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Abstract

Introduction of African swine fever (ASF) to China in mid-2018 and the subsequent trans-
boundary spread across Asia devastated regional swine production, affecting live pig and pork
product-related markets worldwide. To explore the spatiotemporal spread of ASF in China, we
reconstructed possible ASF transmission networks using nearest neighbour, exponential func-
tion, equal probability, and spatiotemporal case-distribution algorithms. From these networks,
we estimated the reproduction numbers, serial intervals, and transmission distances of the
outbreak. The mean serial interval between paired units was around 29 days for all algorithms,
while the mean transmission distance ranged 332 –456 km. The reproduction numbers for each
algorithm peaked during the first twoweeks and steadily declined through the end of 2018 before
hovering around the epidemic threshold value of 1 with sporadic increases during 2019. These
results suggest that 1) swine husbandry practices and production systems that lend themselves to
long-range transmission drove ASF spread; 2) outbreaks went undetected by the surveillance
system. Efforts by China and other affected countries to control ASF within their jurisdictions
may be aided by the reconstructed spatiotemporal model. Continued support for strict imple-
mentation of biosecurity standards and improvements to ASF surveillance is essential for halting
transmission in China and spread across Asia.

Introduction

African swine fever (ASF) is a highly contagious and fatal disease of domestic pigs and wild boars
(Sus scrofa spp.) that recently emerged inAsia. First described in Kenya in 1921 [1], ASF spread to
countries in Western Europe during the mid-1950s but was painstakingly eliminated across the
region with the exception of the island of Sardinia. ASF thenmade its way into Eastern Europe in
2007 via Georgia [2] before appearing in China in mid-2018, after which it infiltrated nearby
Asian countries over the course of 2019 [3]. It is unclear how ASF entered China, but the
circulating strain was genetically similar to the virulent strain of genotype II found inGeorgia and
Russia [4, 5]. Although the ASF virus (ASFV) does not infect humans, control of its spread is of
immense international concern as domestic pigs are a valuable source of food and other
commodities. Pork products account for 37% of global meat consumption [6], and products
derived from pig parts are widely used in household and industrial applications, as well as for
lifesaving medical treatments [7]. Currently, there are no treatments or effective vaccines
available to combat ASF.

Nearly 100% fatality of infected pigs has resulted in biosecurity measures that include the
immediate culling of all pigs at sites where ASFV is detected, as well as blanket depopulation
within 3-km epidemic zones around infected units (e.g. farms, backyards). Following such
measures, Chinese authorities reported culling around 1.2 million pigs between August 2018
and June 2019, and it was reported that in August 2019, there was a 37.9% decrease in the number
of live pigs in China compared to the same time the previous year [3]. Unfortunately, the
multifactorial nature of ASF transmission precludes culling alone from halting disease spread.

For the most part, ASF transmission between swine occurs through direct contact or aerosol
routes, but the virus can also be transmitted via arthropod vectors, fomites, or consumption of
infected pork-related products – typically through the practice of feeding pigs raw swill, which is
food scraps or food waste that contains or has come into contact with meat or meat products
[8]. Indeed, early epidemiological studies found that the spread of ASFV in China was associated
with biosecurity breaches such as raw swill feeding, improper disposal of dead animals, contam-
inated vehicles and workers, and transport of live pigs and their products across regions [9,
10]. Armed with this knowledge, China banned the use of nonheated swill, disallowed swill
feeding in provinces with ongoing outbreaks, set up inspection and disinfection stations to
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control farm traffic within 10-km buffer zones around the epidemic
zones, limited the transportation of live pigs, closed and disinfected
slaughterhouses in provinces with reported outbreaks, and closed
live pig markets in affected and adjacent provinces [10, 11].

Identification of outbreak transmission events and development
of effective control programmes remain works in progress for
affected countries [8, 12], though it may be possible to develop
more effective control programmes by re-evaluating the spatiotem-
poral configuration and directionality of transmission for poten-
tially linked outbreaks. Although infector–infectee relationships
between outbreaks are largely unestablished, it is possible to iden-
tify likely infector–infectee pairings between outbreaks by recon-
structing transmission networks using temporal and spatial data
outbreak data reported by China to the World Organization for
Animal Health (WOAH). These data can also be used to quantify
the transmissibility of ASF spread by calculating the reproduction
number (R), which represents the average number of secondary
infections caused by a single, primary infection. When R is
< 1, transmission is reduced and the number of infections decreases
with each generation. Previous between-unit estimates of R during
ASF outbreaks ranged from 2–3 between farms in Russia [13] to
1.6–3.2 between pig herds in Uganda [14].

