ ¥ =eq.

i=1 i=1 j=1 i=1 j=1
Since C*(B, e;) is a C*-subalgebra of By, the lemma is proved. O

The following lemma shows that for all # € G there exists an automorphism atB of
By such that «B(b) = b for all b € B and aP(ep) = ¢,-1.

LEMMA 3.6. For all t € G, there exists a unique automorphism ottB of B1 such that
aB(b)=bforallb e B and aB(es) = e,

PROOF. We shall show that ¢, is a Jones projection for all # € G. By Lemma 3.3, ¢; is
a projectionin A" N By. Forallb =) . bs € B,

ny ny

_ t 123 t t* __ t 1£3 t I£3

ebe; = E Xjeax; bxjeij = E x; E(x; bxj)eij
i,j i,j

ny
= Zx x/*bex" eAxt* Z bex eAx’* = E(b)e;.
—

Since Ei(e) =Y " x! E1(ea)x!* = (Index E)~ !, ifa € A and ae; = 0, then we have
a = (Index E)E(ae;) =0. Thus, the map A >a > ae; € By is injective Since
C*(B, ¢;) = B by Lemma 3.5, there exists a unique automorphism O‘z of By such
that oz,B(b) = b forall b € B and atB(eA) = e,-1 by [35, Proposition 2.2.1]. O

For a C*-algebra C, we denote by Aut(C) the group of all automorphisms of C.

LEMMA 3.7. With the above notation, the map t € G — atB € Aut(By) is an action
of G on Bj.
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PROOF. We note that e, = e¢4. Hence a —=idon By. Forall¢, s € G,

n._i n._in_1

3 t
B xS -1 s7hot 7l sl
(oct oay)(es) =« (ZX X *)=Z ZX; Xj eax; xio
i=1 i=1 j=1
-1 -1
: s t
Since x; x; € By-1,-1 and
n._yn_i
\ . 1* sl
3P BRI
i=1 j=1
by Lemma 3.3,
n._jn._j . 1
Z Z x; X ; X Y =e1ym1.
i=1 j=1
Thus,
B B B
(o oary)(ea) = eqgy-1 = apg(ean).
Hence the map ¢ - o7 is an action of G on Bj. O

We call (G, o®) the action on By induced by B.
LEMMA 3.8. With the above notation, the inclusion A C B is of depth 2.

PROOF. We shall prove this lemma in the same way as Osaka and Teruya [20,
Lemma 3.4]. We have only to show that (A’ N Bj)ex(A’ N By) contains the unit,
where ey is the Jones projection induced by E;. By Lemma 3.3, it follows that
erere; € (A’ N By)ea (A’ N By) forall t € G. Also, forall ¢t € G,

ny

erere; = E x; eAxt*ezx eAx’* E X eAezx’*x’eAx
i,j=1 i,j=1

= E xeAezeAxt*xzx]
i,j=1

ny
1 % _.t 1
= ————xleax]*xtx!* xleax)*
Z Index E 0 7 77 IndexEZ A

5

since exb = be for all b € B, we have that B B; C A and esezes = (Index E)_le
by [35, Lemma 2.3.5]. Thus,

Z G2 = Tndex E Z Z xjeax;” = Index E €Cl.

teG teG i=1

Therefore, the lemma is proved. O
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We denote by (B, E)g the element in £ induced by B described above. Also, we
denote its equivalence class by [B, E]z.

Let B={B;};c¢ and D ={Dp}pcy be elements in M. Let B =D, ; B: and
D =P, .y Di. Furthermore, let E and F be the canonical conditional expectations
from B and D onto A, respectively.

LEMMA 3.9. With the above notation, let (B, E)p and (D, F)p be the elements in L
induced by B and D in M. If B~ D in M, then (B, E)g~ (D, F)p in L.

PROOF. Since B ~ D in M, there exists an isomorphism A of G onto H satisfying the
condition that, for all # € G, there exists a linear isomorphism 7; of B; onto D; ) such
that 7,5 (xy) = 7, (x) 75 (), 7,1 (x*) = m;(x)* and 7, =id on B, =D, = A. Letw
be the map from B to D defined by 7 (x) =), 5 7/ (x;) for all x =P, x; in B.
By easy computations, 77 is an isomorphism of B onto D and E = F o . Therefore,
(B, E)yp~ (D, F)pin L. d

By Lemma 3.9, we can define a map H from M/~ to L/~ by H([B]) =[B, Els
for all B={B;};eg € M.

4. Construction of a map from £/~ to N/~

Suppose that (B, E) € £0. Since A’ N B is commutative, there exists n € N such
that A’ N By = C". Let {e;};< be the set of minimal projections in A’ N By, where G
is a finite set with n elements containing the distinguished point e with e, = e4 and
where e4 is the Jones projection induced by E. Since A C B is of depth 2, it follows
that A’ N By = M,,(C), where B, is the C*-basic construction induced by B C Bj.
Thus, forall# € G there exists a unitary element u;, € A’ N By with u;esu; = e;, where
u,=1.Foralla e A,

erae; = urepujauresu; = E(a)e;,
since u; € A’ N By. If ae; = 0, then
0=uae; =auresu; = uraepu;.

