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Abstract

Let A be a unital C∗-algebra. Let (B, E) be a pair consisting of a unital C∗-algebra B containing A as a
C∗-subalgebra with a unit that is also the unit of B, and a conditional expectation E from B onto A that is
of index-finite type and of depth 2. Let B1 be the C∗-basic construction induced by (B, E). In this paper,
we shall show that any such pair (B, E) satisfying the conditions that A′ ∩ B = C1 and that A′ ∩ B1 is
commutative is constructed by a saturated C∗-algebraic bundle over a finite group. Furthermore, we shall
give a necessary and sufficient condition for B to be described as a twisted crossed product of A by its
twisted action of a finite group under the condition that A′ ∩ B1 is commutative.

2000 Mathematics subject classification: primary 46L08; secondary 46L40.
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1. Introduction

The Jones index theory on type II1 factors [11] caused a revolutionary change to
the theory of operator algebras. The paragroup theory due to Ocneanu [18, 19] and
the classification results for subfactors due to Popa [25, 26] should be mentioned in
particular. The Jones index theory was extended to unital C∗-algebras by Watatani [35]
and many interesting results of C∗-index theory can be found in the work of Izumi [8].

In this paper, we consider a condition for an inclusion of unital C∗-algebras,
denoted by L0 in Section 2, which is stronger than the depth 2 requirement and
which characterizes subfactors arising from crossed products by outer actions of finite
groups [16]. It is known that the condition L0 does not characterize crossed product
inclusions of C∗-algebras because of the presence of a K-theoretical obstruction.
We show that the condition L0 is still useful for characterizing inclusions arising
from saturated C∗-algebraic bundles over finite groups instead of those arising from
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crossed products. In Section 3, we prove that an inclusion induced by a saturated
C∗-algebraic bundle over a finite group is of index-finite type and depth 2. In Section 4,
we construct a saturated C∗-algebraic bundle over a finite group from an inclusion of
C∗-algebras satisfying the condition. In Section 8, we shall give a necessary and
sufficient condition for a saturated C∗-algebraic bundle over a finite group to be de-
scribed as a twisted crossed product with the finite group. We shall also prove that any
C∗-algebraic bundle over a finite group can be constructed as a corner of a crossed
product inclusion of C∗-algebras after stabilization.

When i = 1, 2, let pi be a projection in a C∗-algebra C . We write p1 ∼ p2 in C
if p1 is Murray–von Neumann equivalent to p2 in C .

2. Three sets and their equivalence relations

Let A be a unital C∗-algebra. Let (B, E) be a pair consisting of a unital C∗-
algebra B including A with a common unit, and a conditional expectation E from
B onto A that is of index-finite type and of depth 2. Let L be the set of all such
pairs. Let (B, E), (D, F) ∈ L. We say that (B, E) is equivalent to (D, F), we write
(B, E)∼ (D, F), if there exists an isomorphism π of B onto D such that E = F ◦ π .
We denote by [B, E] the equivalence class of (B, E) in L and by L/∼ the set of all
equivalence classes of elements in L. Let L0 be the set of all elements (B, E) ∈ L such
that A′ ∩ B = C1 and A′ ∩ B1 is commutative, where B1 is the C∗-basic construction
induced by (B, E). Let L0/∼ be the set of all equivalence classes of elements in L0.

Let B = {Bt }t∈G be a C∗-algebraic bundle over a finite group G such that Be = C ,
where e is the unit element in G and C is a unital C∗-algebra. We say that B is
saturated if Bt Bs = Bts for all t, s ∈ G (see Fell and Doran [6]). Let

⊕
t∈G Bt be

the graded C∗-algebra induced by B = {Bt }t∈G , which is defined in Exel [5], where
we regard Bt as a closed subspace of

⊕
s∈G Bs for all t ∈ G. Let B = {Bt }t∈G and

D = {Dh}h∈H be C∗-algebraic bundles over the finite groups G and H , whose fibers
at the unit element are equal to C . We say that B is equivalent to D, we write B ∼D, if
there exists an isomorphism λ of G onto H satisfying the condition that, for all t ∈ G,
there exists a linear isomorphism πt of Bt onto Dλ(t) such that πts(xy)= πt (x)πs(y)
and πt−1(x∗)= πt (x)∗, for all x ∈ Bt and y ∈ Bs , and πe = id on Be = De = C . Let
M be the set of all saturated C∗-algebraic bundles over finite groups whose fiber at
the unit element is equal to the unital C∗-algebra A. We can easily see that the above
relation is an equivalence relation in M by routine computations. We denote by [B]
the equivalence class of B in M and by M/∼ the set of all equivalence classes of B
in M.

Let K be the C∗-algebra of all compact operators on a countably infinite-
dimensional Hilbert space and denote by Cs a stable C∗-algebra C ⊗K for each
C∗-algebra C . Let N be the set of all finite group actions on As . We define an
equivalence relation in N as follows: for all (G, β), (H, γ ) ∈N we say that (G, β) is
equivalent to (H, γ ), we write (G, β)∼ (H, γ ), if there exists an isomorphism λ of
G onto H satisfying the condition that (G, β) is exterior equivalent to (G, γλ(·)). We
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denote by [G, β] the equivalence class of (G, β) in N and denote by N /∼ the set of
all equivalence classes of (G, β) in N .

For each C∗-algebra C , let M(C) be its multiplier algebra. For any automorphism
α of C , we can extend α to a strictly continuous automorphism of M(C) following the
results of Busby [4] or Jensen and Thomsen [9]. We denote it by the same symbol α.

In this paper, we shall use the phrase ‘Hilbert C∗-bimodule’ in the sense of Kajiwara
and Watatani [13].

3. Construction of a map from M/∼ to L/∼

Let B = {Bt }t∈G ∈M and B =
⊕

t∈G Bt . Let E be the conditional expectation
from B onto A defined by E(x)= xe for all x =

∑
t∈G xt ∈ B. We call it the canonical

conditional expectation from B onto A. Since B is saturated, Bt B∗t = A for all t ∈ G.
Since A is unital, there exists a finite set {x t

i }
nt
i=1 ⊂ Bt such that

∑nt
i=1 x t

i x t∗
i = 1 for all

t ∈ G.

LEMMA 3.1. The set {(x t
i , x t∗

i ) | i = 1, 2, . . . , nt , t ∈ G} is a quasi-basis for E.

PROOF. For all a =
∑

s∈G as ∈ B,

nt∑
i=1

E(ax t
i )x

t∗
i =

nt∑
i=1

at−1 x t
i x t∗

i = at−1

for all t ∈ G. Thus
∑

t∈G
∑nt

i=1 E(ax t
i )x

t∗
i =

∑
t∈G at−1 = a. Hence the lemma is

proved. 2

We denote by |G| the order of G.

COROLLARY 3.2. With the above notation, Index E = |G|.

PROOF. By Lemma 3.1, Index E =
∑

t∈G
∑nt

i=1 x t
i x t∗

i = |G|. 2

Let eA be the Jones projection and let B1 be the C∗-basic construction induced
by E . Let E1 be the dual conditional expectation of E from B1 onto B.

