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1. Introduction and summary. An inverse semigroup whose idempotents form an
co-chain eo>ex>e2> . . . is called briefly an co-semigroup. A structure theorem for simple
<a -semigroups was established by Kocin [7]; a related structure theorem for simple, and
also general, to-semigroups was proved by Munn [10]. These results represent an
extension of the structure theorem for bisimple a -semigroups due to Reilly [14].

Congruences on a bisimple co-semigroup were studied by Munn and Reilly [12]; in
particular, they constructed all idempotent-separating congruences and the quotient
relative to the least group congruence on such a semigroup. Group congruences on a
bisimple co-semigroup were characterized by Ault [1]. Conditions for modularity of the
lattice of all congruences on a bisimple co-semigroup were given by Munn [9]. Based on
the work of Munn, Baird [2] established conditions for modularity of the lattice of all
idempotent-separating and group congruences on a simple co-semigroup. In another
communication, Baird [3] described all congruences on a simple co-semigroup contained
in a v 2if. Kocin [8] announced certain properties of congruences on a simple co-semigroup
as well as of the corresponding homomorphic images.

We determine here all congruences on a simple w -semigroup by using a representa-
tion for it which is essentially that of Kocin [7]. Determination of congruences throughout
this paper is based on their description in [13].

By sections, this work is divided as follows. Section 2 contains a minimum of
preliminaries concerning simple co-semigroups and congruences on inverse semigroups.
The content of Section 3 is a determination of (the lattice of) all normal congruences on
the semilattice of idempotents of a simple co-semigroup. A description of normal sub-
semigroups of a simple co-semigroup contained in the centralizer of idempotents is the
subject of Section 4. The results of these two sections make it possible to determine all
non-group congruences on a simple co-semigroup; group congruences are characterized in
Section 5 by reducing this case to that of a bisimple co-semigroup.

We find here an expression for all congruences on a simple co-semigroup. In order to
keep the length of the paper within reasonable bounds, we refrain from considering the
lattice of congruences, that is, we omit discussing inclusion relations, meets, joins, etc.
Neither do we discuss the representations of homomorphic images induced by these
congruences. Congruences on non-simple co-semigroups can be deduced from our results
in a standard manner.

2. Preliminaries. For an extensive discussion of inverse semigroups, as well as
congruences, we refer the reader to the book Howie [6]. We generally follow the
terminology and notation therein.

The following facts can be extracted from [12] and [13]. Let S be an inverse
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semigroup with the semillatice E of idempotents. Further, let A be the lattice of
congruences on S. For any p e A, the restriction tr p = p | E is the trace of p, the set

ker p = {a e S | a p e for some e e E}

is the fcernd of p. A congruence £ on E is normal if for any e, f&E, aeS, egf implies
a^ea^a'^fa. The lattice <I> of normal congruences on E coincides with the lattice of
traces of congruences on S.

The relation d defined on A by

= tr T

is a congruence on A, and p -»• tr p is a complete lattice homomorphism of A onto 4>, so
that A/0=4>. For each normal congruence £ on E, the relation on S defined by

aimaxb<^a~1eaib-1eb for all eeE,

a£minb<$ae = be for some eeE , e^a^a^b"1*),

are the greatest and the least elements of the 0-class of any congruence on S whose trace
is £. In particular

ker £—' = {a e S | a^ea £ a~xae for all e e E}. .

A subsemigroup K of S is full if E £ X, self-conjugate if a~JKa e K for all a e S. A
full, self-conjugate inverse subsemigroup is a normal subsemigroup of S. If £ is a normal
congruence on E and K is a normal subsemigroup of S such that

(i) a
(ii) a

for all aeS, eeE, then (£, K) is a congruence pair for S. Note that condition (ii) is
equivalent to Kcker£ma*.