Hence aeq =0. Thus a =0. By [35, Proposition 2.2.1], there exists a unique iso-
morphism «; of Bj onto C*(B, ¢;) such that o;(b) = b for all b € B and a;(e4) = ¢;.
Hence

C"=A'NB Dau(A NB)=A NC*B,e)=C".

Thus, A’N By = A’ NC*(B, e;). As e € C*(B, e;), we see that o; € Aut(By) for all
teG. Aso;(A'NB))=A"N By for all t € G, we see that (a; o ag)(es) € A’ N By
for all s, € G and (a; o a5)(e4) is a minimal projection in A’ N By. Hence there
exists r € G where (o; o a5)(eq) = oy (e4). Therefore, we can define a multiplication
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in G such that o; o oy = o5. In the same way as above, we can define the inverse of
each element in G. Thus G is a group with the unit element e.

LEMMA 4.1. With the above notation, o; is outer for all t € G \ {e}.

PROOF. We suppose that there is an element € G \ {e} such that «; is inner. Then
there is a unitary element u, € B where oy = Ad(u;). Hence, for all b € B, we
have that b = u,;bu;. Thus u; € B'N By. Since A’ N B =Cl, so is B'N By by [35,
the proof of Proposition 2.7.3]. It follows that o; =id and that eq4 = ¢;. This is a
contradiction since ¢ # e. O

Since B is a fixed point C*-subalgebra for (G, «), we can identify B, with
By x4 G. Since e4 ® 1 is a full projection in M(B}), by Brown [2, Lemma 2.5],
there exists an isometry w € M(By) such that ww* =e4 ® 1. Noting further that
M (B}) C M(B3), by easy computations, Ad(w) is an isomorphism of B; onto B’
such that Ad(w)(B}) = A¥, where we identify A with Aes and B with e4 Besey. Let

B = Ad(w) o (a; ® id) o Ad(w™).

By the definition of 8¢, (G, B) is an action of G on A®. We call (G, «) and (G, B) the
actions of G on By and A® induced by (B, E) and we denote them by (G, o), ) and

(G, B)B,E)-

LEMMA 4.2. With the above notation, |G, BB, k) is independent of the choice of the
isometry w € M(BY).

PROOF. Let z be another isometry in M (B]) where zz* =ea ® 1. Let (G, y)(B,£)
be the action of G on A as above. Then y; = Ad(zw™*B; (wz*)) o B; and zw*B; (wz™)
is a unitary element in M(Aes ® K). Since we identify A with Aey, we have that
(G, B)(B,E) is exterior equivalent to (G, ¥)(B, ). Therefore, the lemma is proved. U

Let (D, F) be another element in £° and let (H, 8)(p,F) be the action on D
induced by (D, F), where D is the C*-basic construction induced by (D, F).

LEMMA 4.3. With the above notation, if (B, E) ~ (D, F) in CO, then there exist
an isomorphism w1 of By onto D1 and an isomorphism A of G onto H such that
Sy =mopro 711_1 for all t € G, where By and D\ are the C*-basic constructions
induced by (B, E) and (D, F).

PROOF. Since (B, E) ~ (D, F) in £°, there exists an isomorphism 7 of B onto D
such that E = F om. Let e4 and f4 be the Jones projections induced by E and F.
Then there exists an isomorphism 771 of By onto D determined by j(e4) = fa and
m1(x) =7 (x) for all x € B. Hence 71 is an isomorphism of A’ N B} onto A’ N Dy.
Thus, by the definitions of (G, «)(p, k) and (H, 8)(p, ), there exists an isomorphism
A of G onto H such that §y ) =m0 B 0 nfl for all € G. Therefore, the lemma is
proved. O
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COROLLARY 4.4. Let (B, E), (D, F) € ,CO and let (G, ,8)(B,E) and (H, V)(D,F) be
the actions on A® induced by (B, E) and (D, F), respectively. If (B, E) ~ (D, F)
in L0, then (G, B) .y ~ (H, ¥)(p.F) in N.

PROOF. This is immediate by Lemmas 4.2 and 4.3. O

By the above corollary, we can define a map F from £°/~ to N/~ by
F([B, E)) =[G, Bl,E)

where [G, B](B,E) is the equivalence class of the action of G on A® induced by (B, E).
Since (B, E) € £°, there exists a quasi-basis {(u;, u7)};" | for E. For each right
Hilbert A-module X, let K4 (X) be the C*-algebra generated by the right rank-one
operators on X. Since we regard B as a right Hilbert A-module by using E, we can
construct a C*-algebra K 4 (B) which is isomorphic to B. We identify K4 (B) with Bj.
Letx! = ¢;(u;) forallte Gandi=1,2,...,m

LEMMA 4.5. With the above notation, e; =y ;.| xteax!* forallt € G.