LEMMA 3.3. Let et =
∑nt

i=1 x t
i eAx t∗

i for all t ∈ G. Then et is a projection in A′ ∩ B1.
Furthermore, et is independent of the choice of {x t

i }
nt
i=1.

PROOF. It is clear that et is a self-adjoint element in B1. Since x t∗
i x t

j ∈ A, by Watatani
[35, Lemma 2.1.1] it commutes with eA. Thus

e2
t =

nt∑
i, j=1

x t
i eAx t∗

i x t
j eAx t∗

j =

nt∑
i, j=1

x t
i x t∗

i x t
j eAx t∗

j =

nt∑
j=1

x t
j eAx t∗

j = et .

Hence, et is a projection in B1. Furthermore, for all a ∈ A,

aet = a
nt∑

i=1

x t
i eAx t∗

i =

nt∑
i, j=1

x t
j x t∗

j ax t
i eAx t∗

i =

nt∑
i, j=1

x t
j eAx t∗

j ax t
i x t∗

i = et a
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since x t∗
j ax t

i ∈ A. Hence et ∈ A′ ∩ B1. Now let {yt
j }

mt
j=1 ⊂ Bt be another finite set

satisfying the condition that
∑mt

j=1 yt
j yt∗

j = 1. Then

et =

nt∑
i=1

x t
i eAx t∗

i =

nt∑
i=1

mt∑
j=1

x t
i eAx t∗

i yt
j yt∗

j =

nt∑
i=1

mt∑
j=1

x t
i x t∗

i yt
j eA yt∗

j =

mt∑
j=1

yt
j eA yt∗

j

since x t∗
i yt

j ∈ A. Therefore, the lemma is proved. 2

REMARK 3.4. By easy computations, we can see that et es = 0 for all t, s ∈ G where
t 6= s and

∑
t∈G et = 1.

Let et be as above and let C∗〈B, et 〉 be a C∗-subalgebra of B1 generated by B and et
for all t ∈ G.

LEMMA 3.5. With the above notation, C∗〈B, et 〉 = B1 for all t ∈ G.

PROOF. Since x t−1

i x t
j ∈ A,

nt−1∑
i=1

x t−1

i et x
t−1
∗

i =

nt−1∑
i=1

nt∑
j=1

x t−1

i x t
j eAx t∗

j x t−1
∗

i = eA

nt−1∑
i=1

nt∑
j=1

x t−1

i x t
j x t∗

j x t−1
∗

i = eA.

Since C∗〈B, et 〉 is a C∗-subalgebra of B1, the lemma is proved. 2

The following lemma shows that for all t ∈ G there exists an automorphism αB
t of

B1 such that αB
t (b)= b for all b ∈ B and αB

t (eA)= et−1 .

LEMMA 3.6. For all t ∈ G, there exists a unique automorphism αB
t of B1 such that

αB
t (b)= b for all b ∈ B and αB

t (eA)= et−1 .

PROOF. We shall show that et is a Jones projection for all t ∈ G. By Lemma 3.3, et is
a projection in A′ ∩ B1. For all b =

∑
s∈G bs ∈ B,

et bet =

nt∑
i, j

x t
i eAx t∗

i bx t
j eAx t∗

j =

nt∑
i, j

x t
i E(x t∗

i bx t
j )eAx t∗

j

=

nt∑
i, j

x t
i x t∗

i bex t
j eAx t∗

j =

nt∑
j

bex t
j eAx t∗

j = E(b)et .

Since E1(et )=
∑nt

i x t
i E1(eA)x t∗

i = (Index E)−1, if a ∈ A and aet = 0, then we have
a = (Index E)E1(aet )= 0. Thus, the map A 3 a 7→ aet ∈ B1 is injective. Since
C∗〈B, et 〉 = B1 by Lemma 3.5, there exists a unique automorphism αB

t of B1 such
that αB

t (b)= b for all b ∈ B and αB
t (eA)= et−1 by [35, Proposition 2.2.1]. 2

For a C∗-algebra C , we denote by Aut(C) the group of all automorphisms of C .

LEMMA 3.7. With the above notation, the map t ∈ G 7→ αB
t ∈ Aut(B1) is an action

of G on B1.
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PROOF. We note that ee = eA. Hence αB
e = id on B1. For all t, s ∈ G,

(αB
t ◦ α

B
s )(eA)= α

B
t

(ns−1∑
i=1

x s−1

i eAx s−1
∗

i

)
=

ns−1∑
i=1

nt−1∑
j=1

x s−1

i x t−1

j eAx t−1
∗

j x s−1
∗

i .

Since x s−1

i x t−1

j ∈ Bs−1t−1 and

ns−1∑
i=1

nt−1∑
j=1

x s−1

i x t−1

j x t−1
∗

j x s−1
∗

i = 1,

by Lemma 3.3,
ns−1∑
i=1

nt−1∑
j=1

x s−1

i x t−1

j eAx t−1
∗

j x s−1
∗

i = es−1t−1 .

Thus,
(αB

t ◦ α
B
s )(eA)= e(ts)−1 = α

B
ts(eA).

Hence the map t 7→ αB
t is an action of G on B1. 2

We call (G, αB) the action on B1 induced by B.

LEMMA 3.8. With the above notation, the inclusion A ⊂ B is of depth 2.

PROOF. We shall prove this lemma in the same way as Osaka and Teruya [20,
Lemma 3.4]. We have only to show that (A′ ∩ B1)e2(A′ ∩ B1) contains the unit,
where e2 is the Jones projection induced by E1. By Lemma 3.3, it follows that
et e2et ∈ (A′ ∩ B1)e2(A′ ∩ B1) for all t ∈ G. Also, for all t ∈ G,

et e2et =

nt∑
i, j=1

x t
i eAx t∗

i e2x t
j eAx t∗

j =

nt∑
i, j=1

x t
i eAe2x t∗

i x t
j eAx t∗

j

=

nt∑
i, j=1

x t
i eAe2eAx t∗

i x t
j x t∗

j

=

nt∑
i, j=1

1
Index E

x t
i eAx t∗

i x t
j x t∗

j =
1

Index E

nt∑
i=1

x t
i eAx t∗

i ,

since e2b = be2 for all b ∈ B, we have that B∗t Bt ⊂ A and eAe2eA = (Index E)−1eA
by [35, Lemma 2.3.5]. Thus,

∑
t∈G

et e2et =
1

Index E

∑
t∈G

nt∑
i=1

x t
i eAx t∗

i =
1

Index E
∈ C1.

Therefore, the lemma is proved. 2
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We denote by (B, E)B the element in L induced by B described above. Also, we
denote its equivalence class by [B, E]B .

Let B = {Bt }t∈G and D = {Dh}h∈H be elements in M. Let B =
⊕

t∈G Bt and
D =

⊕
h∈H Dh . Furthermore, let E and F be the canonical conditional expectations

from B and D onto A, respectively.

LEMMA 3.9. With the above notation, let (B, E)B and (D, F)D be the elements in L
induced by B and D in M. If B ∼D in M, then (B, E)B ∼ (D, F)D in L.

