
JFP 12 (4 & 5): 359–374, July & September 2002. c© 2002 Cambridge University Press

DOI: 10.1017/S095679680200432X Printed in the United Kingdom

359

Developing a high-performance web server in
Concurrent Haskell

SIMON MARLOW

Microsoft Research Ltd., 7 JJ Thompson Avenue, Cambridge CB3 0FB, UK

(e-mail: simonmar@microsoft.com)

Abstract

Server applications, and in particular network-based server applications, place a unique

combination of demands on a programming language: lightweight concurrency, high I/O

throughput, and fault tolerance are all important. This paper describes a prototype web

server written in Concurrent Haskell (with extensions), and presents two useful results: firstly,

a conforming server could be written with minimal effort, leading to an implementation in

less than 1500 lines of code, and secondly the naive implementation produced reasonable

performance. Furthermore, making minor modifications to a few time-critical components

improved performance to a level acceptable for anything but the most heavily loaded web

servers.

1 Introduction

The Internet has spawned its own application domain: multithreaded server appli-

cations, capable of interacting with hundreds or thousands of clients simultaneously,

are becoming increasingly important. Examples include FTP (File Transfer Proto-

col), E-mail transport, DNS (name servers), Usenet News, chat servers, distributed

file-sharing, and the most popular of all, web servers.

The basic function of a web server is to service requests for files on the local file

system. A client contacts the web server over the network, sends a request containing

the name of the required file, and the server responds with the contents of the file,

if it exists. In reality web servers may provide a great deal more functionality, such

as allowing the web site manager to design pages with dynamic content with scripts

that are run by the web server, but in this paper we are only concerned with the

basic file-serving facilities.

Nevertheless, even providing this basic service leads to a number of problems on

the implementation front, if we are to produce a server that is capable of realistically

running a real web site:

• The server has to be able to communicate with several clients simultaneously,

because we can’t afford for the server to be unavailable for long periods while

it waits for the current client to complete its transaction. Moreover, the server

should scale well to a large number of simultaneous clients. In implementation

terms, this usually means that we have to employ some form of concurrency;

https://doi.org/10.1017/S095679680200432X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200432X


360 S. Marlow

the choice of concurrency model tends to have the largest impact on a server’s

performance, so we discuss the relative merits of several concurrency models

in section 2.

• For small requests, the server must be able to process the request quickly

to avoid tying up resources for too long. This means the latency for a new

connection should be as low as possible. This aspect of a server’s performance

can be measured by firing small requests at it at an increasing rate; at some

point, the server’s performance will start to drop off as the rate increases

beyond the latency and a backlog of connections in progress builds up.

Another advantage of low latency is that the server is more resistant to

denial-of-service type attacks. If it can throw out bogus requests as quickly as

possible, then the overall server performance will be impacted less when the

server is flooded with requests from a malevolent client.

• Fault tolerance is as important as performance: the server should be able to

recover gracefully from errors, and never crash (or if it does, arrange that

it restarts itself so that there is a minimal interruption in service). It should

also be possible to re-configure the server, perhaps to add or remove content,

without taking it down.

So why write a web server in Haskell? First, because we can! It’s no bad thing

for Haskell if we can compete effectively in important application domains such as

web serving. Secondly, several recent extensions to Haskell are particularly useful

for this problem domain:

• Concurrent Haskell (Peyton Jones et al., 1996) provides a lightweight con-

currency model that helps to provide the low latency and low overhead for

multiple simultaneous clients that is essential for good server performance.

• Recent extensions to support exceptions (Peyton Jones et al., 1999) provide

useful facilities for coping with run-time errors.

• Asynchronous exceptions (Marlow et al., 2001) allow concise implementations

of important features such as timeouts, as we shall see in section 4. Asyn-

chronous exceptions are also useful for allowing the server to respond to

external stimulus, such as when the administrator wishes to make changes to

the server’s configuration (see section 6).

• We used a wide range of libraries in constructing the web server, including a

networking library, a parsing combinator library, an HTML generation library

and a POSIX system interface library. None of these libraries are specified

as part of the Haskell standard as yet, but all are distributed with the GHC

compiler.