In this study, we quantified factors of ASF transmission and
surveillance over the course of the epidemic in China. First, we
estimated the reporting delay – an indicator of how fast the out-
breaks are being recognized by the authorities – and outbreak
length – an indicator of how effectively each outbreak is managed.
Next, we implemented four algorithms to reconstruct possible
transmission networks and characterize the dynamics of ASF
spread in China. This allowed us to examine changes in the ASF
reproduction number over time as well as calculate the mean
transmission distance and serial intervals (time between illness
onset for pigs in infector–infectee paired units) of ASF in China.
We restricted our analysis to the time period from the first report of
ASF in China in August 2018 to September 2019. The latter date
indicated the time when the data reporting became scarce. During
the COVID-19 outbreaks and lockdowns of 2020–2023, the occur-
rence of ASF cases in China was greatly affected; for example,
vehicle and person movement were severely restricted [15]. As of
mid-2023, the real scale of ASF spread in China and Southeast
Asian Region remains largely uncertain [16].

Methods

Epidemiological data

The data set of all ASFV-infected units was aggregated from pub-
licly available immediate notifications and follow-up reports sub-
mitted by the Ministry of Agriculture and Rural Affairs of the
People’s Republic of China (MARA) [17] to WOAH beginning in
August 2018 and published in the World Animal Health Informa-
tion System (WAHIS) [18]. AnASF outbreak was defined as at least
one pig infected with ASFV within a single unit – either a farm,
backyard, slaughterhouse, or village. In China, the detection of ASF
triggers the establishment of an epidemic zone with a radius of 3 km
around the infected unit within which all pigs are culled and
entrance of live pigs is restricted by blockade. A 10-km buffer zone
is also established, in which inspection and disinfection stations are
set up to control traffic to and from the infected unit. Infected
slaughterhouses were shut down and decontaminated, and MARA
then tasked slaughterhouses with conducting self-inspection using
laboratory tests [19]. Live pig tradingmarkets in affected areas were

closed. Outbreaks related to infected units were declared over when
there were no new infections within the epidemic zone for 6 weeks
[20]. End-of-outbreak information was not retrospectively updated
in the WAHIS reports, so we supplemented the data with dates
retrieved from official announcements by MARA. If the dates
obtained fromWAHIS and MARA for the same outbreak differed,
we used the earlier date. To assess the spatial correlation between
the density of live pigs and the location of infected units, we used
values of the global livestock population predicted by the Gridded
Livestock of the World (GLW v3) system of the Food and Agricul-
ture Organization (FAO) of the United Nations [21].

A total of 155 outbreaks were reported between 4 August 2018
and 9 September 2019, of which 152 were outbreaks among domes-
tic pigs, two were outbreaks on wild boar farms inHeilongjiang and
Inner Mongolia, and one was a report of a sole infected wild boar in
Jilin Province. The wild boar was excluded from our analyses. We
also disregarded six outbreaks reported inMarch, June, and August
2019 linked to the interception of transport vehicles carrying
infected pigs. In the first two reports, transport trailers carrying
150 pigs (9 dead) and 32 pigs (1 dead) were intercepted at highway
checkpoints for animal health supervision in Sichuan and Guizhou
provinces and the origin of these pigs was uncertain [22]. Swine in
the other four outbreaks in late August 2018 similarly had unknown
origin. The exclusion of these reports resulted in a total of 148 out-
breaks included for analysis.

Reporting delay

Wedefined reporting delay as the time between the date of outbreak
start and the date of outbreak notification to WOAH. Among the
148 outbreaks, only 135 included both the start and notification
dates. We right-censored the records with an unspecified report
date and assumed that the reporting date could be any time between
one day after the start of the outbreak and the date of release of the
report by WOAH. We estimated the distribution of the reporting
delay using a discretized probability distribution derived from the
cumulative distribution functions H t;αð Þ of single gamma, log-
normal, and Weibull distributions, and their mixtures. The prob-
ability an infected unit was reported at time t after infection is
detected is modelled by ht,α¼H tþ1;αð Þ�H t;αð Þ.The parameter
α represents a vector of the means and standard deviation (SD) of
the distributions. In case of a mixture, the function ht,α is decom-
posed into two discretized probability distributions as follows:
ht,α¼ ρht,α1 þ 1�ρð Þht,α2 , where ρ is the relative weight of the first
distribution over the second ( 0 < ρ < 1Þ ; α¼ α1,α2,ρf g , αi¼
μi,σif g consists of the mean ( μi) and SD ( σi) of the probability
mass function ht,αi ði¼ 1,2Þ.