PROOF. Since B ∼D in M, there exists an isomorphism λ of G onto H satisfying the
condition that, for all t ∈ G, there exists a linear isomorphism πt of Bt onto Dλ(t) such
that πts(xy)= πt (x)πs(y), πt−1(x∗)= πt (x)∗ and πe = id on Be = De = A. Let π
be the map from B to D defined by π(x)=

∑
t∈G πt (xt ) for all x =

⊕
t∈G xt in B.

By easy computations, π is an isomorphism of B onto D and E = F ◦ π . Therefore,
(B, E)B ∼ (D, F)D in L. 2

By Lemma 3.9, we can define a map H from M/∼ to L/∼ by H([B])= [B, E]B
for all B = {Bt }t∈G ∈M.

4. Construction of a map from L0/∼ to N /∼

Suppose that (B, E) ∈ L0. Since A′ ∩ B1 is commutative, there exists n ∈ N such
that A′ ∩ B1 ∼= Cn . Let {et }t∈G be the set of minimal projections in A′ ∩ B1, where G
is a finite set with n elements containing the distinguished point e with ee = eA and
where eA is the Jones projection induced by E . Since A ⊂ B is of depth 2, it follows
that A′ ∩ B2 ∼= Mn(C), where B2 is the C∗-basic construction induced by B ⊂ B1.
Thus, for all t ∈ G there exists a unitary element ut ∈ A′ ∩ B2 with ut eAu∗t = et , where
ue = 1. For all a ∈ A,

et aet = ut eAu∗t aut eAu∗t = E(a)et ,

since ut ∈ A′ ∩ B2. If aet = 0, then

0= aet = aut eAu∗t = ut aeAu∗t .

Hence aeA = 0. Thus a = 0. By [35, Proposition 2.2.1], there exists a unique iso-
morphism αt of B1 onto C∗〈B, et 〉 such that αt (b)= b for all b ∈ B and αt (eA)= et .
Hence

Cn ∼= A′ ∩ B1 ⊃ αt (A
′
∩ B1)= A′ ∩ C∗〈B, et 〉 ∼= Cn.

Thus, A′ ∩ B1 = A′ ∩ C∗〈B, et 〉. As eA ∈ C∗〈B, et 〉, we see that αt ∈ Aut(B1) for all
t ∈ G. As αt (A′ ∩ B1)= A′ ∩ B1 for all t ∈ G, we see that (αt ◦ αs)(eA) ∈ A′ ∩ B1
for all s, t ∈ G and (αt ◦ αs)(eA) is a minimal projection in A′ ∩ B1. Hence there
exists r ∈ G where (αt ◦ αs)(eA)= αr (eA). Therefore, we can define a multiplication
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in G such that αt ◦ αs = αts . In the same way as above, we can define the inverse of
each element in G. Thus G is a group with the unit element e.

LEMMA 4.1. With the above notation, αt is outer for all t ∈ G \ {e}.

PROOF. We suppose that there is an element t ∈ G \ {e} such that αt is inner. Then
there is a unitary element ut ∈ B1 where αt = Ad(ut ). Hence, for all b ∈ B, we
have that b = ut bu∗t . Thus ut ∈ B ′ ∩ B1. Since A′ ∩ B = C1, so is B ′ ∩ B1 by [35,
the proof of Proposition 2.7.3]. It follows that αt = id and that eA = et . This is a
contradiction since t 6= e. 2

Since B is a fixed point C∗-subalgebra for (G, α), we can identify B2 with
B1 oα G. Since eA ⊗ 1 is a full projection in M(Bs

1), by Brown [2, Lemma 2.5],
there exists an isometry w ∈ M(Bs

1) such that ww∗ = eA ⊗ 1. Noting further that
M(Bs

1)⊂ M(Bs
2), by easy computations, Ad(w) is an isomorphism of Bs

2 onto Bs

such that Ad(w)(Bs
1)= As , where we identify A with AeA and B with eA Be2eA. Let

βt = Ad(w) ◦ (αt ⊗ id) ◦ Ad(w∗).

By the definition of βt , (G, β) is an action of G on As . We call (G, α) and (G, β) the
actions of G on B1 and As induced by (B, E) and we denote them by (G, α)(B,E) and
(G, β)(B,E).

LEMMA 4.2. With the above notation, [G, β](B,E) is independent of the choice of the
isometry w ∈ M(Bs

1).

PROOF. Let z be another isometry in M(Bs
1) where zz∗ = eA ⊗ 1. Let (G, γ )(B,E)

be the action of G on As as above. Then γt = Ad(zw∗βt (wz∗)) ◦ βt and zw∗βt (wz∗)
is a unitary element in M(AeA ⊗K). Since we identify A with AeA, we have that
(G, β)(B,E) is exterior equivalent to (G, γ )(B,E). Therefore, the lemma is proved. 2

Let (D, F) be another element in L0 and let (H, δ)(D,F) be the action on D1
induced by (D, F), where D1 is the C∗-basic construction induced by (D, F).

LEMMA 4.3. With the above notation, if (B, E)∼ (D, F) in L0, then there exist
an isomorphism π1 of B1 onto D1 and an isomorphism λ of G onto H such that
δλ(t) = π1 ◦ βt ◦ π

−1
1 for all t ∈ G, where B1 and D1 are the C∗-basic constructions

induced by (B, E) and (D, F).

PROOF. Since (B, E)∼ (D, F) in L0, there exists an isomorphism π of B onto D
such that E = F ◦ π . Let eA and f A be the Jones projections induced by E and F .
Then there exists an isomorphism π1 of B1 onto D1 determined by π1(eA)= f A and
π1(x)= π(x) for all x ∈ B. Hence π1 is an isomorphism of A′ ∩ B1 onto A′ ∩ D1.
Thus, by the definitions of (G, α)(B,E) and (H, δ)(D,F), there exists an isomorphism
λ of G onto H such that δλ(t) = π1 ◦ βt ◦ π

−1
1 for all t ∈ G. Therefore, the lemma is

proved. 2
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COROLLARY 4.4. Let (B, E), (D, F) ∈ L0 and let (G, β)(B,E) and (H, γ )(D,F) be
the actions on As induced by (B, E) and (D, F), respectively. If (B, E)∼ (D, F)
in L0, then (G, β)(B,E) ∼ (H, γ )(D,F) in N .

PROOF. This is immediate by Lemmas 4.2 and 4.3. 2

By the above corollary, we can define a map F from L0/∼ to N /∼ by

F([B, E])= [G, β](B,E),

where [G, β](B,E) is the equivalence class of the action of G on As induced by (B, E).
Since (B, E) ∈ L0, there exists a quasi-basis {(ui , u∗i )}

m
i=1 for E . For each right

Hilbert A-module X , let KA(X) be the C∗-algebra generated by the right rank-one
operators on X . Since we regard B as a right Hilbert A-module by using E , we can
construct a C∗-algebraKA(B)which is isomorphic to B1. We identifyKA(B)with B1.
Let x t

i = et (ui ) for all t ∈ G and i = 1, 2, . . . , m.

LEMMA 4.5. With the above notation, et =
∑m

i=1 x t
i eAx t∗

i for all t ∈ G.