PROOF. For all b € B, we have that ¢;(b) = Z;-":] u; E(u}e; (b)) since e;(b) € B.
Since ¢; is a projection in K4 (B),

er(b) = ef(b) = ¢ <Z uiE(u:‘e,(b))) =Y e Eufe; (b))
i=1 i=1
Z er (i) (ui, e: (b)) a-

On the other hand, if we regard Z;":l xi’ e Axf * as an element in K4 (B), we have the
following equations:

3

Zx eaxt*(b) = Z FE(*b) =) er(ui) (e (ui), b)a
i=1

I
M§ ||

er(ui)(ui, e;(b))a.

—_

Therefore, the lemma is proved. ]

5. Construction of a map from N/~ to M/~

In this section we shall construct a map G from N/~ to M/~. Let (G, B) be
an action of a finite group G on A®. Let egg be a rank-one projection in K and put
p =1® eq. Let Xg, be the Banach space pA* B, (p) forallt € G. We define a product
-1 Xpg x Xp —> Xpg, and aninvolution f : Xg —> Xp _, as follows. Forall x € Xpg,

and y € Xg we define x - y = x5;(y) and xt = B,-1(x™). By routine computations,

1
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we see that B(g g) = {Xg,}iec is a saturated C*-algebraic bundle with a product - and
an involution #, and that Xg, = A, where we identify pA® p with A. We call this B g)
the saturated C*-algebraic bundle over G induced by (G, B). Let (H, y) be another
action of a finite group H on A*® and let By ;) be the saturated C*-algebraic bundle
over a finite group induced by (H, y).

LEMMA 5.1. With the above notation, if (G, B) ~ (H, y) in N, then B, gy ~ B(n.y)
in M.

PROOF. Since (G, B) ~ (H, y) in N/, we identify G with H. Then there exists a uni-
tary element v; € M (A®) for all t € G satisfying the conditions that y; = Ad(v;) o S,
and that v,y = v, B (vs) forallz, s € G. Forall t € G, let 7r; be the map from Xg, to X,
defined by 7;(pap;(p)) = papP:;(p)v] = pav;y;(p) for all a € A®. Then clearly 7; is
a linear isomorphism of Xg, onto X,,. Foralla, b€ A* and ¢, s € G,

71 (paB:(p)) - ws(pbBs(p)) = pav;y:(p)yi D)y, (V) yis ()
= papP;(p) B (b) B ()] vis(p) = paP;(p) B (b)v}vis ()
=15 (paP(p) B (b) Brs (p)) = mis(paPi(p) - pbBs(p)),

since B; = Ad(v]) o y; and v/, = B;(v)v] forall ¢, s € G. Also,

7 (pap(p))* = (pav}yi(p))* = py-1(v)y,-1 @) y,-1(p)
= pB-1@) -1 (P = 71 (pB-1 (@) -1 (p)) = m,-1 ((papy (p)P).

since y,-1 = Ad(v;-1) o ;-1 and 1 = v,-1 B,-1 (v;). Furthermore, 7, = id on the space
Xp, = Xy, = pA® p. Therefore, the lemma is proved. O

By Lemma 5.1, we can define amap G from N/~ to M/~ by G([G, B]) = [B(:,p)]
for all (G, B) e N.

6. Composition of F, G and 'H

In this section we shall show that H o G o F =id on £°/~. Let (B, E) € £° and
let (G, a)B,E) and (G, B)(B,E) be the actions of G on B and A® induced by (B, E),
respectively. We construct the saturated C*-algebraic bundle {Yy, };c¢ over G induced
by (G, @), k) in a similar way to as in Section 5.

LEMMA 6.1. Let (B, E) € £° and let (G, a),ky and (G, B)(B,E) be the actions of
G on By and A® induced by (B, E), respectively. Let {Xg,}icG and {Yy,}icG be the
saturated C*-algebraic bundles over G induced by (G, 8)B.g) and (G, @), ). Then
{(Xg,}reG ~ (Yo, }1eG in M.

PROOF. We recall that Xg, = pA*B,(p) and Yy, = eaBio;(ey) for all t € G, where
p =1 ® ey and ey is a rank-one projection in K, and we identify pA® p and Ae 4 with
A in the usual way. For all ¢ € G, let ; be the map from pA®B;(p) to eq Bia(es)
defined, for all a € A%, by

7 (papy(p)) = (ea @ eo) (Ve ® id) (@) w(ey ® id)(w™) (s (ea) @ eoo),
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where 1, is an isomorphism of A onto Aey defined by V.(x) = xeyq for all x € A
and we identify e Bia;(ea) with (e4 ® epo) B} (a; ® id)(es ® ego). Then, from the
above definition, 7, is a linear isomorphism of p A’ B;(p) onto e4 Bia;(e4). By routine
computations, s (x - y) = m(x) - s (y) and nt_1(xu) =71,(x)" for all x € PASB:(p)
and y € pA®B,(p). Furthermore, 7, = id on A. Therefore, the lemma is proved. O

THEOREM 6.2. HoG o F =idon £°/~.