Reconstruction of probable transmission networks

We employed three transmission kernels f following nearest neigh-
bour, exponential function, and equal probability algorithms [23–25]
to reconstruct probable transmission networks of ASF in China. For
each algorithm, f is dependent solely on the distance between paired
units. For the nearest neighbour kernel, the unit closest to the infectee
was selected as the infector. In contrast, the exponential and equal
probability kernels have an exact functional form, such that the
exponential kernel f i, j;d

� �¼ exp �dij=d
� �

, where d is the scale of
the effective transmission distance, and the equal probability kernel
f i, j;rð Þ¼ 1 if dij <�r and is 0 otherwise. The two kernels will produce
an identical transmission network if d,r!þ∞ . For the equal
probability algorithm, we set the probability of transmission as
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equally likely within a given radius r and zero otherwise. In
our simulations, we set r¼ 3d , which is also approximately equal
to the 95th percentile of the exponential kernel function. All algo-
rithms restricted unit linkage to infector and infectee pairings where
the estimated serial interval was longer than the ASF incubation
period based on a gamma distribution with a mean of 6.3 days and
an SD of 1.3 days [26].

Next, we assigned weights wij to each potential infector i and
infectee j pairing. The value for each weight was set to the
respective value of the kernel function f i, jj∘ð Þunless the following
two conditions were violated: (i) the outbreak began at the infectee
location later than it began at the infector location plus the
estimated incubation period for ASF and (ii) the outbreak began
earlier than it ended at the infector location minus the incubation
period. Otherwise, the weight wij was set to zero. The incubation
period distribution was given as a gamma distribution with a
mean of 6.3 days and an SD of 1.3 days [26]. Imputed outbreak
end dates ðn¼ 2, as in Figure 1b) were drawn from a gamma

distribution of all known outbreak start to end time intervals.
Implementation of these two uncertainties resulted in a probabil-
istic non-uniqueness of the transmission network even when the
linkage of an infector and an infectee was established using the
nearest neighbour algorithm.

The transmission probabilities pij for each infectee were set by
normalizing the weights for all potential infectors as follows:
pij¼wij=

P
i¼1…Nwij, j¼ 1…N . The infectee is linked to a single

infector by sampling from the categorical distribution:

i j�Categorical p¼ p∘j

n o
; j¼ 1…N

� �
:

When pij� 0, the linkage of infectee to infector does not occur
(e.g. the index outbreak).

We then estimated the mean transmission distance based on
the methods developed by Salje et al. [27], which extends the
temporal framework developed by Wallinga and Teunis [28] to
include a spatial dimension. The temporal dimension is governed

Figure 1. Characteristics of African swine fever (ASF)-infected farms in China from July 2018 to May 2019. (a) Weekly number of reported outbreaks by outbreak start and end dates
for the six regions in China. (b) Time interval between the outbreak start and end dates by date of outbreak start. The point colours represent the region inwhich each infected unit is
located, consistent with colours in (a). Points within the horizontal grey bar are unresolved cases. Inset in (b): The right-hand vertical linewith grey shading indicates the distribution
of the time interval and 95% credible intervals, respectively. The scale is not shown, but the area under the curve is equal to 1. (c) Geographical distribution and outbreak start date
of ASF-infected farms. Point colours indicate the start date of outbreak in each infected unit. (d) Pig density and geographical location of ASF-infected unit. Point colours indicate the
start date of outbreak and blue shade presents the density of lived pigs in China, as reported by the Food and Agriculture Organization (FAO).
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by the generation time distribution, and the spatial dimension is
characterized by a transmission kernel distribution, which
describes the probability of observing two cases at a given dis-
tance. The generation time distribution was estimated separately
using the data from previously documented ASF outbreaks [29,
30] by implementing a multi-generational framework [31–33]
(Supplementary material S1).