PROOF. For all b ∈ B, we have that et (b)=
∑m

i=1 ui E(u∗i et (b)) since et (b) ∈ B.
Since et is a projection in KA(B),

et (b) = e2
t (b)= et

( m∑
i=1

ui E(u∗i et (b))

)
=

m∑
i=1

et (ui )E(u
∗

i et (b))

=

m∑
i=1

et (ui )〈ui , et (b)〉A.

On the other hand, if we regard
∑m

i=1 x t
i eAx t∗

i as an element in KA(B), we have the
following equations:

m∑
i=1

x t
i eAx t∗

i (b) =
m∑

i=1

x t
i E(x t∗

i b)=
m∑

i=1

et (ui )〈et (ui ), b〉A

=

m∑
i=1

et (ui )〈ui , et (b)〉A.

Therefore, the lemma is proved. 2

5. Construction of a map from N /∼ to M/∼

In this section we shall construct a map G from N /∼ to M/∼. Let (G, β) be
an action of a finite group G on As . Let e00 be a rank-one projection in K and put
p = 1⊗ e00. Let Xβt be the Banach space p Asβt (p) for all t ∈ G. We define a product
· : Xβt × Xβs −→ Xβts and an involution ] : Xβt −→ Xβt−1 as follows. For all x ∈ Xβt

and y ∈ Xβs we define x · y = xβt (y) and x] = βt−1(x∗). By routine computations,
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we see that B(G,β) = {Xβt }t∈G is a saturated C∗-algebraic bundle with a product · and
an involution ], and that Xβe = A, where we identify p As p with A. We call this B(G,β)
the saturated C∗-algebraic bundle over G induced by (G, β). Let (H, γ ) be another
action of a finite group H on As and let B(H,γ ) be the saturated C∗-algebraic bundle
over a finite group induced by (H, γ ).

LEMMA 5.1. With the above notation, if (G, β)∼ (H, γ ) in N , then B(G,β) ∼ B(H,γ )
in M.

PROOF. Since (G, β)∼ (H, γ ) in N , we identify G with H . Then there exists a uni-
tary element vt ∈ M(As) for all t ∈ G satisfying the conditions that γt = Ad(vt ) ◦ βt
and that vts = vtβt (vs) for all t, s ∈ G. For all t ∈ G, let πt be the map from Xβt to Xγt

defined by πt (paβt (p))= paβt (p)v∗t = pav∗t γt (p) for all a ∈ As . Then clearly πt is
a linear isomorphism of Xβt onto Xγt . For all a, b ∈ As and t, s ∈ G,

πt (paβt (p)) · πs(pbβs(p))= pav∗t γt (p)γt (b)γt (v
∗
s )γts(p)

= paβt (p)βt (b)βt (v
∗
s )v
∗
t γts(p)= paβt (p)βt (b)v

∗
tsγts(p)

= πts(paβt (p)βt (b)βts(p))= πts(paβt (p) · pbβs(p)),

since βt = Ad(v∗t ) ◦ γt and v∗ts = βt (v
∗
s )v
∗
t for all t, s ∈ G. Also,

πt (paβt (p))
]
= (pav∗t γt (p))

]
= pγt−1(vt )γt−1(a∗)γt−1(p)

= pβt−1(a∗)βt−1(p)v∗t−1 = πt−1(pβt−1(a∗)βt−1(p))= πt−1((paβt (p))
]),

since γt−1 = Ad(vt−1) ◦ βt−1 and 1= vt−1βt−1(vt ). Furthermore, πe = id on the space
Xβe = Xγe = p As p. Therefore, the lemma is proved. 2

By Lemma 5.1, we can define a map G from N /∼ to M/∼ by G([G, β])= [B(G,β)]
for all (G, β) ∈N .

6. Composition of F , G and H
In this section we shall show that H ◦ G ◦ F = id on L0/∼. Let (B, E) ∈ L0 and

let (G, α)(B,E) and (G, β)(B,E) be the actions of G on B1 and As induced by (B, E),
respectively. We construct the saturated C∗-algebraic bundle {Yαt }t∈G over G induced
by (G, α)(B,E) in a similar way to as in Section 5.

LEMMA 6.1. Let (B, E) ∈ L0 and let (G, α)(B,E) and (G, β)(B,E) be the actions of
G on B1 and As induced by (B, E), respectively. Let {Xβt }t∈G and {Yαt }t∈G be the
saturated C∗-algebraic bundles over G induced by (G, β)(B,E) and (G, α)(B,E). Then
{Xβt }t∈G ∼ {Yαt }t∈G in M.

PROOF. We recall that Xβt = p Asβt (p) and Yαt = eA B1αt (eA) for all t ∈ G, where
p = 1⊗ e00 and e00 is a rank-one projection inK, and we identify p As p and AeA with
A in the usual way. For all t ∈ G, let πt be the map from p Asβt (p) to eA B1αt (eA)

defined, for all a ∈ As , by

πt (paβt (p))= (eA ⊗ e00)(ψe ⊗ id)(a)w(αt ⊗ id)(w∗)(αt (eA)⊗ e00),
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where ψe is an isomorphism of A onto AeA defined by ψe(x)= xeA for all x ∈ A
and we identify eA B1αt (eA) with (eA ⊗ e00)Bs

1(αt ⊗ id)(eA ⊗ e00). Then, from the
above definition, πt is a linear isomorphism of p Asβt (p) onto eA B1αt (eA). By routine
computations, πts(x · y)= πt (x) · πs(y) and πt−1(x])= πt (x)] for all x ∈ p Asβt (p)
and y ∈ p Asβs(p). Furthermore, πe = id on A. Therefore, the lemma is proved. 2

THEOREM 6.2. H ◦ G ◦ F = id on L0/∼.

PROOF. Let (B, E) ∈ L0. From Lemma 6.1, (G ◦ F)([B, E])= [{Yαt }t∈G]. Let
D =

⊕
t∈G Yαt and let F be the canonical conditional expectation from D onto

Yαe = AeA, where we identify AeA with A. We shall prove that (B, E)∼ (D, F)
in L0. Let π be a linear map from B to D defined by π(x)=

⊕
t∈G eAxαt (eA)

for all x ∈ B. Since
⊕

t∈G αt (eA)= 1, by easy computations π(x) · π(y)= π(xy)
for all x, y ∈ B. Also, by easy computations, π(x)] = π(x∗) for all x ∈ B and
F(π(x))= eAxeA = E(x)eA. This means that E = F ◦ π , since we identify AeA
with A. For an x ∈ B, we suppose that π(x)= 0. Then 0=

⊕
t∈G eAxet = eAx .

Hence x = 0. Thus π is injective. Furthermore, for all t ∈ G, let xt , yt ∈ B. Then, by
Lemma 4.5,⊕

t∈G

eAxt eA ytαt (eA)=
⊕
t∈G

m∑
i=1

eAxt eA yt x
t
i eAx t∗

i =
⊕
t∈G

m∑
i=1

eA E(xt )E(yt x
t
i )x

t∗
i .

Let b =
∑m

i=1
∑

t∈G E(xt )E(yt x t
i )x

t∗
i ∈ B. Then, by the above equation,

π(b) =
⊕
s∈G

eAbαs(eA)=
⊕
s∈G

m∑
i=1

∑
t∈G

eA E(xt )E(yt x
t
i )x

t∗
i αs(eA)

=

⊕
s∈G

eAxseA ysαs(eA),

since

αt (eA)αs(eA)=

{
0 if s 6= t,
αs(eA) if s = t.