PROOF. Let (B, E) € £°. From Lemma 6.1, (G o F)([B, E]) = [{Yq, }iec]l- Let
D=&P,.; Yy and let F be the canonical conditional expectation from D onto

o, = Aea, where we identify Aey with A. We shall prove that (B, E) ~ (D, F)
in £9. Let 7 be a linear map from B to D defined by 7 (x) =P, ; eaxa;(ea)
for all x € B. Since @, a/(ea) =1, by easy computations 7 (x) - w(y) = 7 (xy)
for all x, y e B. Also, by easy computations, 7(x)* =n(x*) for all x € B and
F(w(x)) =esxes = E(x)es. This means that E = F o 7, since we identify Aey
with A. For an x € B, we suppose that w(x) =0. Then 0= EBteG eaxe; =epx.
Hence x = 0. Thus 7 is injective. Furthermore, for all ¢ € G, let x;, y; € B. Then, by

Lemma 4.5,
m m
t t N, T
P eaxieaviaiea) = D eaxieayixieaxt* =P Y eaEx)E(yix))x}*.
teG teG i=l teG i=l

Letb=3)"" > ,cq E)E(y.x[)x[* € B. Then, by the above equation,

w(b) = EP eabas(ea) =D DD eaEG)E(yix)xl*as(ea)

seG seG i=1 teG
= @ eaxseayss(ea),
seG
since .
ai(ea)as(en) = {SS(EA) iij i ;
Hence 7 is surjective. Therefore, the theorem is proved. O

REMARK 6.3. Let B = {B;};cc be an element in M and let (G, &) be the action
on Bj induced by B. In the same way as in Section 4, we can construct the
action (G, B) on A® induced by (G, oB) and define a map K from M/~ to N/~.
Furthermore, by routine computations, K o G =id on A/~ and G o K =id on M /~.

7. Images
In this section, we shall compute F (£0%/~) and (G o F)(LY/~).

LEMMA 7.1. Let (B, E) € £° and let (G, B)(B,E) be the action of G on A® induced
by (B, E). Then B; is outer for all t € G \ {e}.
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PROOF. Since A’ N B = C1, we have that A’ N A = C1. We suppose that there exists
at € G\ {e} such that §; is inner in M(A®). Let (G, o) (3, ) be the action of G on B
induced by (B, E). Then, by the definition of §; and routine computations, there
exists a unitary element v; € M (A") such that o; ® id = Ad(v;). Hence by Phillips and
Raeburn [24, Lemma 2.3], «; is inner in B;. This is a contradiction by Lemma 4.1. O

For all Hilbert A—A-bimodules X and Y, let 4)Homy4 (X, Y) be the space of all
A—A-homomorphisms of X to Y. If X =Y, we denote this space by 4Endy4 (X).

LEMMA 7.2. Let (G, B) € N. We suppose that B; is outer for all t € G \ {e} and that
A'"NA=Cl. Then the saturated C*-algebraic bundle over G, B £y =1{Xg,}icc
induced by (G, B), has the following property:

Cid ift=s,

Homy (Xg,, Xg) =
AHomy (Xg,, Xp,) 0 if s

PROOF. First, we note that Xg, is an A—A-equivalence bimodule for all t € G.
We shall show that, for all ¢, s € G where t #s, Xg, 2 Xg, as A-A-equivalence
bimodules. We suppose that there exist #, s € G such that ¢ #s and Xg, = Xg, as
A-A-equivalence bimodules. Then, by Brown et al. [3, Corollary 3.5], there is a
unitary element v € M (A®) such that §; = Ad(v) o B,. This is a contradiction. Since
A’N A =Cl1, we have that X g, is irreducible for all # € G. Indeed, by [13, the remark
after Lemma 1.10 and Corollary 1.28],

AEnd4 (Xp,) = (A ®ep) NKa(Xp,) =(A®ep) N(A® ey).

where we identify A with A ® ego and B, (p)A®B;(p), and eq is a rank-one projection
in K with p =1 ® egp. Thus, 4End4 (Xg,) = Cid. Therefore, the lemma is proved. O

Let A0 be the set of all actions (G, B) € N satisfying the condition that B; is outer
forallt € G\ {e}.

Let B={B;};tcc € M. Then we can regard B; as a Hilbert A—A-bimodule for all
tegG.

LEMMA 7.3. Let B ={B;};cG be an element in M satisfying the condition that

Cid ift=s,

Homy (B;, By) =
A A(B, By) 0 i1,

and let (B, E)g be the element in L induced by B. Then A’ N B =C1 and A’ N\ By is
commutative.

PROOF. First, we show that A’ N B; is commutative. Note that A’ N B; = 4End4 (B).
Since B = @teG B, by the assumption of the lemma, 4Endj(B)=C", where
n=|G|. Next, we shall show that AANB=Cl. Let x=&,.;x €A NB.
Then x;a =ax; for all t€ G and a€ A. For all t € G\ {e}, let Tx,—l be the
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homomorphism of B; to B.(= A) defined by Txﬂy =x;—1y for all y € B;. Since
X;-1y € B, and x,-1a = ax,—1 for all a € A, we have that Txfl € sAHomy (B;, B.).
Hence TX,—l = 0. Thus xthz*,, =0, that is, x,-1 = 0. Let Ty, be an endomorphism
defined as above. Then since ax, = x.a for all a € A, we have that T, € AEnd4(B.).
Hence there exists A € C such that T, = Aid. Thus 7}, (1) = A1, that is, x, = A1.
Therefore, A’ N B = C1. O

Let MY be the set of all B in M satisfying the assumption of Lemma 7.3.
PROPOSITION 7.4. F(LY/~) =N/~ and (G o F)(LO/~) = MO/~.