We used a probability generation function gðt;θgÞ, where the
parameter set θg ¼ μg ,σg

n o
consists of the mean μg and SD σg to

describe the generation time distribution. The distribution was
discretized by day following the form of Gðt;θgÞ¼

R t
t�1gðτ;θgÞdτ

( t¼ 1,2,…). Next, we defined aWallinga–Teunis matrix W, where
rows represent infectees iand columns represent potential infectors
j. Each element of the matrix is a probability of transmission
between i and j of

W ¼ Gðti� tj;θgÞP
k
Gðti� tk;θgÞ ;1≤ i, j≤N

8><
>:

9>=
>;
:

The infectee–infector pairings i, jð Þwere identified using sampling
from a categorical distribution respective to the rows of the Wall-
inga–Teunis matrix: W ∘j; j¼ 1,…,N

� �
. If all elements in a row of

thematrix W appeared to be zero, the case was left unpaired (e.g. the
index outbreak).

We then used categorical sampling to construct the transmis-
sion network N: For any pair of nodes i and j, we determined a set
of network paths connecting them and recorded the number of
links ζ ij in each path. This procedure was done repeatedly over a
large set of sampled transmission networks to form the set of counts
Ζij¼ ζ ij

� �
. We then defined π ζ ; i, jð Þ as the frequency of observing

the number of links ζ between i and j in a set Ζij and applied the
formula obtained by Salje et al. to estimate the mean transmission
distance by taking it as equal to the SD of the transmission kernel:

μd ¼ σd ¼ 1
NΣ

X
i,j

X
ζ ∈Zij

2dijffiffiffiffiffiffiffiffi
2πζ
p

πðζ ; i, jÞ :

Here, dij is the geographic distance between i and j and NΣ is the
total number of observed pairs i, jð Þ:

For validation, we performed numerical simulations to quan-
tify the effect of underascertainment on the estimated mean
transmission distance we calculated using the spatiotemporal
case-distribution method developed by Salje et al. [27]. In order
to do so, we used the Animal Disease Spread Model (ADSM) – a
stochastic, spatial, state-transition simulation model for the
spread of highly contagious diseases in animals [34]. We used a
sample population of pig farms provided by the developers for the
default setting: 461 units were distributed over a circular area with
a radius of 600 km. Themodel parameters were chosen to simulate
a situation close to a real spread of ASF. We set the incubation
period distribution to a gamma distribution with a mean of
6.3 days and an SD of 1.3 days [26]. The infectious period was
assigned to a gamma distribution with a mean of 9.15 days and an
SD of 1.92 days, but we approximated the generation time distri-
bution, defined as a convolution of the incubation period distri-
bution and infectiousness period distribution, using a gamma
distribution with the resulting mean of 9.45 days (95% credible
interval [CI]: 6.04–13.42 days) and SD of 2.30 days (95% CI: 1.23–
3.50 days). The direct (within-pen) and indirect (between-pen)
contact rates were set to 2.62 and 0.99, respectively [35]. As ASFV

is highly pathogenic, we set the probability of direct and indirect
successful transmission to be 1.0. ADSM only considers the air-
borne transmission of the virus, which we modelled using an
exponential decay function with an effective distance of 10 km.
No control measures were considered in the simulations, which
resulted in nearly 100% infection of the population.

Results

As of 9 September 2019, there were 148 outbreaks of ASF in China.
All provinces in mainland China experienced at least one outbreak
(Figure 1; Supplementary Figure S1). Outbreak units were classified
as farms, backyard farms, villages, or slaughterhouses. The size
of the pig population supported varied between and within
unit types (Supplementary Figure S2). We found no significant
correlation between outbreak start date and affected unit size
(Pearson’s r¼�0:044, N ¼ 147, P¼ 0:589) or type (ANOVA,
F 3,144ð Þ¼ 1:96, P¼ 0:123), nor between the fraction of infected
pigs and live pig density by province (Pearson’s r¼�0:15, N ¼
147, P¼ 0:406).