This paper describes our web server implementation, focusing on the parts which

required extensions to Haskell, in particular the concurrency and exception support.

The server implementation performs well, as we shall show in section 7. It is also

reliable – we tested it as an alternate server for the haskell.org site, where it ran

for a week, collected about 2000 hits during that time, and kept within a memory

footprint of 3M. This test uncovered one bug in the HTTP protocol implementation,

https://doi.org/10.1017/S095679680200432X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200432X


Developing a high-performance web server in Concurrent Haskell 361

which has since been fixed. We hope to replace the main haskell.org web server

(currently Apache) with the Haskell implementation at some point in the future.

2 Concurrency model

The choice of concurrency model is crucial in the design of a web server. In this

section we briefly examine the common models in use and list their advantages and

disadvantages, and compare them with Concurrent Haskell’s approach.

2.1 Separate processes

This is the model used by Apache, where each new connection is handled by a

new operating system process on the machine. A single top-level process monitors

incoming connections and spawns a new worker-process to talk to each client.

In terms of our requirements, the separate process model shapes up thus:

• Scalability and Latency. By virtue of the fact that the operating system is

handling the concurrency, the separate process model will automatically take

advantage of multiple processors if the operating system supports them. How-

ever, processes are rather heavyweight beasts in terms of the startup and

shutdown cost, context-switch overhead, and memory overhead for each pro-

cess, so latency is likely to be high. Systems which use this model, like Apache,

tend to keep a cache of available processes and use a single process to serve

multiple serial requests, in order to alleviate the high startup costs.

• Fault tolerance. The operating system’s memory protection provides a certain

amount of fault tolerance, in that a single crashing process can’t affect any

other process.

• Programming model. The separate process model is fairly simple to implement,

but communication between processes tends to be inconvenient because of the

explicit nature of the interprocess communication methods provided by most

operating systems. Interprocess communication is required for certain aspects

of a web server’s operation. For example: there is normally a single log file

which records transaction events (see section 5), and hence multiple threads

must cooperate for access to the log file.

2.2 Operating-system threads

Depending on the particular operating system, OS threads may map onto processes,

in which case the overhead will be similar as for separate processes (modern operating

systems will share page tables between forked processes in any case), or they may be

implemented as light-weight kernel threads, in which case the overhead will be lower.

A light-weight kernel threads implementation has slightly different characteristics

compared to processes:

• Scalability and latency. Performance is expected to be better than processes,

because threads generally have less overhead than full processes. Again, the

https://doi.org/10.1017/S095679680200432X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200432X


362 S. Marlow

operating system may be able to take advantage of multiple processors without

any work on the part of the programmer.

• Fault tolerance. There is no memory protection, and no explicit support for

fault tolerance in this model.

• Programming model. Inter-thread communication is somewhat easier, but

dealing with thread-local state is harder (data is thread-global by default).

2.3 Monolithic process with I/O multiplexing

Another approach is to implement the desired concurrency directly, foregoing any

time-sharing facilities provided by the operating system itself. The single requirement

for this approach is to be able to multiplex several I/O channels.

The existing methods for multiplexing I/O in a single process include:

• Use POSIX’s select() (or equivalently poll()) functions. These functions

tests multiple file descriptors simultaneously, returning information on which

of the descriptors are available for reading or writing. The idea is that the

application then performs any available reads and writes (using non-blocking

I/O), and then returns to call select() on the list of open file descriptors

again. This approach suffers from the problem that select() is O(n), where

n is the number of file descriptors being tested, because the application must

build up a list of length n to pass to the select function, and the OS must

traverse this list to build up the results. Another problem with non-blocking

I/O is that it doesn’t normally apply to disk I/O: so a web server using non-

blocking I/O and select() could become effectively single-threaded while

reading from disk.

• Asynchronous I/O, POSIX real-time signals, and kernel event queues. These

are all methods of alleviating the aforementioned problems with select().

They are relatively new, non-standard features which are not supported by all

operating systems. However, any implementation which uses select() can be

converted to use one of these alternatives with relatively little effort.

