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MULTIPLE SCALAR TRANSPORT 

BY 

Z. A. MELZAK 

1. We shall consider scalar transport phenomena in which the mass distribution 
of a large number of interacting mass particles varies as a result of multiple 
coalescence mechanisms. Four models will be considered; all the particles are of 
the same kind in the first three. In the first model an integer n (n>2) is given and 
the coalescence mechanism is such that under suitable conditions n particles of 
masses xl9... , xn combine to form one particle of mass 2 i x%\ w e refer to this as 
the n\\ transport. In the second model a sequence nl9 n2,... of integers is given, 
with 2<wx<w2< ' ' ' , and all the njl, njl,. . . transports are going on simul­
taneously. In the third model the coalescence mechanism is such that under suitable 
conditions n particles of masses xl9. . . , xn combine and also break up so as to 
give rise to m new particles of total mass 2 i x%\ this may be referred to as the njm 
transport. Finally, in the fourth model various 2/1 transports will be considered 
for the case of particles of several kinds. 

These models are introduced partly for their own interest and partly in hope 
that they may be of some use in the physical sciences (especially in particle physics, 
colloid chemistry, and meteorology) and perhaps also in the biological and social 
sciences (breakup and formation of social groupings and aggregates, transport of 
wealth and power, concentration of biological characteristics and genetic trans­
port). 

Such applications would almost certainly call for a very considerable improve­
ment in our models which are admittedly primitive. For that reason we do not 
take up here the mathematically rather sophisticated questions of the existence, 
uniqueness, and properties of the solutions of the various transport equations we 
derive. Instead, we just scratch the surface of the subject by formulating some 
problems and indicating some simple mathematics of the resulting equations. 

For the background of the 2/1 transport for a single kind of masses the reader 
is referred to the recent exhaustive survey [1] which contains an up-to-date 
bibliography of more than two hundred titles. The types of transport which go 
beyond the 2/1 case appear to be new. 

2. For our first model let f(x, i) dx be the average number per unit volume of 
particles of mass (or volume) in the range x to x+dx present at the time t. Let 
n>2 be a fixed integer and suppose that the density function/(x, t) varies in time 
due to «-tuple coalescences. That is, under some conditions n particles of masses 
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xl9.. . , xn will unite to form a single particle of mass 2 i xi- Specifically, we 
suppose that 

(1) N(pcl9 ...9xn9t) dxv ...,dxndt 

is the average number per unit volume of such multiple coalescences involving 
masses in the range xt to x{+dXi ( / = 1 , . . . , « ) during the time interval t to t+dt. 
It is further assumed that 

(2) N(xl9. . . , xn91) = cp(xl9. . . , xn) JJf(xi91) 
i 

where cp is a sufficiently well behaved nonnegative function, invariant under any 
permutation of its n arguments. It is also assumed that the particles do not break 
up and do not enter or leave the system. Under these conditions we have the mass 
conservation law expressed in the equation 

(3) ^ 1 ) = Hf(x, t)]-0[f(x, 0] 
dt 

which we call a scalar transport equation; here / and O stand for 'in' and 'out' 
and / is the rate of formation of new particles of mass x out of smaller particles, 
while O is the rate of disappearance of masses x due to their coalescence with 
others. / and O may be expressed by N and (3) becomes then 

df(x91) 1 f f AT/ 

— — = — • • • N(xl9 ...9xn9t)dx2-" dxn 

- ; — • • • N(x9 x29...9 xn91) dxz-" dxn. 
(n — l)!Jo Jo 

The symmetry reducing factorials must be inserted in (4) to prevent multiple 
counting of a single event. When finally (2) is used to substitute for N into (4) we 
obtain the transport equation for/ : 

V(X: 
r(x t) 1 CX CX~Xn rX—Xi—' ' '—Xn /»£ 

dt n\ Jo Jo Jo Jo 

Xn /»£C—Xs~ ' ' '—Xn 

(5) 

X 9 ? U - 2 * ; , *2> • • • 9Xn\flx—^Xi9 t\ 

n j 

X JJf(xi91) dx2 • • • dxn— —f(x91) 
2 (tt — l ) ! 