For a congruence pair (|, K) for S, define a relation K( £ K ) on S by

aKCiK)b O a - 1 a £ fc"1^ ab~l e K

Then K(fcK) is a congruence on S. Conversely, if p is a congruence on S, then (tr p, ker p) is
a congruence pair for S and p = K(trp>kerp).

The method of determining all congruences on a simple <o -semigroup S used here
consists of first finding all normal congruences on E. We then observe that except for the
universal relation on E, for all normal congruences £ on E, we have fcer£max£E£, the
centralizer of E in S, which is easy to determine. This makes it possible to find all the
corresponding normal subsemigroups. Finally, matching various normal congruences with
these normal subsemigroups, we get all the congruence pairs. Group congruences are
treated separately.

The structure of a semigroup G which is a chain of groups G0>G1> .. .> Gs_! for a
positive integer s, is given as follows. A system of homomorphisms <pf: Gt —* Gi+l for
0 «£ i < s - 1 is given. We introduce the notation

<Pi, = <Pi<Pi+i • • • <Pj-i ( 0 ^ i < / « s - 1 )
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and let <pif be the identity mapping on Gf (0«siass-1). Then for geG,, heG,, 0 « i , j«£
s — 1, the product in G is given by

where fc = max{i,;}. For the structure of a semilattice of groups see [4, §3; 5, Chapter 4].
We now state a construction of simple o>-semigroups which amounts to a slight

modification of that given by Kocin [7].

STRUCTURE THEOREM. Let G be a semigroup which is a chain of s groups G0>Gx>
. . . > Gs_j, and let a be a homomorphism of G into Go. Let N be the set of all nonnegative
integers. On S = NxGx N define an operation by

(m, g, n)(p, h,q) = (m + p-r, (ga"-r)(ha'"r),n + q-r)

where r = min{n, p} and a0 is the identity mapping on G. Then S is a simple o>-semigroup
having s 3)-classes. Conversely, every semigroup having these properties is isomorphic to one
so constructed.

Munn [10] gave a different construction of simple ft>-semigroups. His construction is
based on a chain of groups G as in the above Structure Theorem, but instead of a
homomorphism a:G—>Go, he takes a homomorphism <ps_!:Gs_! —*Go. Given such a
homomorphism <ps_i, we may define a on G by

a : g -» g<Pu-i<Ps-i (geGi ,0« i=ss - l ) .

One verifies readily that a is a homomorphism of G into Go. Conversely, if a is a
homomorphism of G into Go, then <ps_! = a | Gs_i is evidently a homomorphism of G,-x

into Go. The connection between Munn's and Kocin's representations was established by
Munn [11].

The semigroup constructed in the Structure Theorem will be denoted by S = 38(G, a)
and fixed throughout the paper. Observe that in S, (m, g, n)"1 = (n, g"1, m) and that the
idempotents are given by

E = {(m, ei,m)\meN,ei is the identity of G(, 0 «£ i < s}

with the ordering

(m, 3, m)s£(n, e,, n ) O m > n or (m = n and is*/).

3. Normal congruences. Congruences on E are evidently all equivalence relations
with convex classes. They can be represented by increasing sequences over N indexed by
0,1,2,... ,n or by M if to each congruence p on E = {/0>/1> ...} we associate the
various indices of the greatest elements of the p-classes in the descending order.

On this model, but using the least element in the first few classes of the congruence p,
we construct two types of normal congruences on E, and then prove that there are no
other normal congruences on E.
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For any (p, g, q) e S, g e Gk, and (m, ^ m) e E, by straightforward multiplication, we
find

(P. g, qyHm, €(, m)(p, g, q) = (q + m - r, (ckam-r)(eia
p-r), q + m - r),

where r = min{m, p}, since the idempotents are central in G. To check normality of a
congruence on E, we thus need only consider expressions of the form
(p, ek, q)~1(m, 3, m)(p, efc, q) which will be used below without reference. We call the
transition e >-> a~lea conjugation by a.