Hence π is surjective. Therefore, the theorem is proved. 2

REMARK 6.3. Let B = {Bt }t∈G be an element in M and let (G, αB) be the action
on B1 induced by B. In the same way as in Section 4, we can construct the
action (G, β) on As induced by (G, αB) and define a map K from M/∼ to N /∼.
Furthermore, by routine computations, K ◦ G = id on N /∼ and G ◦K = id on M/∼.

7. Images

In this section, we shall compute F(L0/∼) and (G ◦ F)(L0/∼).

LEMMA 7.1. Let (B, E) ∈ L0 and let (G, β)(B,E) be the action of G on As induced
by (B, E). Then βt is outer for all t ∈ G \ {e}.
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PROOF. Since A′ ∩ B = C1, we have that A′ ∩ A = C1. We suppose that there exists
a t ∈ G \ {e} such that βt is inner in M(As). Let (G, α)(B,E) be the action of G on B1
induced by (B, E). Then, by the definition of βt and routine computations, there
exists a unitary element vt ∈ M(As) such that αt ⊗ id= Ad(vt ). Hence by Phillips and
Raeburn [24, Lemma 2.3], αt is inner in B1. This is a contradiction by Lemma 4.1. 2

For all Hilbert A–A-bimodules X and Y , let AHomA(X, Y ) be the space of all
A–A-homomorphisms of X to Y . If X = Y , we denote this space by AEndA(X).

LEMMA 7.2. Let (G, β) ∈N . We suppose that βt is outer for all t ∈ G \ {e} and that
A′ ∩ A = C1. Then the saturated C∗-algebraic bundle over G, B(G,E) = {Xβt }t∈G
induced by (G, β), has the following property:

AHomA(Xβt , Xβs )=

{
C id if t = s,

0 if t 6= s.

PROOF. First, we note that Xβt is an A–A-equivalence bimodule for all t ∈ G.
We shall show that, for all t, s ∈ G where t 6= s, Xβt � Xβs as A–A-equivalence
bimodules. We suppose that there exist t, s ∈ G such that t 6= s and Xβt

∼= Xβs as
A–A-equivalence bimodules. Then, by Brown et al. [3, Corollary 3.5], there is a
unitary element v ∈ M(As) such that βt = Ad(v) ◦ βs . This is a contradiction. Since
A′ ∩ A = C1, we have that Xβt is irreducible for all t ∈ G. Indeed, by [13, the remark
after Lemma 1.10 and Corollary 1.28],

AEndA(Xβt )
∼= (A ⊗ e00)

′
∩KA(Xβt )= (A ⊗ e00)

′
∩ (A ⊗ e00),

where we identify A with A ⊗ e00 and βt (p)Asβt (p), and e00 is a rank-one projection
in K with p = 1⊗ e00. Thus, AEndA(Xβt )= C id. Therefore, the lemma is proved. 2

Let N 0 be the set of all actions (G, β) ∈N satisfying the condition that βt is outer
for all t ∈ G \ {e}.

Let B = {Bt }t∈G ∈M. Then we can regard Bt as a Hilbert A–A-bimodule for all
t ∈ G.

LEMMA 7.3. Let B = {Bt }t∈G be an element in M satisfying the condition that

AHomA(Bt , Bs)=

{
C id if t = s,

0 if t 6= s,

and let (B, E)B be the element in L induced by B. Then A′ ∩ B = C1 and A′ ∩ B1 is
commutative.

PROOF. First, we show that A′ ∩ B1 is commutative. Note that A′ ∩ B1 ∼= AEndA(B).
Since B =

⊕
t∈G Bt , by the assumption of the lemma, AEndA(B)∼= Cn , where

n = |G|. Next, we shall show that A′ ∩ B = C1. Let x =
⊕

t∈G xt ∈ A′ ∩ B.
Then xt a = axt for all t ∈ G and a ∈ A. For all t ∈ G \ {e}, let Txt−1 be the
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homomorphism of Bt to Be(= A) defined by Txt−1 y = xt−1 y for all y ∈ Bt . Since
xt−1 y ∈ Be and xt−1a = axt−1 for all a ∈ A, we have that Txt−1 ∈ AHomA(Bt , Be).
Hence Txt−1 = 0. Thus xt−1 x∗

t−1 = 0, that is, xt−1 = 0. Let Txe be an endomorphism
defined as above. Then since axe = xea for all a ∈ A, we have that Txe ∈ AEndA(Be).
Hence there exists λ ∈ C such that Txe = λ id. Thus Txe(1)= λ1, that is, xe = λ1.
Therefore, A′ ∩ B = C1. 2

Let M0 be the set of all B in M satisfying the assumption of Lemma 7.3.

PROPOSITION 7.4. F(L0/∼)=N 0/∼ and (G ◦ F)(L0/∼)=M0/∼.

PROOF. This is immediate by Lemmas 7.1–7.3 and Theorem 6.2. 2

8. Twisted actions of finite groups

Let (B, E) ∈ L0. As mentioned in Section 4, there exists a group G such that
A′ ∩ B1 =

⊕
t∈G Cet , where {et }t∈G is a family of mutually orthogonal minimal

projections in A′ ∩ B1. Let e be the unit element in G and eA the Jones projection
induced by E . Then, ee = eA. Also, there is an action β of G on B1 defined by

βt (eA)= et , βt (b)= b

for all t ∈ G and b ∈ B.
In this section, we shall give a necessary and sufficient condition for B to be

described as a twisted crossed product of A and a twisted action of G on A under
the above condition.

Suppose that eA ∼ βt (eA) in B1 for all t ∈ G. Then there exists a partial isometrywt
in B1 such that w∗t wt = eA and wtw

∗
t = et (= βt (eA)) for all t ∈ G. Since wt ∈ B1,

we can write wt =
∑mt

i=1 x t
i eA yt

i , where x t
i , yt

i ∈ B for i = 1, 2, . . . , mt . Now we put
u∗t =

∑mt
i=1 x t

i E(yt
i ) ∈ B for all t ∈ G. Then wt eA = u∗t eA for all t ∈ G. If t = e, then

w∗ewe = wew
∗
e = eA. Hence we may assume that we = eA. Thus ue = 1.

LEMMA 8.1. For all t ∈ G, the element ut is unitary in B.

PROOF. For all t ∈ G,

u∗t ut = nE1(u
∗
t eAut )= nE1(wt eAw

∗
t )= nE1(et )= 1,

as E1(et )= 1/n. As eAut u∗t eA = eAw
∗
t wt eA = eA, we see that E(ut u∗t )eA = eA.

Thus E(ut u∗t )= 1. Hence ut u∗t = 1, since E is faithful and ut is an isometry. 2

LEMMA 8.2. For all s, t ∈ G, βs(et )= est .