The characteristics of these methods are:

• Scalability and latency. Very low latency, because of the lack of threading

overhead. Scalability can suffer if the select method is used.

• Fault tolerance. There is no explicit support for fault tolerance in this model.

• Programming model. A web server is an inherently multi-threaded application,

so programming without a concurrency abstraction is bound to be painful.

There exist several web servers which use these methods, and they are currently

the fastest servers around.

2.4 User-space threads

User-space threads are essentially an implementation of a thread abstraction inside

a single process (or possibly on top of a small number of operating system threads;

https://doi.org/10.1017/S095679680200432X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200432X


Developing a high-performance web server in Concurrent Haskell 363

see later). The programmer gets to write his/her application using the concurrency

primitives provided by the language, and the user-space threads implementation will

provide the low-level time-sharing and I/O multiplexing support. Several implemen-

tations of user-space POSIX threads exist for Unix.

Concurrent Haskell (or at least the implementation in GHC) is also an instance of

this model; the Haskell runtime system runs in a single operating system process and

multiplexes many Haskell threads. To support multiple Haskell threads performing

I/O simultaneously, the runtime system may choose between the I/O multiplexing

options described in the previous section. However this is implemented, the choice

is invisible to the programmer.

The characteristics of this model combine the performance of the monolithic

process model with the programming model of your chosen threading library. The

concurrency is lightweight, and the programmer doesn’t need to be concerned with

the details of I/O multiplexing. There is one disadvantage, though: a user-space

threads package will not normally be able to take advantage of multiple processors

on the host machine. The GHC development team are currently working on an

implementation of Concurrent Haskell that does not suffer from this deficiency, by

using a small number of operating-system threads to share the load.

3 Implementing a web server in Haskell

A web server can be thought of as two components: an implementation of the

HTTP protocol, and a top-level loop that continually accepts new connections and

initiates new transactions. In this section we describe the structure of the Haskell

implementation of the web server including code snippets from the implementation,

beginning with the top-level loop and then going on to describe the implementation

of the HTTP protocol.

3.1 The main loop

We will write the code to use GHC’s networking library, Socket, which provides an

interface similar to the traditional socket API present on most operating systems.

The functions we need to know about are:

listenOn :: PortId -> IO Socket

accept :: Socket -> IO (Handle, HostAddress)

The general pattern followed by a server application is to open a listening socket

using listenOn, which returns an abstract value of type Socket. We can wait for

a new connection request on this socket using the accept function; accept waits

until a connection request is received, then returns a Handle for communication

with the remote host (a normal Haskell read/write handle), and the address of the

remote host.

https://doi.org/10.1017/S095679680200432X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200432X


364 S. Marlow

Here is the main loop of the web server:

acceptConnections :: Config -> Socket -> IO ()

acceptConnections conf sock = do

(handle, host_addr) <- accept sock

forkIO (catch

(talk conf handle host_addr ‘finally‘ hClose handle)

(\e -> logError e)

)

acceptConnections conf sock

acceptConnections takes a server configuration of type Config and a listening

socket, and calls accept to wait for a new connection request on the socket. When

a connection request is received, a new worker thread is forked using forkIO, and

the main loop goes back to waiting for connections.

The worker thread calls talk (the definition of talk is given in the next section),

which is the main function for communicating in HTTP with a client. The interesting

part here is what happens if an exception is raised during talk. The finally

combinator allows strict sequencing to be specified, independent of exceptions:

finally :: IO a -> IO b -> IO a

This combinator behaves much like finally in Java. It performs its first argument,

then performs its second argument (even if the first argument raised an exception),

then returns the value of the first argument (or re-raises the exception).

In the main loop above, we are using finally to ensure that the socket to the

client is properly closed down if we encounter an error of any kind, including a

bug in our code. Although the Haskell runtime system will automatically close files

which are determined to be unused, it is beneficial to close them down as early as

possible in order to free up the resources associated with the file.

The call to talk is also enclosed in a catch combinator:

catch :: IO a -> (Exception -> IO a) -> IO a

This combinator performs its first argument, and if an exception is raised, passes

it to the second argument (the exception handler), otherwise it returns the result.