3.1 NOTATION. Let ku k2,..., fc, be a sequence of integers, possibly empty, satisfying
0 = s k 1 < k 2 < - < f e t

< s ~ l - For convenience, let k0 = - 1 and fc,+1 = s - 1 . Define a rela-
tion p = p(ki, fc2) • • • > K) on E by

(m,e i ,m)p(n ,e / ,n)»m = n and fcp_i<i,jssfcp forsome

3.2 LEMMA. With the notation introduced, p = p(ku k2,...,K) is a normal congruence
on E.

Proof. It is evident that p is an equivalence relation on E with convex classes, and
thus a congruence. Let

(m, et, m) p (n, e,, n) . (1)

Then m = n. The group part of (p, ek, q^im, et, m)(p, ek, q) is

{ef if p < m,

emaxdco if P = m, (2)
cfc if p > m,

where r = min{p, m}. The group part of (p, ek, q ) " 1 ^ , ejt m)(p, ek, q) is obtained by
substituting 7 for i in (2). Now using hypothesis (1), the definition of p, and (2) with its
counterpart for e,, by considering several cases, we deduce easily that

(p, ek, q)~\m, 3, m)(p, ek, q) p (p, ek, q)~\n, et, n)(p, ek, q),

which proves that p is normal.
3.3 NOTATION. Let ku ..., fc, be a nonempty sequence of integers satisfying (Xfcj<

. . . < f c , < s - l . For convenience, let ko = -l and k,+1 = s - l . Define a relation T =
T(ki, fc2,..., fc,) on E by

either m = n and fep_! < i,;

forsome(m, eh m) T (n, ef,

or n = m +1 , j ;« ku i > fc,.

3.4 LEMMA. With the notation introduced, T = rik^ fc2,..., fc,) is a normal congruence
on E.
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Proof. It is easy to see that T is an equivalence relation on E with convex classes and
thus a congruence. Using the proof of Lemma 3.2, by symmetry, it suffices to assume

(m, 3, m) T (m +1 , e,, m +1)

and apply conjugation by (p, ek, q). By the definition of T, we have i>k,, j =sfct. We obtain

(p, ck, q)-\m, ei, m)(p, ek, q) = (q + m-r, (ckam-r)(ei«P"r), q + m-r), (3)

(p, ek, q)~Km +1, c,-, m + l)(p, ek, q) = (q + m + 1 - v, (c(ta
m+1-")(e,ap-")) q + m + 1 - o),

(4)

where r = min{m, p}, v = min{m + 1 , p}. For the group element on the right-hand side of
(3) we have relations (2), and for the group element on the right-hand side of (4), we have

{e, if p < m + l ,

< W M > if p = m + l , (5)
ek if p > m + l.

Using (2) and (5), and considering several cases, we list below in the first column the
relationship of p and m, in the second column the first entry on the right-hand side of (3),
in the third column the second entry on the right-hand side of (3), in the fourth column
the first entry on the right-hand side of (4), and in the fifth column the second entry on the
right-hand side of (4).

p < m
p = m
p = m + l
p > m + l

q+m—p t
q Cm*

q <
q <

:( (q + m - p ) + l
rtw) q + i
'•k <\

'•k q

ei
ei

emax{k.,}

Analysing each of these cases, we conclude that

(P, ek, q)~\m, et, m)(p, ek, q) T (p, ek, q)~\m +1, e,, m + l)(p, ek, q),

which proves that T is a normal congruence.
For the converse, we have

3 . 5 L E M M A . Let £be a non-universal normal congruence on E. For any m, neM and
0 « £ i , j<s, we have the following statements.

(i) (m, e,, m) £ (m, e,, m) => (n, Cj, n) | (n, c,, n).
(ii) (m, Cj, m) £(m +1 , e,, m +1) => (n, ef, n) | ( n +1,e,, n +1) and i>; .