/•oo f*ao 

X • • • (p(x9 ; 
Jo Jo 

x29. . . , xn )II/(X>0d:x;2- ' • dxn. 
2 

Let M(t) be the total mass per unit volume at the time t: 

Poo 

M(f) = xf(x, t) dx. 
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We multiply both sides of (5) by x and integrate with respect to x from 0 to oo ; 
supposing that the order of integration with respect to x and differentiation with 
respect to t may be changed, we introduce new variables 

n 

y. = Xi(i = 2 , . . . , w), )>i = x - 2 ** 
2 

and we find that M'(f)=0, that is, the total mass is conserved. 
3. In this section the transport equation (5) will be solved for the very simple 

special case when <p(xl9. . . , xn)=c where c is a positive constant. We have then 

3/Yv t\ r rx Cx~Xn rx-Xz-> • >-Xn / n \ n 

?mi) = JLl . . . f(x-1xi,t)Ylf(xi,t)dxi---dxn 

at nl Jo Jo Jo \ 2 / 2 

(7) f(x,0)=f(x) 

is the known initial distribution. The multiple convolution integral in (6) suggests 
the use of Laplace transforms : 

e-**f(x,t)dx, g(p) = g(p,0) = \ e-»*f(x)dx. 
o Jo 

We put also 

/*00 /*00 

(9) N(t) = f(x, t) dx9 N(0) = JV = f(x) dx 
Jo Jo 

so that N(t)=g(0, i) is the total number per unit volume of particles at the time 
t and N is the same initially. It will be supposed throughout that N is finite. 

By the standard properties of Laplace transform we have the equation for g: 

(10) Mp±) = i . g«(p> t ) - - * — g(p, t)s
n-\o, t). 

ot n\ (n — 1)! 
Putting p=0 in the above we find that 

dt n\ 
so that 

= IN1-71 N(t)= \N1-n+c{^-^t 
n\ 

l / i -

Substituting this for g(0, t) in (10) we have 

(11) ^ = i- g-(p, 0 - - C —W- n +c <2=f t 
dt n\ (n — 1)!L n! 

which is an ordinary differential equation of the Bernoulli type and reduces to a 

g(P, 0 
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linear equation on substituting u=g1~n. Thus the solution g(p, t) is obtained as 

(12) 
r/ (n—n2

 Y*/(»-I> fw_n2 i1^1-^) 
L\ nl / n\ J 

and inverting the first Laplace transform in (8) we obtain f(x, t). 
When the initial distribution is monodispersed with all particles of unit mass, 

we have f(x)=N ô(x— 1) where ô(x) is the Dirac ^-function. By (8) g(p)=Ne~p 

and hence by (12) 

(13) g(p91) = K[é><»-» - L] 

where 

(14) 

n! 
Therefore, inverting the Laplace transform we have 

/(x, 0 = — f^VU"1)-I>]~1/ (w"1) dp 
2771 JC 

with a suitable contour C. This may be written as 

f(X, t) = — f ^ ^ [ 1 _ L ^ ( n - l ) j - l / ( n - l ) J p 

and, using the binomial theorem, as 

fix, t) = ^i(-l)fc( "~VTÏ WP- . Lv*-»-Mn-l) dp\ 
fr=0 \ k I ""' 

The expression in the brackets is again the Dirac ^-function: 

oV*-v-Mn-V dp = d(x-k(n-i)-l) 

so that finally 
- f « 
277Ï J C 

(15) / ( * , ' ) = * | n - l + f c 1 )£ d[x-(Kn-i)+l)]. 

It follows that if we start with unit masses and allow only «-tuple coalescences, we 
shall have later on only particles of mass 1, «, 2/i—1, 3/i—1,. . . ; if Nj(t) is the 
number of (1 + («—l)/)-tuples per unit volume at the time, then 

Nj(t)=L-1
+j l)Kll 
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where K and L are given by (14). It follows that NQ(t) decreases steadily while Nj(t) 
for y >0 rises from its initial value 0 at f=0 to a maximum M,- at some time ^ and 
then decreases to 0 asymptotically. The calculation of M5 and ti is easy. 

4. We consider next the transport equation (5) for the case of an unbounded 
kernel <p(xl9. .. , xn)=c^ xe- (with c>0). We use again the Laplace transforms 
(8). Recalling that the total mass per unit volume 

/•oo 

M = xf(x, t) dx 

is constant, we find that 

(16) — - — = - — — — - — [g (0, o - g (A 0 J - ; — — gO> 0g (0,0-

dt (n — 1)! 9p (n —2)! 
With/?=0 this yields for g(0, t)=N(t) the equation 

(17) N'(t) = - cM Nn-\t) 
(n-2)! 

so that 
jV(0 = JV*rcM< n = 2, 

cM 
<18> AT(0 -

.(n-3)! -] f+iV2~w n > 3 . 