In contrast to finally, catch specifies an action to be performed only when an

exception is raised, whereas finally specifies an action which is always to be

executed.

The code for acceptConnections uses catch to catch any errors and log them

to the error log file, which we describe in section 5.

3.2 HTTP protocol implementation

The HTTP protocol is essentially transaction-based. The client first opens a con-

nection to the server and sends a request message. The server interprets the request

and, if the request refers to a valid document on the server, replies to the client

sending it the contents of the document. In early versions of the HTTP protocol,

https://doi.org/10.1017/S095679680200432X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200432X


Developing a high-performance web server in Concurrent Haskell 365

the connection between client and server would be closed at this point, requiring

the client to open a new connection for each document request. The latest revision

of the HTTP protocol allows the connection to remain open for further transfers

(known as a keep-alive connection).

So, serving a request is a simple pipeline:

1. read the request from the socket,

2. parse the request,

3. generate the response,

4. send the response back to the client,

5. if the connection is to be kept alive, return to step 1.

Reading the request from the socket is performed by getRequest:

getRequest :: Handle -> IO [String]

which takes the file handle representing the socket on which communication with

the client is taking place, and returns a list of strings, each one being a single line

of the request. A typical request looks something like this:

GET /index.html HTTP/1.1

Host: www.haskell.org

Date: Wed May 31 11:08:40 GMT 2000

The first line gives the command (GET in this case), the name of the object requested,

and the version of the HTTP protocol being used by the client. Subsequent lines,

termed headers, give additional information, and are mostly optional. The server is

required to ignore any headers it does not understand.

The next stage is to parse the request into a Request:

data Request = Request {

reqCmd :: RequestCmd,

reqURI :: ReqURI,

reqHTTPVer :: HTTPVersion,

reqHeaders :: [RequestHeader]

}

The Request record contains elements for the command name (GET in the above

example), the requested URI1, the HTTP protocol version being used by the client,

and a list of optional headers. The server is required to interpret requests differently

depending on the protocol version being used by the client, although it can respond

using its native protocol version; the protocol is designed to be upwards-compatible.

Requests are parsed by parseRequest:

parseRequest :: Config -> [String] -> Either Response Request

1 Universal Resource Indicator, a more general form of URL.

https://doi.org/10.1017/S095679680200432X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200432X


366 S. Marlow

Note that parsing the request may return a response: this indicates failure, and

the response will in most cases be a “Bad Request” response, but may be something

more specific.

Next, we generate the response:

data Response = Response {

respCode :: Int,

respHeaders :: [ResponseHeader],

respCoding :: [TransferCoding],

respBody :: ResponseBody,

respSendBody :: Bool

}

data ResponseBody

= NoBody

| FileBody Integer{-size-} FilePath

| HTMLBody HTML

genResponse :: Config -> Request -> IO Response

genResponse performs a number of checks on the validity of the request, and

generates an appropriate response. A valid GET request will result in a response with

a FileBody. An invalid request will result in an error response of some description,

with some automatically generated HTML describing the error, in an HTMLBody.

If we later extend the server to support dynamically generated pages for example,

then the ResponseBody datatype could be extended with further constructors for

different types of content.

In the common case where the response body consists of an entire file verbatim,

the respBody component of the Response structure doesn’t contain the entire file

body as a string, rather it contains just the path to the file. This is so that we can

use more efficient methods for sending the file to the client than simply converting

the contents to and from a String.

The final step is to send the response to the client:

sendResponse :: Config -> Handle -> Response -> IO ()

Pulling all this together, the top-level talk function looks like this:

talk :: Config -> Handle -> HostAddress -> IO ()

talk conf handle host_addr

= do strs <- getRequest handle

case parseRequest strs of

Left resp -> sendResponse conf handle resp

Right req -> do

resp <- genResponse conf req

sendResponse conf handle resp

logAccess req resp host_addr

https://doi.org/10.1017/S095679680200432X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200432X


Developing a high-performance web server in Concurrent Haskell 367

if (isKeepAlive req)

then talk conf handle haddr

else return ()

In reality, there is some extra code to deal with catching and logging of errors

(section 5.1) and timeouts (section 4) in there too.