Proo/. (i) This follows immediately from

(m, e0, n^im, et, m)(m, e0, n) = («, ef, n),

(m, e0. n)~1(m, e,, m)(m, c0, ") = (", «i» «)•

(ii) Conjugation by the element (m, eo»") yields the first part of (ii). Assume that
(m, ej, m)£(m + l,e,, m + 1) and j « j . By convexity of the ^-classes, we deduce that
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(m, &i, m)£(m + l, et, m + 1). The first part of the conclusion in (ii) yields (n, %, n)
£(n + l, et. M + 1) for all n. This means that £ is the universal relation, a contradiction.

It is clear that every non-universal normal congruence on E uniquely determines the
sequence ku k2,..., k, as in Notation 3.1 or 3.3. If we let T 0 denote the universal relation
on E, we have a unique representation for all normal congruences on E. Hence the
preceding three lemmas easily imply

3.6 THEOREM. For all sequences 0*£fc1<fc2< • • < f c , < s - l , the relations
p(fci, k2,..., K) owd T(ku k2,...,k,) exhaust the lattice 3> of all normal congruences on E.

If A and B are two such sequences, one verifies easDy that

P(A) n P(B) = P(A) n T(B) = p(C),

T(A)riT(B) =

where C is obtained from A and B by writing the elements of A U B in increasing order
without repetitions.

Let S8d denote the Boolean lattice of all subsets of the set [d] = {0 ,1 ,2 , . . . , d -1}
under inclusion, and 9BJ its dual (that is, with inverted order). On 3> define a mapping
X by

f_ c1,fc2,...)fc,)~({fc1,fc2)...,fc,},0),

Then the above formulae for the meet and the join immediately imply that x is a lattice
isomorphism of <& onto SBf-iXSBj. Since S8S_! has an obvious involution, we have
SBf^ssSB,-!. Further, the mapping <p defined on ^s_lxS&1 by

(A, 0 ) -> A

is an isomorphism of 9Ss^1x^1 onto S8S. We deduce

3.7 THEOREM. For any simple (o-semigroup S with s 3>-classes, the lattice A/0 is
isomorphic to the Boolean lattice S8S of all subsets of a set with s elements.

Proof. It suffices to recall that our S has exactly s 3) -classes and that 4> = A/0.

4. Non-group congruences. In order to characterize the congruences on S, we must
still find all the possible kernels. For a congruence p on S, we know that ker p c ker £max

where £ = tr p. If p is a group congruence, then tr p is the universal congruence on E and
conversely. Hence it remains to find ker £max where $ = p(ku k2,...,k,) with
ku k2,-..,k, a r b i t r a r y a n d £ = r(ku k2,...,kt) w i t h ku k2,...,k, n o n e m p t y as in
Theorem 3.6. Recall from Section 2 that

ker £max = {aeS | a~xea I- a~xae for all eeE}. (1)
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In particular, if a e ker f™", then

so that

Since we can interchange the roles of a and a"1 in (1), we also have aa~x £ (aa'^ia^a).
We have thus proved

a £ ker £max => aa'1 £ a""1 a. (2)

Recall that E£ denotes the centralizer of E in S.

4.1 LEMMA. For any non-universal normal congruence £ on E, we have

kerf»"£{(m, g, m) |

Proof. Let (m, g, n)eker£max. Consider first £ = p(k1,k2,... ,k,). Then (2) yields
(m, et, m) £ (n, Cj, n) where g € Gf. According to the definition of p(fci, fc2,..., fc,) we must
have m = n.

Next take £ = T(k1; k2 > . . . , fc,), where the sequence ku k2,..., fc, is nonempty. Then
again (m, Cj, m) £ (n, ej, n). Hence m = n, for if e.g. we have m = n +1 , then i =s fct < k, < i,
which is impossible.

This proves the inclusion in the statement of the lemma; the equality follows by
straightforward calculation.

It will follow from the results below that the inclusion in this lemma is actually an
equality. Lemma 4.1 narrows considerably the choice of normal subsemigroups we are to
find. The next task is to find all normal subsemigroups of S contained in E£.