PROOF. For all s, t ∈ G,

βs(et )= (βs ◦ βt )(eA)= βst (eA)= est . 2

LEMMA 8.3. usut u∗st ∈ A for all s, t ∈ G. In particular, ut−1ut ∈ A for all t ∈ G.
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PROOF. For all s, t ∈ G,

u∗st eAust = est = βs(et )= βs(u
∗
t eAut )= u∗t βs(eA)ut

= u∗t esut = u∗t u∗s eAusut ,

by Lemma 8.2. Hence usut u∗st eA = eAusut u∗st . Thus usut u∗st ∈ A. Also, since ue = 1,
we have that ut−1ut ∈ A. 2

For all s, t ∈ G, let u(s, t)= usut u∗st . Then u(s, t) is a unitary element in A by
Lemmas 8.1 and 8.3.

LEMMA 8.4. For all t ∈ G, ut Au∗t = A.

PROOF. For all t ∈ G and a ∈ A,

ut au∗t eA = ut aet u
∗
t = ut et au∗t = eAut au∗t ,

since et ∈ A′ ∩ B1. Thus ut au∗t ∈ A. Hence ut Au∗t ⊆ A. On the other hand, since
ut−1ut ∈ A by Lemma 8.3,

ut eAu∗t = ut u
∗
t u∗t−1ut−1ut eAu∗t = ut u

∗
t u∗t−1eAut−1ut u

∗
t

= u∗t−1eAut−1 = et−1,

and
u∗t aut eA = u∗t aet−1ut = u∗t et−1aut = eAu∗t aut .

Hence u∗t aut ∈ A. Thus, the lemma is proved. 2

For all t ∈ G, let αt = Ad(ut )|A, the restriction of Ad(ut ) to A. By Lemma 8.4,
αt is an automorphism of A for all t ∈ G. We shall show that (α, u) is a twisted action
of G on A, as defined by Packer and Raeburn [22] and Quigg [27].

LEMMA 8.5. (α, u) is a twisted action of G on A.

PROOF. Clearly u(e, t)= u(t, e)= 1 for all t ∈ G and αs ◦ αt = Ad(u(s, t)) ◦ αst for
all s, t ∈ G. We have only to show that αr (u(s, t))u(r, st)= u(r, s)u(rs, t) for all
s, t, r ∈ G. Indeed,

αr (u(s, t))u(r, st) = Ad(ur )(usut u
∗
st )ur ust u

∗
rst = ur usut u

∗
rst

= (ur usu∗rs)(ursut u
∗
rst )= u(r, s)u(rs, t). 2

Following Quigg [27], we define the reduced twisted crossed product A oα,u G
associated with a twisted action (α, u) of G on A. We may assume that A acts on a
Hilbert space H faithfully and nondegenerately. Also, we may assume that there is a
unitary map v : G −→ B(H) such that

αt = Ad(vt ), vsvt = u(s, t)vst
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for all s, t ∈ G, where B(H) is the C∗-algebra of all bounded linear operators on H.
Then, given any element x ∈ A oα,u G, we can write x =

∑
t∈G atvt , where at ∈ A

for all t ∈ G. Let F be the canonical conditional expectation from A oα,u G onto A
defined by F(x)= ae, where x =

∑
t∈G atvt , with at ∈ A for all t ∈ G. We shall show

that (A oα,u G, F)∼ (B, E). In order to do so, we need the following lemmas.

LEMMA 8.6. E(ut )= 0, and αt is an outer automorphism of A for all t ∈ G \ {e}.

PROOF. We note that, for all t ∈ G \ {e},

eAwt eA = eAwtw
∗
t wt eA = eAetwt eA = 0.

On the other hand,

eAwt eA =

mt∑
i=1

eAx t
i eA yt

i eA =

mt∑
i=1

E(x t
i )E(y

t
i )eA.

Hence
∑mt

i=1 E(x t
i )E(y

t
i )= 0. Thus E(ut )= 0, since E(ut )=

∑mt
i=1 E(yt

i )
∗E(x t

i )
∗.

Next, suppose that αt is an inner automorphism of A, that is, there is a unitary element
z in A such that αt (a)= zaz∗ for all a ∈ A. Then u∗t za = u∗t αt (a)z = au∗t z for all
a ∈ A and hence u∗t z ∈ A′ ∩ B = C1, that is, ut = λz for some λ ∈ C such that |λ| = 1.
Therefore,

et = ut eAu∗t = zeAz∗ = eA.

This is a contradiction. 2

For a twisted action (α, u) of G, we call the action a twisted outer action if αt is
outer for all t ∈ G \ {e}.

LEMMA 8.7. {(u∗s , us)}s∈G and {(us, u∗s )}s∈G are quasi-bases for E.

PROOF. Since ∑
s∈G

u∗s eAus =
∑
s∈G

wseAw
∗
s =

∑
s∈G

es = 1,

{(u∗s , us)}s∈G is a quasi-basis for E . Since us−1us ∈ A by Lemma 8.3,

useAu∗s = usus−1u∗s−1eAus−1u∗s−1u∗s = usus−1es−1u∗s−1u∗s = es−1 .

Therefore,
∑

s∈G useAu∗s =
∑

s∈G es−1 = 1 and hence {(us, u∗s )}s∈G is a quasi-basis
for E . 2

PROPOSITION 8.8. (B, E)∼ (A oα,u G, F).

PROOF. We shall show that there exists an isomorphism π of B onto A oα,u G such
that E = F ◦ π . For all x ∈ B, we can write x =

∑
t∈G E(xu∗t )ut by Lemma 8.7. We

define a map π from B to A oα,u G by π(x)=
∑

t∈G E(xu∗t )vt . It is clear that π is
linear. Using the equalities

αt = Ad(ut )= Ad(vt ), u(s, t)= usut ust = vsvtvst (8.1)
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we can see that π(x)π(y)= π(xy) and π(x∗)= π(x)∗ for all x, y ∈ B by Lemma 8.7.
We now claim that π is bijective. For all z ∈ A oα,u G, we write z =

∑
t∈G ztvt ,

where zt ∈ A for all t ∈ G. Let x =
∑

t∈G zt ut . Then, by the above equations (8.1)
and Lemma 8.6, π(x)= z. Next, we suppose that π(x)= 0 for an element x ∈ B, that
is,
∑

t∈G E(xu∗t )vt = 0. For all s ∈ G,

0 = F

(∑
t∈G

E(xu∗t )vtvs−1

)
= F

(∑
t∈G

E(xu∗t )u(t, s−1)vts−1

)
= F

(∑
t∈G

E(xu∗t u(t, s−1))vts−1

)
= E(xu∗s u(s, s−1))= E(xu∗s )u(s, s−1),

since u(t, s−1) ∈ A. Hence E(xu∗s )= 0 for all s ∈ G. Thus x = 0 by Lemma 8.7. It
follows that π is bijective. Furthermore, for all x =

∑
t∈G E(xu∗t )ut ∈ B,

(F ◦ π)(x)= F

(∑
t∈G

E(xu∗t )vt

)
= E(xu∗e)= E(x).

This concludes the proof. 2

THEOREM 8.9. Let A ⊂ B be an irreducible inclusion of unital C∗-algebras, E be a
conditional expectation from B onto A which is of index-finite type and of depth 2, and
B1 be the C∗-basic construction induced by the inclusion A ⊂ B. Suppose that there
exists an action β of a finite group G on B1 such that B is the fixed point algebra of
B1 by β. Then the following conditions are equivalent:

(1) βt (eA)∼ eA in B1 for all t ∈ G;
(2) there exists a twisted outer action (α, u) of G on A with the property that

(B, E)∼ (A oα,u G, F), where F is the canonical conditional expectation from
A oα,u G onto A.