The call to logAccess causes an entry to be written to the log file describing the

transaction (see section 5). The real implementation also takes timestamps before

and after the transaction, and passes the time difference to logAccess (timing

facilities are available from the standard Haskell Time library).

4 Timeouts

A web server needs some form of timeout mechanism, so that clients which hang

or take an inordinately long time to respond can be disconnected, and the resources

associated with the connection freed back to the system.

We need a generic time-out combinator, with the following type:

timeout :: Int -- timeout in seconds

-> IO a -- action to run

-> IO a -- action to run on timeout

-> IO a

The application timeout t a b should behave as follows: a is run until it either

completes, or t seconds passes. If it completes in time t, timeout returns the result

immediately, otherwise a is terminated with an exception and b is executed. If a (or

b, in the case of a timeout) raises an exception, then the exception will be propagated

by timeout. The timeout function has no other side effects, so timeouts can be

nested arbitrarily.

Thanks to asynchronous exceptions (Marlow et al., 2001), we can implement

a timeout combinator with the above properties. Note that because the action

a can be terminated with an asynchronous exception at any time, it should be

exception safe, that is it must be sure not to leave any mutable data structures in

an inconsistent state or leak any resources. In fact, all our code should be written

to be exception-safe, because exceptions like stack overflow and heap overflow are

delivered asynchronously.

There are two primitives which are important when writing exception-safe code:

block :: IO a -> IO a

unblock :: IO a -> IO a

where block a executes a with asynchronous exceptions blocked, that is any thread

wishing to raise an asynchronous exception in the current thread must wait until

exceptions are unblocked again. Similarly, unblock a unblocks asynchronous ex-

ceptions during the execution of a. Applications of block and unblock can be

arbitrarily nested. Here’s an example of acquiring a lock, where the lock is repre-

sented by an MVar, m, such that the lock will always be released safely if we receive

an exception:

https://doi.org/10.1017/S095679680200432X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200432X


368 S. Marlow

block (do a <- takeMVar m

unblock (...)

‘catch‘ (\e -> do putMVar m a; throw e)

putMVar m a

)

Use of combinators such as finally (described in the previous section), and

bracket:

bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c

are also helpful in writing exception-safe code. For example, a simpler way of writing

the above locking sequence is

bracket (takeMVar m) (putMVar m) (...)

The full story on asynchronous exceptions in Haskell, including the implementa-

tions of the timeout, finally and bracket combinators above, can be found in

(Marlow et al., 2001).

5 Logging

A web server normally produces log files listing all the requests made and certain

information about the response sent by the server. Each entry in the log normally

records

• the time the request was received,

• the requestor’s address,

• the URL requested,

• the response code (either success or some kind of failure),

• the number of bytes transfered,

• the time taken for the request to complete,

• the client software’s type & version,

• the referring URL.

The format of log entries is configurable, and may include other fields from the

request or response. There exist standard log entry formats produced by the popular

servers, and software available which processes the log files to produce reports.

For this reason, we decided that the Haskell web server should be able to produce

compatible logs.

A worker thread causes a log entry to be recorded by calling the function

logAccess:

logAccess :: Request -> Response -> HostAddress -> TimeDiff -> IO ()

passing the request, the response, the address of the client and the time difference

between the request being received and completion of the response.

The actual generation of the log entries and writing of log entries to the file is done

by a separate thread2. Worker threads communicate with the logging subsystem via

2 Or threads, if resources are abundant!

https://doi.org/10.1017/S095679680200432X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200432X


Developing a high-performance web server in Concurrent Haskell 369

a global unbounded channel, by calling logAccess. The logging thread removes

items from the channel and manufactures log entries which are then written to a log

file.

Placing the logging in a separate thread is a good idea for several reasons:

• It helps reduce the total load on the system, because the worker threads can

finish, and hence be garbage collected, before the log entry has been written.

• It means that a thread serving multiple requests can proceed immediately with

the next request without waiting for the log entry of the first request to be

written.

• The logging thread can batch multiple requests and write them out in one go,

which is likely to be more efficient than writing them one at a time.