Reporting delay for the outbreaks had a mean of 7.6 weeks
(95% CI: 7.3–7.8) and an SD of 1.6 weeks (95% CI: 1.5–1.8 weeks)
(Figure 1b; Table 1). The distribution of the reporting delay
displayed a heavy tail and bimodality (Supplementary Figure
S3). We fit the reporting delay to a combination of lognormal
(for shorter reporting delays) and gamma (for longer reporting
delays) distributions, as this combination yielded the minimal
median Watanabe–Akaike information criterion (WAIC) value
(Table 2). The mean reporting delay assuming a shorter report-
ing delay (lognormal distribution) was 5.4 days (95% CI: 4.4–6.5
days) with an SD of 3.8 days (95% CI: 2.3–5.5 days), and the
mean reporting delay assuming a longer reporting delay (gamma
distribution) was 21.6 days (95% CI: 6.8–34.2 days) with an SD of
10.7 days (95% CI: 0–21.0 days). The mean reporting delay using
the combined lognormal and gamma distributions was 6.3 days
(95% CI: 5.5–7.2 days) with an SD of 5.3 days (95% CI: 4.1–6.7
days). There was no clear correlation found between reporting
delay and unit type (ANOVA, F 3,131ð Þ¼ 1:25, P¼ 0:293) or
unit size (Pearson’s r¼�0:04 , N ¼ 134 , P¼ 0:655)
(Supplementary Figure S2a,b).

Figure 2 shows the reconstructed transmission networks of
ASF spread among infected units using nearest neighbour, expo-
nential function, and equal probability algorithms, which rely on
knowledge of the geographic location of reported outbreaks – see
Methods section for details. We required that the time between
paired outbreak start dates was no shorter than the ASF incubation
period. The nearest neighbour algorithm yielded an estimated
mean transmission distance of 332 km (95% CI: 213–1548 km)
with a mean serial interval of 29.0 days (95% CI: 6–62 days)

Table 1. Fit of the time period between the start and the end of the outbreak
to different distributions

Distribution Mean, weeks SD, weeks WAIC

Gamma 7.6 (7.3–7.8) 1.6 (1.5–1.8) 565.5

Log-normal 8.1 (7.6–8.6) 3.1 (2.8–3.5) 618.0

Weibull 7.3 (6.9–7.6) 2.4 (2.2–2.6) 636.4

The mean and standard deviation (SD) of the probability mass function for each distribution
are compared by relative values of the Watanabe–Akaike information criterion (WAIC) with
95% credible intervals shown in brackets.
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between paired transmission events. The exponential function
algorithm yielded a mean transmission distance of 456 km (95%
CI: 22–1550 km) and a mean serial interval of 29.3 days (95% CI:
6–64 days) with the distance kernel set at d¼ 200 km. Due to the
time constraints we imposed (Section 2.3) or when the distance
between an infectee and a potential infector exceeded the minim-
ally allowed one, d , we were unable to link an average of eight
outbreaks (95% CI: 5–12) to any potential infector for these two
methods (Supplementary Figure S4a,b).

The equal probability algorithm yielded a mean transmission
distance of 344 km (95% CI: 23–595 km) and a mean serial interval
of 29.5 days (95% CI: 6–64 days) with the effective distance set at
600 km, which is the 95th percentile of the previous kernel function.
An average of 30 outbreaks (95% CI: 28–34; Supplementary Figure
S4c,d) could not be linked to any potential infector due to the
constraint on long-range transmission imposed by setting the
effective transmission distance at 600 km.We performed sensitivity
analyses for effective transmission distance used in the exponential
function and equal probability algorithms, but did not find that
either algorithm was sensitive to the value of the effective trans-
mission distance (Supplementary Figures S5, S6).

Our use of the spatiotemporal case-distribution algorithm
developed by Salje and colleagues [27] resulted in a mean trans-
mission distance of 483 km (95% CI: 449–503 km). A variation in
the mean (range 1–14 weeks) and SD (range 1–7 weeks) of the
generation time distribution led to the approximate range of the
mean transmission distance between 200 and 500 km (Figure 3).
The mean transmission distance tended to increase if either the
mean or SD of the generation time were increasing.

Additional numerical simulations of a virtual outbreak of ASF
using ADSM (see Methods section) revealed that the removal of a
fraction of reported cases with both temporal and spatial informa-
tion led to a substantial overestimation of the mean transmission
distance. A sample run over 129 days resulted in infection of
440 out of 461 virtual swine farms (Figure 4a,b). The estimated
mean transmission distance without any underascertainment was
58 km, thereby confirming that the removal of geographic infor-
mation for even a large fraction of cases does not affect the obtained
estimate [27] – see dashed orange in Figure 4c. However, we also
found that the complete removal of outbreaks from the data set
results (reflecting underascertainment of incidence of infection)
resulted in a substantial overestimation of the mean transmission
distance – see solid blue in Figure 4c. We thus argue that the
underascertainment of cases may significantly contribute to

the overestimation of the mean transmission distance when using
the spatiotemporal case-distribution algorithm developed by Salje
and colleagues.