PROOF. This is immediate by Lemmas 7.1-7.3 and Theorem 6.2. O

8. Twisted actions of finite groups

Let (B, E) € £°. As mentioned in Section 4, there exists a group G such that
A'N B =, Ce;, where {e;};ec is a family of mutually orthogonal minimal
projections in A’ N Bj. Let e be the unit element in G and e4 the Jones projection
induced by E. Then, e, = e4. Also, there is an action 8 of G on B; defined by

Bi(ea) =e;, Pr(b)=0>b

forallt € G and b € B.

In this section, we shall give a necessary and sufficient condition for B to be
described as a twisted crossed product of A and a twisted action of G on A under
the above condition.

Suppose thate4 ~ B;(e4) in B] for all ¢ € G. Then there exists a partial isometry w;
in Bj such that w;w; =e4 and w,w; =¢; (= B;(ea)) for all t € G. Since w; € By,

we can write w; = ;”:[1 xlesy!, where x!, yl € Bfori=1,2,..., m;. Now we put
m;

uf =3 " x!E(y!) € Bforallt € G. Then wies =ujes forallr € G. If t = e, then
wiw, = w.w, = e4q. Hence we may assume that w, = e4. Thus u, = 1.

LEMMA 8.1. Forallt € G, the element u; is unitary in B.

PrROOF. Forallt € G,
uju; =nEj(ujeau;) =nEj(weaw;) =nE(e;) =1,

as E1(e;)=1/n. As eauufes =eswfwres =es, we see that E(u;uf)es =es.
Thus E (u;uf) = 1. Hence u,;uf = 1, since E is faithful and u;, is an isometry. a

LEMMA 8.2. Foralls,t € G, Bs(e;) = ey;.

PrROOE. Foralls, t € G,

Bs(er) = (Bs o Br)(ea) = Bsr(ea) = ey U

LEMMA 8.3. ususuy, € A foralls,t € G. In particular, u,—1u; € A forallt € G.
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PROOF. Foralls, tr € G,

”;k;eAust = ey = Bs(er) = Bs (u?eAut) = u;kﬂs(eA)ut

%k ko k
= U;esll; = U U eAUsUs,

by Lemma 8.2. Hence usu,uj,ea = eausu;uy,. Thus usu,uy, € A. Also, since u, =1,
we have that u,-1u; € A. O

For all s, t € G, let u(s, t) = usu,u},. Then u(s, t) is a unitary element in A by
Lemmas 8.1 and 8.3.

LEMMA 8.4. Forallt € G, u;Auj = A.

PROOF. Forallt e Ganda € A,
ujauies = uiaeu; = ujeau; = euau;,

since ¢; € A’ N By. Thus usau} € A. Hence u;Au; € A. On the other hand, since
u,—1u; € A by Lemma 8.3,

ureau;, = u,u;ku;",,ufluteAuf = u,u;"u;k,leAuFlu,u:‘

—u* —
= U, jeAl;-1 = e,
and
* % % _ *
UiaQUues = U;ae,—1; = U;e;—1aU; = eAl; Al;.
Hence ujau; € A. Thus, the lemma is proved. O

For all 1 € G, let o; = Ad(u;)| 4, the restriction of Ad(u;) to A. By Lemma 8.4,
o; is an automorphism of A for all t € G. We shall show that (o, u) is a twisted action
of G on A, as defined by Packer and Raeburn [22] and Quigg [27].

LEMMA 8.5. (a, u) is a twisted action of G on A.

PROOF. Clearly u(e, t) =u(t,e) = 1forallt € G and o5 0 oy = Ad(u(s, t)) o oy for
all s, € G. We have only to show that «, (u(s, t))u(r, st) = u(r, s)u(rs, t) for all
s, t,r € G. Indeed,

ES %

o (u(s, )u(r, st) = Ad(uy) (gt s, iphg Uy = Uplgli iy,

= (upusuyg)Ursugityg,) = u(r, )u(rs, t). O

Following Quigg [27], we define the reduced twisted crossed product A x4, G
associated with a twisted action («, u) of G on A. We may assume that A acts on a
Hilbert space ‘H faithfully and nondegenerately. Also, we may assume that there is a
unitary map v : G —> B(H) such that

oy = Ad(U[), UsVUr = M(S, t)vst
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for all s, t € G, where B(H) is the C*-algebra of all bounded linear operators on H.
Then, given any element x € A x4, G, we can write x =), a;v;, where a; € A
for all t € G. Let F be the canonical conditional expectation from A x4, G onto A
defined by F (x) = a., where x = ) ,_; a;v;, witha; € A for all t € G. We shall show
that (A xq, G, F) ~ (B, E). In order to do so, we need the following lemmas.

LEMMA 8.6. E(u;) =0, and a; is an outer automorphism of A forallt € G \ {e}.

PROOF. We note that, for all r € G \ {e},
eawres = eaw,wiwies = ese;wres = 0.