The logging thread is designed to be fault tolerant: if it receives an exception

of any kind, it attempts to restart itself by re-opening the log file for writing, and

continuing with the next log request. This behaviour is (ab)used by the main loop,

which needs to restart the logging thread whenever it receives a request to re-read

its configuration file.

5.1 Error logging

Logging of server errors is handled in a similar way to logging of requests. A

separate thread writes log entries to an error log file, taking log requests from a

global channel. Exception handlers are scattered around the main request/response

handling code, which catch exceptions and log them with an informative message

indicating where the error occurred, before passing the exception on to be handled

at the top level.

The error logging thread also restarts itself if it receives an exception (and logs

this event to the log file).

5.2 Global variables

In the above description of the logging threads, we mentioned that communication

between a worker thread and a logging thread was via a “global channel”. How does

one define a global channel in Haskell? This is one instance of a global mutable

variable, a concept famililar to those who program in imperative languages, but

until recently not available to Haskell programmers.

Global variables let you avoid the loss of modularity (and performance) that

results from passing around extra parameters that are rarely needed. A cleaner

alternative to using global variables would be to use implicit parameters (Lewis

et al., 2000), although implicit parameters still carry the performance cost of passing

the additional parameters around.

A global MVar can be defined in Haskell as:

global_mvar :: MVar String

global_mvar = unsafePerformIO newEmptyMVar

https://doi.org/10.1017/S095679680200432X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200432X


370 S. Marlow

Although we have declared global_mvar using unsafePerformIO, the declaration

is normally perfectly safe (however, see later for caveats). We still access the MVar

using the standard putMVar and takeMVar operations.

One can think of the newEmptyMVar as being executed at program initialisation

time, but in fact it doesn’t matter when the action is executed, as long as it happens

before global_mvar is first accessed. In fact, the action will most probably happen

lazilly, being deferred until the first time global_mvar is demanded.

Global mutable objects are particularly useful when a single instance of a mutable

variable is required, since they avoid the need to pass the object around explicitly.

However, there are a few points to bear in mind:

• This use of unsafePerformIO is strictly speaking unsafe, because the program

now behaves differently if occurrences of global_mvar are replaced with their

values, namely (unsafePerformIO newEmptyMVar). To stop this happening,

we have to circumvent any optimisations in the compiler which may replace

global_var with its value. In GHC, this amounts to adding the pragma

{-# NoInline global_mvar #-}

somewhere in the source code.

This stops the variable from being unshared, but the compiler may also decide

to increase sharing by commoning up several global variable declarations with

the same definitions (which is perfectly legal, of course). In GHC, we also have

to disable this optimisation when compiling code with global variables.

• Care must be taken to give a type signature for the global variable and

not to declare global mutable variables with polymorphically-typed contents.

Type safety is in danger if this rule is broken, because the contents of a

polymorphically-typed variable could be extracted and used at any type (this

problem is described in more detail in Launchbury et al. (1999)).

• In a concurrent program, it is important to use MVars instead of just IORefs

when multiple threads may have access to the variable (an IORef is a plain

mutable variable, whereas an MVar adds synchronisation).

If we observe these rules, however, global mutable variables are a useful concept.

We use global mutable variables in the web server in the following places:

• To store the channels by which the worker threads can communicate with the

logging threads.

• To store the ThreadIds of the logging threads, so that the main thread can

send them an exception to restart them.

• To store the command line options. The program is only started once, so this

is a write-once mutable variable. Write-once mutable variables can semi-safely

be read from pure, non-IO, code: if the initial value given to the mutable

variable is ⊥, then the program will fail immediately if it tries to access the

variable before its value has been written.

https://doi.org/10.1017/S095679680200432X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200432X


Developing a high-performance web server in Concurrent Haskell 371

6 Run-time configuration

Our web server is configured by editing a text file, in a similar way to other popular

web servers. The syntax of the configuration file is similar to that of Apache’s. When

the server starts up, it parses the configuration file, and if there are no errors found,

immediately starts serving requests.

In the interests of high availability, a web server should be run-time configurable.

For example, when new content is placed on the server, the administrator somehow

needs to inform the server that the new content is available and where to find it. It

is occasionally necessary to change certain options, or tweak security settings, on a

running server.