Discussion

ASFV has remained in circulation in China years after it was first
detected. Our study used mathematical modelling to quantify ASF
transmission within China. Whereas various recent studies [36, 37]
primarily focused on assessing the spread of ASF in Europe, only
few addressed the spread in China [38]. However, the ASF spread in
China has increasingly been recognized to have global economic
consequences [39] and a better understanding of ASF transmission
dynamics, as investigated in the current study and other recent
publications [38, 40], is critical to the development of control
policies. We found that the median serial interval was approxi-
mately 29 days and the mean distance between suspected trans-
missions ranged from 332 to 456 km, reflecting the wide
temporospatial spread of the epidemic in China. These results
suggest that 1) swine husbandry practices and production systems
that lend themselves to long-range transmission drove ASF spread
and 2) outbreaks went undetected by the surveillance system.

The initial reduction of the ASF reproduction number below the
threshold value of 1 for our three geographically based algorithms
coincided with official reports of successful outbreak control meas-
ures in November 2018. However, persistent transmission led to
sporadic increases in the reproduction number later in 2019. The
swiftest decline in the reproduction number occurred following the
nearest neighbour algorithm, while the exponential and equal
probability models exhibited smoother, transient dynamics. Hav-
ing now been detected inmany countries in Asia, ASF has become a
critical international biosecurity concern and our estimates of the
weekly reproduction number, serial interval, and transmission
distance of ASF in China can help inform intervention and man-
agement strategies.

Outbreak underascertainment is themain limitation of our study.
It is plausible that ASF surveillance capacity in China was not
sensitive enough to detect all infections – particularly in smaller units
with lower biosecurity – leading to the underascertainment of out-
breaks and consequently underestimation of the reproduction num-
ber with the methods we used. Several other factors may contribute
to this situation, including the incentives of local authorities to
conceal ASF outbreaks in order to minimize reputational damage;
see pages 5-6 in [15].We suspect that the large estimates of themean

Table 2. Fit of the reporting delay to different distributions

Distribution μ1, days σ1, days μ2, days σ2,days ρ WAIC

Mixture of log-normal (1) and gamma (2) 5.5 3.9 22.1 10.9 0.91 793.8

(4.4–6.5) (2.4–5.5) (8.4–35.0) (0.1–21.7) (0.77–1.00)

Single log-normal 6.3 5.3 – – – 797.6

(5.5–7.2) (4.0–6.6)

Mixture of gamma (1) and log-normal (2) 4.4 3.0 11.1 9.8 0.49 799.1

(2.3–6.1) (0.1–6.3) (5.5–23.7) (4.0–20.7) (0.00–0.91)

Mixture of two gammas 4.9 2.8 18.7 10.8 0.85 799.4

(4.2–5.7) (2.0–3.5) (9.0–29.6) (5.3–18.3) (0.68–0.97)

Parameters μi and σi ði¼ 1,2Þ represent the mean and standard deviation of the probability mass function for each distribution of the reporting delay by distribution type, ρ is the weight
attributed to each configuration by the relative values of theWatanabe–Akaike information criterion (WAIC), and 95% credible intervals are shown in brackets. Although all possible combinations
of single gamma, log-normal, Weibull distributions, and their mixtures were considered, only the top four configurations with minimal WAIC values are shown here.
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Figure 2. Reconstructed transmission networks of African swine fever (ASF) outbreak from July 2018–September 2019 in China and estimates of reproduction number and serial
interval from reconstructed networks. Three transmission networks are reconstructed by using (a) nearest neighbour, (b) exponential function, and (c) equal probability algorithms,
analysing only outbreaks reported to theWorld Organization for Animal Health (WOAH). The dot and line colours in themap represent the start date of the outbreak in each infected
unit. Correlations between the serial interval and transmission distance are shown in the upper right side of each figure. The points indicate each ASF-infected farm and bars
represent the distribution of estimated distance and serial intervals, using the reconstructed transmission networks, respectively. The lines and shades in each of the figures on the
right show the estimated reproduction number and its 95% credible intervals by calendar week. The epidemic threshold ðR¼ 1) is represented with a dashed line.
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Figure 3. Mean transmission distance based on varying mean and standard deviation (SD) values of the serial interval distribution. Estimation relies on a generalized Wallinga–
Teunis method developed by Salje and et al. [27]. Both the spatial transmission kernel and serial interval are assumed to follow a normal distribution, with 1000 simulations of the
transmission networks used for each particular value of the mean and SD. For additional details, see the Methods section.