We are interested here in the case w>3; when N(t) is substituted from (18) into 
(16) the resulting partial differential equation does not appear to be explicitly 
solvable in a closed form. However, it is possible to handle the moments off: let 

Mk(t) = f °V/(x, 0 dx 

so that MQ(t)=N(t) and Mx(t)=M is the constant total mass per unit volume. In 
terms of the Laplace transforms we have 

op* 'j>=o 

If (16) is differentiated twice with respect to p and then we set/?=(), we obtain 

(19) A f « 0 = - ^ " M2(t)T-1 + ~ ^ - T ( n - 3 ) / ( 2 - n ) _ . _ £ M _ T<n-l)/<2-n) 

(n-2)! (n-3)! (w-2)! 
where for brevity 

T = -£&- t+N*-. 
(n-3)! 

(19) may be solved for M2(t) and we find that 

M2(I) = (n-2)M2TiHn-2)+KTznn-2)+T2nn-2) 
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where 
K = NBM2(0) - (n - 2)M2JV~1 - N. 

Similarly, the differential equations for higher moments are obtained by differen­
tiating (16) with respect top a number of times, and putting/?=0. 

5. Here we consider the case of the unbounded kernel <p(xl9 . . . , xn)~ 
cxi ' ' * xn with positive constant c. The use of Laplace transforms (8) leads now to 

(20) M * i > _ ( _ ! ) • • £ . 
ot n\ 

MP, 0" 
. dp . + 

cM71-1 dg(p, t) 

( n - 1 ) ! dp 

Since this is a partial differential equation without either the dependent variable 
g or the independent variables p and t, we use the Lagrange-Charpit method of 
elimination, [2], to solve it. Write (20) as gt=F(gp) so that F(x)=Axn+Bx, where 
A = (— l)n c/n\ and B=cMn~1/(n— 1)!. Then g(p,t) is obtained by eliminating 
ip(p, t) out of the system 

g(p, 0 = pxp{p, t) + tF[ip(p, t)] + <f>[y(p, t)] 
( 2 1 ) 0 = p+tF'Mp9t)] + p[V(p9t)]. 

Here (f> is a suitable function which ensures the correct initial condition. The 
initial valueg(p)=g(p, 0) is known from (8); put t=0 in (21) and let f(p)=y(p, 0). 
Then 

g(p) = py>(p) + </>lv>(p)]> o = p + <f>'[y(p)i 

Differentiating the first equation with respect top we have ip(p)=g'(p) so that 

4>(g'(p)) = g(p)-pg'(p) 

which gives us (/>. Now the second equation in (21) is solved for ip(p, t) and this is 
substituted into the first equation, giving us g(p, t). Finally f is obtained as the 
inverse Laplace transform. 

Suppose, for instance, that we have initially monodispersed particles with 
f(x, 0)=NO(x-l). Then g{p)=Ne~v and g'{p)=-N(T*\ hence f (w)=log(-w/tf) 
and ip(p,t) is therefore a solution of 

p+tlnAyj^ip, t)+B]+log[-y>(p9 t)/N] = 0. 

As in the previous section we can use (21) after differentiating it and putting p—09 

to compute the moments. In particular, the 0-th moment 

is obtained as 

where 

N(t) = \J(x9t)dx = g(09t) 

N(t) = (l-n)Atyn(t)-ip(t) 

tlnAy^iO+B^logl-yiOlN] = 0. 
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6. AU the examples so far are special cases of n\\ transport. We consider now 
the case of («1+«2+ * * OA transport. That is, there is a sequence nl9 n29. . . of 
integers, with 2 < « ! < « 2 < • • • , and the Tvtuple, «2-tuple,. . . coalescence mech­
anisms are all going on simultaneously. Rewriting (3) as 

^ ^ = InU(x,t)]-On[f(x,t)] 

dt 

we have for our transport equation 

(22) ££L0 = J {Ink[f(X) t)]-0nt[f(x, t)]}. 
dt K, 

Suppose again that all the kernels are constant: <pn (xl9. . . , xn )=cn , and 
introduce the transport function 

00 c zn 

2 nl 

where cn=cn ifn is in the sequence nl9 n2,... and cn=0 otherwise. Then, taking 
Laplace transforms (8) we obtain 

(23) d j ^ = F[g(p, t)]-g(p, t)F'[g(p, t)]. 
dt 

In particular, for the 0-th moment N(t)=g(0, t) we have the differential equation 

(24) N\t) = F[N(t)]-N{t)F'[N(t)]. 