To take the server down and restart it with the new configuration would be

unsatisfactory, because the site would be off-line during the restart. So a running

server should be able to re-read its configuration file without interrupting operations.

But what about transactions that are already in progress? Should they see the new

configuration immediately?

In our server, we take the approach that the new configuration should only take

effect for new connections, and existing connections should be allowed to continue

using the old settings. This approach avoids a number of problems with changing

configuration settings while a request is in progress: for example, if the security

settings are changed such that a file being transmitted is no longer available to

the client that requested it, should the transfer be terminated? We don’t attempt to

tackle this problem; our implementation requires you to restart the server if security

settings change and/or existing connections need to be terminated.

Implementing run-time configuration updates in the Haskell web server turned out

to be straightforward: as we’ve already seen, the key functions in the inner pipeline

all take an argument of type Config, which contains the current configuration.

The configuration is passed into the worker thread when it is created, so when the

configuration changes all we need to do is ensure that any new threads receive the

new configuration.

The approach we took is to send the main thread an asynchronous exception

when it should re-read the configuration file. This gives us the option of having

several ways to force a configuration change:

• A signal on Unix-like operating systems. This is the traditional way to kick

a process into re-reading its configuration file, and consists of sending the

process a signal from the command line. This method is implemented in our

web server as follows: the incoming signal causes a new thread to start, which

immediately sends an exception to the main thread. The main thread catches

the signal and re-reads the configuration file.

• Implementing a proprietary HTTP command, which the administrator can use

to re-configure the server on-line and remotely. Secure authorisation would

certainly be needed if this method were to be used.

• Any other type of inter-process communication provided by the host operating

system.

https://doi.org/10.1017/S095679680200432X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200432X


372 S. Marlow

7 Performance results

In this section we present our preliminary performance results for the Haskell web

server.

7.1 Performance tweaks

We made several tweaks to the initial implementation of the server to remove some

of the larger performance bottlenecks.

• We replaced the naive file transfer code which used getContents and hPutStr,

with a version which does I/O directly to and from an array of bytes. GHC’s

IOExts library provides simple primitives for doing this.

• By default, GHC’s scheduler context switches about 5000 times/sec. We re-

duced this to something more reasonable, 50 times/sec, which made a sub-

stantial difference to the results. The reason is that GHC’s scheduler currently

does a select on every context switch to determine which I/O bound threads

can be woken up. As discussed in Section 2, select is O(n), so reducing the

number of times we do it is a win when the system becomes heavily loaded.

• Tweaking the garbage collection settings had some effect, in particular increas-

ing the allocation area size. GHC by default increases its heap usage in line

with the program’s demands, but giving the program more memory from the

outset is usually a win, and was in this case.

• Reading a request turned out to be expensive, due to an inefficient, non-tail-

recursive, implementation of hGetLine in GHC’s I/O library. Rewriting this

function improved performance by 10% or so.

• GHC’s I/O library uses a system of finalizers to ensure that the buffers and

other resources associated with a file descriptor are freed when the program

releases the file handle. Finalizers are normally run in a thread by themselves,

but this turned out to be expensive for the web server, since most connections

give rise to two finalizers: one for the handle to the socket itself, and one

for the file being transfered. We changed the finalisation mechanism to batch

finalizers in a single thread after each garbage collection, which led to a small

overall performance improvement.

Note that only one of these tweaks, namely the optimisation of the file transfer

code, was made to the web server code itself, the rest were tweaks to GHC’s runtime

system and libraries. Indeed, the web server has been a useful source of insight into

performance bottlenecks in GHC’s concurrency and I/O support.

7.2 Connection latency

These measurements were made using httperf (Mosberger & Jin, n.d.), a tool

which can be used for generating requests at a specific rate. It is used primarily

for determining the rate of connection requests a web server can sustain before

performance starts to drop off.

https://doi.org/10.1017/S095679680200432X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200432X


Developing a high-performance web server in Concurrent Haskell 373

200

300

400

500

600

700

800

900

1000

300 400 500 600 700 800 900 1000 1100

R
ep

ly
 r

at
e 

(1
/s

)

Request rate (1/s)

"Apache"
"Haskell Web Server"

Fig. 1. Connection latency results.