Figure 4. Simulated outbreak of ASF using Animal Disease SpreadModel (ADSM) [34]. (a) shows the spatiotemporal spread of the disease. The crossed yellow dot in the bottom left-
hand side of the circle is the index case. Grey points represent uninfected farms. (b) depicts the epidemic curve. The dark bars represent definitive (reported) cases and the light bars
represent partially or fully underascertained cases – that is, cases missing spatial (geolocation) information or unreported cases that are missing both spatial and temporal
information. (c) Estimation of the mean transmission distance for fully underascertained cases (solid line) or partially underascertained cases (dashed line). The dotted horizontal
line is the estimate for the data set with no underascertainment.
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transmission distance could be a consequence of the underascertain-
ment of infected units. The estimates of the mean transmission
distance using the spatiotemporal case-distribution method were
also larger than anticipated. This was likely due to the underascer-
tainment of infected units or the intentional culling of susceptible
pigs within the epidemic zones surrounding the reported units. Both
factors would reduce the number of susceptible pigs within a shorter
transmission distance, therefore making transmission of ASF to new
regions possible only through long-range transmissions and pro-
longed generation intervals. Although we investigated the possible
impact of outbreak underascertainment on transmission distance
using simulation data, there are still somemethodological uncertain-
ties when both temporal and spatial information is missing. If the
true degree of underascertainment can be estimated (e.g. using gen-
etic data or environmental sampling), the ASF reproduction number
could be more accurately assessed.

Compared to outbreaks in other regions, such as Western
Europe or the Korean peninsula, wild boars played a relatively
minor role in the spread of ASF in China. Only two outbreaks were
reported by theWOAHconcerning wild boar farms, and one report
concerned an infected wild boar during the study period. Ticks and
wild boars have only been mentioned in a few Chinese articles as
potential carriers of ASF to domestic pigs [41]. In the light of this,
we do not believe our lack of consideration for transmission among
wild boars to be a limitation.

We also did not consider the importation of ASFV from outside
of China and only modelled within-country transmission. This
could perhaps be accomplished using other data, but it is beyond
the scope of this study. We also did not fully consider the impact of
the Lunar New Year – one of the biggest holidays in China – in our
calculations of the reporting delays and outbreak lengths. However,
we could not find any clear correlation between the submission
delay (i.e. time interval between the notification date of the out-
break in the Chinese government and the report submission date to
WOAH) and the official dates of the holiday.

Control of ASF in China, the world’s leading producer and
consumer of pork [42], is of critical importance to countries that
import Chinese pig products as the virus may remain viable in
blood and tissues for long periods of time [43, 44]. Although
vaccines for ASF are under development [45], biosecurity-based
control measures remain key to preventing the transboundary
spread of ASF, and a better understanding of the transmission
distances and transmissibility of ASF in China can help inform
management strategies to prevent further spread. The disease poses
an ongoing threat to livelihoods and national swine-related gross
domestic product, as well as to the development of important
medical, industrial, and household products.

Although China has endeavoured to contain the spread of ASF,
the economic implications of the outbreak have begun to show [39,
46]. Chinese import of pork from theUnited States iswell above 2018
levels [47], and continued transmission of ASF may contribute to
shortages of the lifesavingdrugheparin, which ismainly produced by
Chinese companies from porcine mucosa [7]. The various transmis-
sion pathways for ASF and inherent biosecurity risks and economic
devastation to small-scale farms remain a persistent concern for
China and neighbouring countries. After examining four algorithms
to assess transmission pathways, we found a largemean transmission
distance and lengthy serial intervals, which are likely due to the
underascertainment of cases and a prevalence of long-range trans-
mission events. Our results indicate that continued monitoring of
transmission, improvements to surveillance across large distances
and lengthy time periods, and increased biosecurity measures are

critical to the elimination of ASF inChina. Aswell, it is important for
China and other countries to consider all possible modes of trans-
mission when developing biosecurity protocols, as wild boar reser-
voirs and arthropod vectors may further complicate transmission
networks. Restructuring of biosecurity protocols is vital to contain-
ment of the threat at national and international levels.
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