PROOF. That (1) implies (2) is immediate by Proposition 8.8. That (2) implies (1) is
clear. 2

PROPOSITION 8.10. With the above notation and assumptions, the following condi-
tions are equivalent:

(1) there exist a C∗-subalgebra P of A with a common unit and a conditional
expectation H from A onto P of index-finite type such that (B, E)∼ (P1, H1),
where P1 is the C∗-basic construction induced by the inclusion P ⊂ A and H1
is the dual conditional expectation of H;

(2) there exists an outer action α of G on A such that (B, E)∼ (A oα G, F), where
F is the canonical conditional expectation from A oα G onto A.

PROOF. First we show that (1) implies (2): Since A ⊂ B is of depth 2, so is P ⊂ A.
Thus P ′ ∩ A = C1 and P ′ ∩ B1 ∼= Mn(C), where Mn(C) is the (n × n)-matrix algebra
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over C and n is the order of G. As mentioned at the beginning of this section,
{et }t∈G is a family of mutually orthogonal minimal projections in A′ ∩ B1. Since
A′ ∩ B1 ⊂ P ′ ∩ B1, we have that {et }t∈G is also a family of mutually orthogonal
minimal projections in P ′ ∩ B1 (which is Mn(C)) and hence et ∼ eA in P ′ ∩ B1 for
all t ∈ G. Hence, for all t ∈ G, there exists a partial isometry wt ∈ P ′ ∩ B1 such that
w∗t wt = eA and wtw

∗
t = et . Since wt ∈ B1, we can write wt =

∑mt
i=1 x t

i eA yt
i , where

x t
i , yt

i ∈ B. Put u∗t =
∑mt

i=1 x t
i E(yt

i ) for all t ∈ G. Then, by Lemma 8.1, ut is a unitary
element in B and wt eA = u∗t eA for all t ∈ G. For all x ∈ P ,

u∗t xeA = u∗t eAx = wt eAx = xwt eA = xu∗t eA.

Hence u∗t x = xu∗t for all x ∈ P . Thus ut ∈ P ′ ∩ B for all t ∈ G. Furthermore, since
usut u∗st ∈ A for all s, t ∈ G by Lemma 8.3, usut u∗st ∈ P ′ ∩ A = C1 for all s, t ∈ G.
Let αt = Ad(ut ) for all t ∈ G. Then α is an action of G on A by the proofs of
Lemmas 8.4 and 8.5. Therefore, we can complete the proof in the same way as in
the proof that (1) implies (2) in Theorem 8.9.
Now we show that (2) implies (1): Let P be the fixed point algebra A(G,α). Then the
conclusion is obvious. 2

REMARK 8.11. When A is a factor, there always exists a tunnel construction P ⊂ A.
Therefore, given any twisted crossed product A oα,u G by a twisted outer action of
a finite group G on a factor A and the canonical conditional expectation F from
A oα,u G onto A, we have (A oα,u G, F)∼ (A oβ G, E) for some outer action β
of G on A and the canonical conditional expectation E from A oβ G onto A. This
means that any 2-cocycle is a coboundary, as was observed in [10, 32, 34].

9. Applications

9.1. The case of a finite abelian group. Let G be a finite abelian group and α be an
outer action of G on a simple unital C∗-algebra B. Let A be the fixed point algebra
B(G,α) and E be the canonical conditional expectation from B onto A defined by
E(x)= (1/n)

∑
s∈Gαs(x) for all x ∈ B, where n is the order of G. Then it is well

known that Index E = n and the C∗-basic construction B1 induced by the inclusion
A ⊂ B is the crossed product B oα G, where B is the fixed point algebra by the dual
action α̂ of the dual group Ĝ of G on B oα G. We can see that, in general, B cannot
be described as a twisted crossed product A oβ,u Ĝ for any twisted action of the dual
group Ĝ on A. For instance, let θ be an irrational number in (0, 1) and Aθ be the
corresponding irrational rotation C∗-algebra. Let σ be the involutive automorphism
of Aθ determined by σ(u)= u∗ and σ(v)= v∗, where u and v are unitary generators
in Aθ . Suppose that Cθ is the fixed point algebra A(Z/2Z,σ )θ = {x ∈ Aθ | σ(x)= x}.
In [15], it was proved that the inclusion Cθ ⊂ Aθ cannot be described as a twisted
crossed product Cθ ⊂ Cθ oα,u Z/2Z for any twisted action (α, u) of Z/2Z on Cθ .
However, we can obtain the following corollary from Theorem 8.9 immediately.
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COROLLARY 9.1. Let α : G→ Aut(B) be an outer action of a finite group G on
a simple unital C∗-algebra B and A be the fixed point algebra B(G,α). Define the
canonical conditional expectation E from B to A by E(b)= (1/|G|)

∑
s∈Gαs(b) for

all b ∈ B. If G is a finite abelian group, then (B, E)∼ (A oβ,u Ĝ, F) for some twisted
outer action (β, u) of the dual group Ĝ of G on A if and only if there exist unitary
elements {uγ }γ∈Ĝ in B such that αs(uγ )= 〈γ, s〉uγ for all s ∈ G and γ ∈ Ĝ, where

〈γ, s〉 is the dual pairing of γ ∈ Ĝ and s ∈ G.

PROOF. In the crossed product B1 = B oα G, let {us}s∈G be the canonical unitary
elements such that usut = ust and usbu∗s = αs(b) for all b ∈ B and s, t ∈ G. The dual
action α̂ of the dual group Ĝ on B1 is defined by α̂γ (b)= b and α̂γ (us)= 〈γ, s〉−1us

for γ ∈ Ĝ, s ∈ G and b ∈ B. Let eA be the Jones projection for the inclusion A ⊂ B
and let eγ = α̂γ−1(eA) for γ ∈ Ĝ. Since eA = (1/n)

∑
s∈Gus , for γ, δ ∈ Ĝ, where n is

the order of G,

eγ eδ =
1

n2

∑
s,t∈G

α̂γ−1(us)α̂δ−1(ut )=
1

n2

∑
s,t∈G

〈γ−1, s〉〈δ−1, t〉ust

=
1

n2

∑
s,t∈G

〈γ−1, st−1
〉〈δ−1, t〉us

=
1

n2

∑
s∈G

〈γ−1, s〉

(∑
t∈G

〈γ−1, t−1
〉〈δ−1, t〉

)
us

=
1

n2

∑
s∈G

〈γ−1, s〉

(∑
t∈G

〈γ δ−1, t〉

)
us

=

{
eγ if δ = γ,

0 if δ 6= γ.

Therefore, {eγ }γ∈Ĝ is a family of mutually orthogonal projections in A′ ∩ B1 and it

is obvious that
∑
γ∈Ĝ eγ = 1, since the dimension of A′ ∩ B1 is n, the order of Ĝ.