In this test, the server machine was a single-processor PII/450 running Linux 2.2.

The client was a separate machine on a local 100Mbit ethernet connection. The total

number of requests sent was 4000 in each test. All the requests were for the same

1k file. The timeout on the client was set at 1 second.

A graph of reply rate against requests issued per second is given in figure 1. This

shows clearly how the server keeps up with the client until the request rate rises

above the rate that the server can handle without accumulating a backlog (about

710 requests/second), at which point performance begins to decrease sharply. Why

does performance decrease so dramatically? Two possible factors are:

• As connections in progress accumulate on the server, the O(n) behaviour of

select() as used by GHC’s scheduler comes into play.

• As the number of threads in the system increases, thus the cost of garbage

collection also increases. Garbage collection is necessarily O(n) in the number

of live threads, since it must traverse the active thread queues to determine

which threads are live.

The server does not currently limit the number of connections in progress, and in

fact at a rate of 850 connections/sec the number of concurrent connections observed

on the server peaked at over 700 during the test. Setting a limit on the number of

concurrent connections would help to flatten the graph after the drop-off point.

On the same hardware, Apache (the most commonly used web server software)

tops out at 950 requests/sec, and the drop-off is just as sharp. One way to flatten

out the drop-off is to limit the number of active connections that the server can

process, and to stop listening for new connections when the limit is reached. Apache

uses this technique but sets the limit high by default.

To put these figures into perspective, the most heavily loaded web servers on

https://doi.org/10.1017/S095679680200432X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200432X


374 S. Marlow

the net (eg. http://www.yahoo.com/) take an average of about 5000 hits/sec,

with peaks of probably 10000 hits/second. These sites use collections of identically

configured servers with a load-balancing arrangement to spread the requests between

the available machines.

However, for most sites on the net the performance turned in by our Haskell

Web Server is more than adequate, and there are still plenty of opportunities for

improvement: we have not really made any attempt to optimise the code of the

server itself, beyond fixing the slow file transfer.

8 Conclusions

The primary result presented here is that we constructed a web server in Haskell

which conforms to the HTTP/1.1 standard (and more) in less than 1500 lines of

Haskell (not including library code), and the resulting server performs admirably in

real-world conditions. Furthermore, it is fault-tolerant and runs in a constant, and

small, amount of memory over a sustained period.

In order to achieve this, we had to make use of a number of extensions to

Haskell, the main ones being concurrency and exceptions. We also made use of

a large amount of library code, all of which is part of GHC’s library collection.

The libraries we used include a networking library, a parsing combinator library, an

HTML generation library and a POSIX interface library.

References

Launchbury, J., Lewis, J. and Cook, B. (1999) On embedding a microarchitectural design lan-

guage within Haskell. ACM SIGPLAN International Conference on Functional Programming

(ICFP’99), pp. 60–69. ACM Press.

Lewis, J., Shields, M., Meijer, E. and Launchbury, J. (2000) Implicit parameters: Dynamic

scoping with static types. 27th Annual ACM SIGPLAN–SIGACT Symposium on Principles

of Programming Languages (POPL’00).

Marlow, S., Peyton Jones, S., Moran, A. and Reppy, J. (2001) Asynchronous exceptions in

Haskell. ACM SIGPLAN Conference on Programming Language Design and Implementation.

Mosberger, D. and Jin, T. (n.d.) httperf – a tool for measuring web server performance.

http://www.hpl.hp.com/personal/David Mosberger/httperf.html. Hewlett-Packard

Research Labs.

Peyton Jones, S. L., Gordon, A. D. and Finne, S. (1996) Concurrent Haskell. Proc. POPL’96,

pp. 295–308. ACM Press.

Peyton Jones, S. L., Reid, A., Hoare, T., Marlow, S. and Henderson, F. (1999) A semantics for

imprecise exceptions. Proc. PLDI’99, pp. 25–36. (ACM SIGPLAN Notices, 34(5).)

https://doi.org/10.1017/S095679680200432X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200432X