On the other hand,

m;

my
eawiea =Y eaxteaylea=Y  EDE(G)ea.

i=1 i=1

Hence ) /", E(x])E(y!) =0. Thus E(u;) =0, since E(u,) =) 2y E(y)*E(x)*.
Next, suppose that «; is an inner automorphism of A, that is, there is a unitary element
z in A such that o;(a) = zaz* for all a € A. Then u}za = ujo;(a)z = aujz for all
a € Aandhence uyz € A’N B = Cl, thatis, u; = Az for some A € C such that || = 1.
Therefore,

e =ureau; =zea" =ea.
This is a contradiction. O

For a twisted action (¢, u) of G, we call the action a twisted outer action if «; is
outer forallz € G \ {e}.

LEMMA 8.7. {(u}, us)}sec and {(us, u})}sec are quasi-bases for E.

* *
E useAuS:E wseAwS:E es =1,

seG seG seG

PROOF. Since

{(u}, us)}sec is a quasi-basis for E. Since u,—1u; € A by Lemma 8.3,
* __ * * * __ * * __
Us€AUg = UsUg—1 U 1 €AUG—TU (UG = UsUg—1€—1U UG = €.

Therefore, D, ; useau; =) g e,—1 =1 and hence {(uy, u})}sec is a quasi-basis
for E. U

PROPOSITION 8.8. (B, E) ~ (A Xg.u G, F).

PROOF. We shall show that there exists an isomorphism 7 of B onto A x4, G such
that E = F o . Forall x € B, we can write x = ) .. E(xu})u; by Lemma 8.7. We
define a map 7 from B to A xq , G by w(x) =, E(xuf)v,. Itis clear that 7 is
linear. Using the equalities

ar = Ad(uy) = Ad(vy),  u(s, 1) = ugitsitgy = V5V, Vg (8.1)
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we can see that 7 (x)7(y) = w(xy) and 7 (x*) = 7 (x)* forall x, y € B by Lemma 8.7.
We now claim that 7 is bijective. For all z € A x4, G, we write 2=, 2 V;,
where z; e A forallt € G. Let x = ZteG z:uy. Then, by the above equations (8.1)
and Lemma 8.6, (x) = z. Next, we suppose that 7 (x) = 0 for an element x € B, that
is, Y ,eq E(xuy)v; =0.Foralls € G,

0= F<Z E(xu;")vtvs1> = F(Z E(xuf)u(t, s_l)vtsu>

teG teG

= F(Z E(xuju(t, s_l))v,51> = E(xuju(s, s~y = E(xuy)u(s, s7h,

teG

since u(r, s~') € A. Hence E(xuf)=0forall s € G. Thus x =0 by Lemma 8.7. It
follows that 7 is bijective. Furthermore, forall x =), E(xu])u; € B,

(Fom)(x)= F(Z E(xu?‘)v,) = E(xu}) = E(x).

teG

This concludes the proof. O

THEOREM 8.9. Let A C B be an irreducible inclusion of unital C*-algebras, E be a
conditional expectation from B onto A which is of index-finite type and of depth 2, and
B be the C*-basic construction induced by the inclusion A C B. Suppose that there
exists an action B of a finite group G on By such that B is the fixed point algebra of
B1 by B. Then the following conditions are equivalent:

(1) PBi(ea) ~eqin By forallt € G;

(2) there exists a twisted outer action (o, u) of G on A with the property that

(B, E) ~ (A gy G, F), where F is the canonical conditional expectation from
A X G onto A.

PRrROOF. That (1) implies (2) is immediate by Proposition 8.8. That (2) implies (1) is
clear. O

PROPOSITION 8.10. With the above notation and assumptions, the following condi-
tions are equivalent:

(1) there exist a C*-subalgebra P of A with a common unit and a conditional
expectation H from A onto P of index-finite type such that (B, E) ~ (P, Hy),
where Py is the C*-basic construction induced by the inclusion P C A and H,
is the dual conditional expectation of H;

(2) there exists an outer action o of G on A such that (B, E) ~ (A x4 G, F), where
F is the canonical conditional expectation from A x4 G onto A.

PROOF. First we show that (1) implies (2): Since A C B is of depth 2, so is P C A.
Thus P’ N A =Cland P’ N B; = M, (C), where M,,(C) is the (n x n)-matrix algebra
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over C and n is the order of G. As mentioned at the beginning of this section,
{er}rec is a family of mutually orthogonal minimal projections in A’ N By. Since
A’N By C PN By, we have that {e;};e¢ is also a family of mutually orthogonal
minimal projections in P’ N By (which is M,,(C)) and hence e¢; ~ ¢4 in P’ N B; for
all t € G. Hence, for all 1 € G, there exists a partial isometry w; € P’ N By such that
wiw; = e4 and w;w} =e¢;. Since w; € By, we can write w; = Y ' xfeay!, where
x{, yl € B.Putuj =", x]E(y!) forallt € G. Then, by Lemma 8.1, u; is a unitary
element in B and w;eq =ujey forallt € G. Forall x € P,

USXEA = UJEAX = WieAX = XWieA = XU EA.