Differentiating (23) successively with respect to p and putting j9=0 we obtain the 
relations for higher moments: 

M'Jit) = F"[N{t)]M2, M'z = -MzF"'[N(t)]-3MF"[N(t)]M2(t) 

and so on, so that these moments may be evaluated once N(t) is known. 
As an example we take the (2+3)/l transport with the transport function 

F(z) = c2z2/2+c3z3/6; 
then (24) is 

N\t)=^N\t)^N\t) 

so that N(t) is determined by the relation 

___ 2_ 

c2 
—-4 4c3, N(t)[3c2+2c3N(t)] 

,+—Jog-
Mt) JVJ 3cJ JV(3c2+2c3JV) 

It follows that for large t we have asymptotically 

JV(0~2/(c20; 
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thus the number N(t) of particles per unit volume depends for large t essentially 
only on the 2/1 mechanism constant c2. 

7. For the case of 2/2 transport, with all particles of one kind, we have to 
consider a coalescence mechanism in which masses x and y undergo a sequence of 
breakups and recombinations so as to end up with two masses again, say u and v. 
Conservation of mass gives us x+y=u+v; hence, supposing linear dependence 
of u and v onx and y, we have 

u = ax+by, v = (1— a)x+(\ — b)y, 0 < a, b < 1. 

Further, since all particles are of one kind the masses x and y are indistinguishable 
and therefore a=b. Hence 

u = a(x+y), v = (1— a)(x+y) 

and on the grounds of symmetry we may assume without loss of generality that 
0<f l<l /2 . 

Thus the 2/2 transport depends on the coalescence mechanism in which a fixed 
number a is given, with 0 < a < l / 2 , and when two masses x and y coalesce the 
result is again two particles, of mass a(x+y) and (1— a){x+y). The limiting case 
a=0 is the 2/1 transport: x and y coalesce to form a single mass x+y; the other 
limiting case a=l/2 is the averaging transport: x and y coalesce to form two par­
ticles of the mean mass (x+y) 12. 

To obtain the 2/2 transport equation we observe that a particle of mass x can 
be created in two possible ways : either as a result of a coalescence of masses u and 
v with u+v=xja, or as a result of similar coalescence but with u+v=xl(l—a). 
However, a particle of mass x can disappear in only one way: by coalescing with 
another particle. Keeping the meaning off(x, t) and <p(x, y) the same as before 
and recalling the definition (1), we obtain as the 2/2 transport equation 

(25) ••lûb^'H-i-'-') 
x (p ly, ~ - y ) dy-f(x, t) f(y, t)(p(x, y) dy. 

In the limiting case a-+0 this becomes the 2/1 transport equation provided that we 
interpret 

(26) Urnf(ï-y,t)<p(y,ï-yya 

as 0. It will be noticed that in this transport not only the total mass per unit volume, 
Jo° xf(x> 0 dx, but also the total number of particles per unit volume, Ĵ ° f(x, t) dx, 
remains constant; simple computation with (25) shows that this is so. 
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For the njm transport we have the coalescence mechanism in which n particles 
of masses xl9... , xn meet, break up and coalesce, resulting in m particles of 
masses yl9. . . , ym. Assuming as before mass conservation and the linearity of / s 
in terms of x's, we suppose that there are m fixed constants al9 . . . , am satisfying 

m 

(27) 0 < a „ 2 > * = 1 
1 

and we have then 
n 

(28) yj = Qj 2 xi9 j = 1,. . . , m. 
i 

To obtain the transport equation for this case let us write (5) as 

§&Li> = ! j W — - L - o ( * ) , 
dt n\ ( n - 1 ) ! 

then the present transport equation is 

(29) &&$ - i f fl^/(»/a#) _ L - O(x). 
df n! i (n — 1)! 