Suppose that B can be described by A oβ,u Ĝ for some twisted action (β, u) of
the dual group Ĝ of G on A. Then eγ is equivalent to eA by Theorem 8.9. As
mentioned in the beginning of Section 8, there is a unitary element uγ in B such
that uγ eAu∗γ = eγ = (1/n)

∑
s∈G〈γ

−1, s〉us . On the other hand,

uγ eAu∗γ =
1
n

∑
s∈G

uγ usu∗γ =
1
n

∑
s∈G

uγαs(u
∗
γ )us .

So αs(uγ )= 〈γ, s〉uγ . Conversely, if there exist unitary elements {uγ }γ∈Ĝ in B such
that αs(uγ )= 〈γ, s〉uγ for all s ∈ G, then it is easy to check that eγ = uγ eAu∗γ . Hence,
the corollary is proved by Theorem 8.9. 2
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EXAMPLE 9.2. Let Aθ be the irrational rotation C∗-algebra generated by two unitary
elements u, v satisfying the condition that uv = e2π iθvu. Define an automorphism σ

on Aθ by σ(u)= e(2π/n)i u and σ(v)= v. Then σ n
= id and hence we can define

an action α of Z/nZ on Aθ by αk = σ
k . It is easy to see that the fixed point

algebra A(Z/nZ,α)
θ is the irrational rotational C∗-algebra Anθ generated by un and v.

Since αm(uk)= e(2πmk/n)i uk for k = 1, 2, . . . , n − 1, there exists a twisted action
(β, w) of Z/nZ on Anθ such that Aθ can be described as the twisted crossed product
Anθ oβ,w Z/nZ by Corollary 9.1.

9.2. Reduced inclusions by projections. Let A ⊂ B be an inclusion of simple unital
C∗-algebras and E be a conditional expectation from B onto A of index-finite type.
Let {(vi , v

∗

i )}
n
i=1 be a quasi-basis for E and p be a projection in A. Since A is a simple

unital C∗-algebra, there exist elements {y j }
m
j=1 in A such that

∑m
j=1 y j py∗j = 1.

Then the set {(pvi y j p, py∗j v
∗

i p)}1≤i≤n,1≤ j≤m is a quasi-basis for a conditional
expectation E p = E |pBp from pBp onto p Ap. Moreover, (Index E)p = Index E p
(see [20, Proposition 4.1]). So the cardinality of the quasi-basis for p Ap ⊂ pBp
usually increases more than the cardinality of the quasi-basis for A ⊂ B. We note
that if B can be described as a twisted crossed product of some twisted action of some
finite group on A, then there is a quasi-basis such that the cardinality of the quasi-basis
is the order of the finite group.

THEOREM 9.3. Let A be a simple unital C∗-algebra and α be an outer action of
a finite group G on A. Suppose that B is the crossed product A oα G and that
p is a projection in A. Then pBp can be described as a twisted crossed product
p Ap oβ,u G by a twisted action (β, u) of G on p Ap if αs(p) is equivalent to p
in A for all s ∈ G.

PROOF. In the crossed product B = A oα G, let {us}s∈G be the canonical unitary
elements such that usut = ust and usau∗s = αs(a) for all s, t ∈ G and a ∈ A. Let eA
be the Jones projection for the canonical conditional expectation E from B onto
A and B1 be the C∗-basic construction induced by E . Put es = useAu∗s . Then es
commutes with any element in A and A′ ∩ B1 =

⊕
s∈G Ces ∼= Cn , where n is the

order of G. Let p be a projection in A. Then it is obvious that eA p(= peA) is the
Jones projection for the conditional expectation E p from pBp onto p Ap defined by
E p(pbp)= pE(b)p for b ∈ B and that pB1 p is the C∗-basic construction for E p.
Suppose that A acts on some Hilbert space H faithfully and nondegenerately. Then
A′ 3 x 7→ xp ∈ p A′ is injective since A is simple. So we can see that A′ ∩ Bk
and p(A′ ∩ Bk)p = p A′ p ∩ pBk p are isomorphic for all k ∈ N, where Bk is the
nth C∗-basic construction induced by A ⊂ B. Therefore, the derived tower for
p Ap ⊂ pBp is the same as that for A ⊂ B, and hence p Ap ⊂ pBp is of depth 2 and
p A′ p ∩ pB1 p is commutative. Suppose that, for all s ∈ G, αs(p)∼ p in A. Then, for
all s ∈ G, there is a partial isometry vs in A such that vsv

∗
s = p and v∗s vs = αs(p).

Put ws = vsusv
∗

s−1 ∈ pBp. Since vt es = esvt and esus = useA for s, t ∈ G, we
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have that

wseA pw∗s = vsusv
∗

s−1eA pvs−1u∗s v
∗
s = esvsusv

∗

s−1vs−1u∗s v
∗
s

= esvsusαs−1(p)u∗s v
∗
s = es p.

Therefore, es p is equivalent to eA p in pB1 p. So, by Theorem 8.9, pBp can be
described as a twisted crossed product p Ap oβ,u G. 2

COROLLARY 9.4. Let α be an outer action of a finite group G on a simple unital
C∗-algebra A. If A is a uniformly hyperfinite algebra or an irrational rotation C∗-
algebra, then, for all projection p in A, the set p(A oα G)p can be described as a
twisted crossed product p Ap oβ,u G by a twisted action (β, u) of G on p Ap.

PROOF. If A is a uniformly hyperfinite algebra or an irrational rotation C∗-algebra,
then A has a unique tracial state τ . By this uniqueness, τ ◦ α = τ for all
automorphisms α of A. So it is obvious that αt (p)∼ p in A for any projection p ∈ A
and t ∈ G. Hence, the corollary is proved by Theorem 9.3. 2

REMARK 9.5. We denote by n the cardinality of a quasi-basis for A ⊂ B; then
tsr(B)≤ tsr(A)+ n − 1, where tsr(C) is the topological stable rank of C∗-algebra
C [12, Theorem 2.1]. If A is a uniformly hyperfinite algebra or an irrational rotation
C∗-algebra, then, for any outer action α of a finite group G on A and any projection
p in A, the topological stable rank of p(A oα G)p is at most the order of G, since
p(A oα G)p can be described as a twisted crossed product p Ap oβ,u G by some
twisted action (β, u) of G on p Ap by the previous corollary. On the other hand, let
{ei j }

n
i, j=1 be matrix units in A such that q =

∑n
i=1 ei i is a projection in A. Then,

using [31, Theorem 6.1],

tsr(A oα G) ≤ tsr(q(A oα G)q)= tsr(Mn(e11(A oα G)e11))

≤

⌈
tsr(e11(A oα G)e11)− 1

n

⌉
+ 1≤

⌈
|G| − 1

n

⌉
+ 1,

where dte denotes the least integer that is greater than or equal to t . There exists
a sequence of mutually orthogonal equivalent projections dpie

n
i=1 in A such that

n > |G|. So we can show that tsr(A oα G)≤ 2. Osaka and the second author of
this paper proved this in a more general setting as follows. If A is a simple unital C∗-
algebra with the SP property, that is, for which all nonzero hereditary C∗-subalgebras
contain a nonzero projection, and such that tsr(A)= 1, and α is an action of a finite
group G on A, then tsr(A oα G)≤ 2 (see [21]).
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