Hence u;x = xuj for all x € P. Thus u; € P’ N B for all t € G. Furthermore, since
usu;ul, € A for all s, r € G by Lemma 8.3, usu,ul, € PNA=Cl forall s,z €G.
Let oy = Ad(u,) for all t € G. Then « is an action of G on A by the proofs of
Lemmas 8.4 and 8.5. Therefore, we can complete the proof in the same way as in
the proof that (1) implies (2) in Theorem 8.9.

Now we show that (2) implies (1): Let P be the fixed point algebra AG-®)  Then the
conclusion is obvious. 0

REMARK 8.11. When A is a factor, there always exists a tunnel construction P C A.
Therefore, given any twisted crossed product A X, , G by a twisted outer action of
a finite group G on a factor A and the canonical conditional expectation F from
A Xgu G onto A, we have (A X, G, F) ~ (A xg G, E) for some outer action
of G on A and the canonical conditional expectation E from A xg G onto A. This
means that any 2-cocycle is a coboundary, as was observed in [10, 32, 34].

9. Applications

9.1. The case of a finite abelian group. Let G be a finite abelian group and « be an
outer action of G on a simple unital C*-algebra B. Let A be the fixed point algebra
B@® and E be the canonical conditional expectation from B onto A defined by
E(x)=(1/n)) ,c;os(x) for all x € B, where n is the order of G. Then it is well
known that Index E = n and the C*-basic construction B; induced by the inclusion
A C B is the crossed product B X, G, where B is the fixed point algebra by the dual
action & of the dual group G of G on B x4 G. We can see that, in general, B cannot
be described as a twisted crossed product A g, G for any twisted action of the dual
group G on A. For instance, let 6 be an irrational number in (0, 1) and Ay be the
corresponding irrational rotation C*-algebra. Let o be the involutive automorphism
of Ag determined by o («) = u™ and o (v) = v*, where u and v are unitary generators
in Ag. Suppose that Cy is the fixed point algebra AéZ/ZZ’G) ={xeAy|okx)=ux}
In [15], it was proved that the inclusion Cy C Ay cannot be described as a twisted
crossed product Cy C Cy X,y Z/27 for any twisted action («, u) of Z/27Z on Cp.
However, we can obtain the following corollary from Theorem 8.9 immediately.
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COROLLARY 9.1. Let o : G — Aut(B) be an outer action of a finite group G on
a simple unital C*-algebra B and A be the fixed point algebra B'°®. Define the
canonical conditional expectation E from B to A by E(b) = (1/|G|)}_scqos(b) for
allb € B. If G is a finite abelian group, then (B, E) ~ (A Xg 4 G, F) for some twisted
outer action (B, u) of the dual group G of G on A if and only if there exist unitary
elements {”V}yeé in B such that og(u,) = (y, s)u, forall s € G and y € G, where

(y, s) is the dual pairing of y € Gands € G.

PROOF. In the crossed product B; = B x4 G, let {us}scc be the canonical unitary

elements such that usu; = us and usbuy = as(b) forallb € B and s, t € G. The dual
action & of the dual group G on By is defined by &, (b) = b and &, (us) = (y, s) " lug
fory € G, s € G and b € B. Let e4 be the Jones projection for the inclusion A C B

and let e, =&, -1(ea) fory € G. Since ey = (1/n)Y cqis, fory, 8 € G, where n is

the order of G,
1 N N 1 -1 -1
eyes = — Z oy, -1 (ug)as—1(uy) = — Z (y =, s){87 7, thug
n s,teG n s,teG
1 _ —
== Y (s e
n s,teG
1 - 1y e
== r s><2<y L r>)us
n" G teG
2o ( X0
n" §eG teG
e ifd=y,
o ifs#y.
Therefore, {ey} ¢ is a family of mutually orthogonal projections in A’ N By and it
is obvious that Z yeG €y = 1, since the dimension of A’ N By is n, the order of G.

Suppose that B can be described by A xg, G for some twisted action (8, u) of

the dual group G of G on A. Then e, is equivalent to eq by Theorem 8.9. As
mentioned in the beginning of Section 8, there is a unitary element u, in B such
that uyeAu;j =e, = (l/n)zsec(yfl, s)ug. On the other hand,

u},eAu Z Uyl u Z uyay(u Yug.
veG veG

So ay(uy) = (y, s)u,. Conversely, if there exist unitary elements {uy} <G In B such

that o (1, ) = (y, s)u, forall s € G, thenitis easy to check thate, = u,,eAu Hence,
the corollary is proved by Theorem 8.9. O
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EXAMPLE 9.2. Let Ay be the irrational rotation C*-algebra generated by two unitary
elements u, v satisfying the condition that uv = e?™%yu. Define an automorphism o
on Ag by o(u) = e27/Miy and o (v) =v. Then o” =id and hence we can define

an action o of Z/nZ on Ag by ap =o*. It is easy to see that the fixed point

algebra A(gZ/ "Z-%) i the irrational rotational C *-algebra A,p generated by u” and v.
Since o, (u*) = e@mk/miyk for k =1,2,...,n— 1, there exists a twisted action
(B, w) of Z/nZ on A,p such that Ag can be described as the twisted crossed product
Ane X g .w Z/nZ by Corollary 9.1.