8. Finally, we consider coalescence among particles of several kinds. Let there 
be k kinds of particles, with the corresponding density functions/^x, t) (i= 1 , . . . , k). 
The transport will be of the 2/1 type (higher transports might also be considered 
but at the cost of considerably greater complexity in formulas). Let F(i9j) be an 
integer-valued function defined for 1</ , j < k and satisfying the condition 
l<F(i9j)<k\ we introduce the coalescence symbols % for \<i9j9 s<k by 

4 = = 1 ifF(i9j) = s 

4 = 0 if F(i9j) * s ; 

they are to have the symmetry property 4 = £ ^ . We postulate the coalescence 
mechanism under which a particle of mass x and the z-th kind and a particle of 
mass j and they-th kind will give rise, on coalescing, to a particle of mass x+y and 
the 5-th kind, if and only if «^ = 1, otherwise there is no coalescence. In place of 
the kernel y{x9 y) we have now k(k+1)/2 kernels ^(x, y) with the symmetry 
properties 

<Pu(x>y) = <Pa(x>y) = <Pu(y>x) 
though actually q>ij(pc9 y) needs to be given only for the case when s exists such 
thatfij,=l. 

Proceeding as before we obtain the transport equations as 

(30) dt 

dfs(x, t) = ^ e . f r / i ( y ; t)Mx-y, O^Xy, x-y) dy 
iJ JO 

J*oo 

fi(y> t)<pd*> y)dy> s = 1 , . . . , fc. 
0 
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Let 

/»oo 

= J xf8(x,: M8(t) = xf8(x, t) dx 

be the total mass per unit volume of the particles of the s-th kind at the time t. 
Multiplying (30) by x, integrating with respect to x from 0 to oo, and inter­
changing the order of integration and differentiation, we obtain, on introducing 
new variables y and x—y, 

(31) 
J*oo /*oo 

xf&, t)fj(x, 0?w(x, y) dy dx 
o Jo 

J*oo /*oo 

xfs(x, t)&y, t)cpis(x, y) dy dx 
o Jo 

from which there results the overall mass conservation 

lM's(t) = 0. 
1 

On the other hand, each quantity M8(t) separately is in general not constant and 
the behaviour of the quantities Ms(t) is here of some interest. 

As an example, we consider the case of two kinds of particles with constant 
positive kernels 

<Pi\(x>y) = cn> <Pi*(x9y) = c12, (pw(x,y) = c22 

where the first kind dominates the second kind in the sense that 

£ll"~"£22 = £12 = = 1 

and all other coalescence symbols are 0. We let N8(t) be the total numbers per 
unit volume : 

Ns(t) = rf8(x,t)dx, 5 = 1,2. 

The transport equations (30) are 

^ T ^ = Cf f*My> OMx-y, 0 dy+c12 f\{y9 t)f2(x-y, t) dy 
dt 2 Jo Jo 

J'oo /*oo 

o Jo 

^r* = c-*[mf4y.tmx-y,t)dy 
dt 2 Jo 

J*00 /*00 

f2(y>t)dy-c12f2(x,t)\ My,t)dy. 
o Jo 
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Introducing the Laplace transforms 

g s(p,0 = | e-"%(x,t)dx, s = 1,2, 

we have Ns(t)=gs(0, t) and (32) become 

(33) 
dgx(p, t) cn o 
—~ = — gl(P> t) + c12gx{p, i)g2{p, ^-Cng^p, Ogi(0, O-^g iO? , 0g2(0, 0, 

ot 2 

dg2(p, 0 C22 2 
— = — g2(P, t)-c22g2(p, t)g2(09 t)-c12g2(p, 0gi(0, 0-

ot 2 
Letting p=0 we have 

(34) N[(t) = - ^ Nl(t), N2(t) = --^ iV2
2(0-c12iV1(0iV2(0. 

If iVi=./Vi(0) and N2=N2(0) are the known initial values then 

Ni{t) = _ M L _ 
Nxcxlt+2 

is the solution of the first equation in (34). When the above is substituted for Nx(t) 
into the second equation of (34) we have a Bernoulli type differential equation for 
N2(t) and there are two cases to consider depending on whether 2c12=cn or 
2^12^cn. The solution N2(t) is 

(t) = riV1(c11-2c12)-c22JV2/iV11 V 

L JV1Wa(cu-2cu) \ 2 / 

if 2c12 = cn 

\ 2 c u / c u 

<?22 • M if 2c12 7^ c1: 
iV1(c1-2c12)\ 2 

The mass transport equations (31) are here 

M[(t) = ciaMa(f)iVi(0, M2(0 = -c12M2(t)N (0; 

if M1=M1(0) and M2=M2(0) are the known initial values then we have 

- 2 c i 2 / c i i - i 

Mx(0 = Mx+Mz \.^t+1y^ 
M2(0 = MJ^ t+lj 

-2ci2/cn 

It is also possible here to solve the transport equations (33) themselves but the 
solutions involve non-elementary integrals of the binomial type. 
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