9.2. Reduced inclusions by projections. Let A C B be an inclusion of simple unital
C*-algebras and E be a conditional expectation from B onto A of index-finite type.
Let {(v;, v)}7_, be a quasi-basis for E and p be a projection in A. Since A is a simple
unital C*-algebra, there exist elements {y j};f’zl in A such that Z'}’:l Vj py;.‘ =1.
expectation £, = E|,p, from pBp onto pAp. Moreover, (Index E)p = Index E),
(see [20, Proposition 4.1]). So the cardinality of the quasi-basis for pAp C pBp
usually increases more than the cardinality of the quasi-basis for A C B. We note
that if B can be described as a twisted crossed product of some twisted action of some
finite group on A, then there is a quasi-basis such that the cardinality of the quasi-basis
is the order of the finite group.

THEOREM 9.3. Let A be a simple unital C*-algebra and a be an outer action of
a finite group G on A. Suppose that B is the crossed product A x4 G and that
p is a projection in A. Then pBp can be described as a twisted crossed product
PAp Xg .y G by a twisted action (B, u) of G on pAp if as(p) is equivalent to p
in A foralls € G.

PROOF. In the crossed product B = A Xy G, let {us}s;ec be the canonical unitary
elements such that usu; = us and usauy = ag(a) forall s, € G and a € A. Let ey
be the Jones projection for the canonical conditional expectation £ from B onto
A and B; be the C*-basic construction induced by E. Put e; =uzequ}. Then e
commutes with any element in A and A’ N By = @, Ce; =C", where n is the
order of G. Let p be a projection in A. Then it is obvious that e4 p(= pey) is the
Jones projection for the conditional expectation E,, from pBp onto pAp defined by
E,(pbp) = pE(b)p for b € B and that pBjp is the C*-basic construction for E .
Suppose that A acts on some Hilbert space H faithfully and nondegenerately. Then
A’ > x> xp e pA’ is injective since A is simple. So we can see that A’ N By
and p(A'N By)p= pA'p N pByp are isomorphic for all k € N, where By is the
nth C*-basic construction induced by A C B. Therefore, the derived tower for
pAp C pBp is the same as that for A C B, and hence pAp C pBp is of depth 2 and
pA’p N pBypis commutative. Suppose that, for all s € G, as(p) ~ p in A. Then, for
all s € G, there is a partial isometry vy in A such that vyv} = p and vjv; = as(p).
Put wg = vsusv;"_l € pBp. Since vie; = ezv; and egug = ugey for s, t € G, we
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have that

% %k X, 0%k %k Xk, 0k
Ws€APWS = Vsl V. | €APV—1ULVS = VstV Vg1 U Vg

ko ok
= esUsUs0g-1(plu vy =egp.

Therefore, ey p is equivalent to eqp in pByp. So, by Theorem 8.9, pBp can be
described as a twisted crossed product pAp xg, G. O

COROLLARY 9.4. Let a be an outer action of a finite group G on a simple unital
C*-algebra A. If A is a uniformly hyperfinite algebra or an irrational rotation C*-
algebra, then, for all projection p in A, the set p(A o G)p can be described as a
twisted crossed product pAp x g, G by a twisted action (B, u) of G on pAp.

PROOF. If A is a uniformly hyperfinite algebra or an irrational rotation C*-algebra,
then A has a unique tracial state 7. By this uniqueness, T oo =7t for all
automorphisms « of A. So it is obvious that «;(p) ~ p in A for any projection p € A
and ¢t € G. Hence, the corollary is proved by Theorem 9.3. O

REMARK 9.5. We denote by n the cardinality of a quasi-basis for A C B; then
tsr(B) <tsr(A) +n — 1, where tsr(C) is the topological stable rank of C*-algebra
C [12, Theorem 2.1]. If A is a uniformly hyperfinite algebra or an irrational rotation
C*-algebra, then, for any outer action « of a finite group G on A and any projection
p in A, the topological stable rank of p(A x4 G)p is at most the order of G, since
P(A X G)p can be described as a twisted crossed product pAp xg, G by some
twisted action (8, u) of G on pAp by the previous corollary. On the other hand, let
{e; J'}?, =1 be matrix units in A such that g = Zle eji 1s a projection in A. Then,
using [31, Theorem 6.1],

tsr(A xg G) < tsr(q(A xg G)q) = tsr(My(e11(A xq G)err))
_ FST(EM(A Mo G)err) — 1—‘ 1< [IGI — 1—‘ ey

- n n

where [#] denotes the least integer that is greater than or equal to . There exists
a sequence of mutually orthogonal equivalent projections [p;]7_, in A such that
n > |G|. So we can show that tsr(A xo G) < 2. Osaka and the second author of
this paper proved this in a more general setting as follows. If A is a simple unital C*-
algebra with the SP property, that is, for which all nonzero hereditary C*-subalgebras
contain a nonzero projection, and such that tsr(A) = 1, and « is an action of a finite
group G on A, then tsr(A x4, G) <2 (see [21]).
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