Recall that S = S8(G, a) where G is the chain of s groups G0>G1> ...> Gs^. As
usual, the multiplication in G is given in terms of homomorphisms

G o > Gj * G 2 > ... *• G,_!.

4.2 LEMMA. For 0 «£ i *s s - 1 , let Ht be a normal subgroup of G{ such that H^ £ Hi+1
s - l

for 0 «£ i *s s - 2, and let H = U Ht. Then H is a normal subsemigroup of G. Conversely,
i=0

every normal subsemigroup of G can be so constructed.

Proof. The proof of the direct part follows by a straightforward verification and may
be omitted. For the converse, let H be a normal subsemigroup of G. Then Hf =HC\Gi,
for Os£i=£s-1, is evidently a normal subgroup of Gv For any geHt with i=Ss-2, we
have gej+1 e H n Gi+1 = Hl+1 which shows that Hf<Pi s Hi+1.

Note that <ps_! = a | Gs_i is a homomorphism of Gs_i into Go and that for any
0 « £ i < s - l , we have

o | G, = <Pi<pi+i... <ps-i- (3)
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4.3 LEMMA. Let H be a normal subsemigroup of G as in Lemma 4.2, assume that
Hs-ifPs-x £ Ho, and let

K = {(m,g,m)\meN,geH}- (4)

Then K is a normal subsemigroup of S contained in JE£. Conversely, any such can be so
constructed.

Proof. It follows from (3) and the hypotheses on H that Ha S H. This immediately
implies that K is closed under multiplication. Since H is an inverse subsemigroup of G, K
must be an inverse subsemigroup of S. Self-conjugacy of K in S follows easily from
self-conjugacy of H in G. Since K is evidently full, it is a normal subsemigroup of S. It
follows from Lemma 4.1 that KQE£.

Conversely, let K be a normal subsemigroup of S contained in E£. Let

H = {geG|(0,g,0)eK}. (5)

A straightforward argument shows that H is a normal subsemigroup of G. Using the
notation of Lemma 4.2, we let geHs-x. Then

(1, e0, OrCO, g, 0)(l, e0,0) = (0, ga, 0) e K

and hence gaeH. This shows that fl,.1ft.1eH0. Since

(m, e0, n)~x(m, g, m)(m, e0, n) = (n, g, n),

it follows at once that K has the form (4) where H is given by (5).
We will now identify those congruence pairs which involve the congruences

p(ku fc2,..., k,). Recall the notation introduced in Section 2.

4.4 LEMMA. Let ku k2,..., k, be a sequence of integers, possibly empty, satisfying
0^fc i< fc 2 < . . .< fc ,<s - l . For convenience let ko = — 1 and fc,+1 — s — l. For each l^v^
r + 1, let H,^ be a normal subgroup of GK. For l^v^t, assume that H ^ ^ , ? ^ , ,
and Hs_1<ps_1<po,fcl£Hkl. For l«u=Sf + l and kv_1<i<kv, let H( = ^ 9 , " ^ . Then the
system Ho, Hu . . . , Hs_! satisfies the conditions in Lemmas 4.2 and 4.3. Denoting K in
formula (4) by K(HK, H^,..., HK, Hs^), we have that

H^,..., HK, H..J)

is a congruence pair for S. Conversely, for fixed p(kx, k2, • • •, k,)> any sucn can oe so
constructed.

Proof. The hypothesis on HK and the definition of Hf easily imply that the system
Ho, Hu..., Hs_! satisfies the requirements in Lemmas 4.2 and 4.3. Let H be as in
Lemma 4.2 and K = K(Hki, Hk2,..., HK, Hs_i) be as in formula (4). According to Lemma
4.3, K is a normal subsemigroup of S. Let p = p(ku k2,..-, k,)- Assume that

(m, g, n)(d, ek, d)e K, (d, ek, d)p(m, g, n)~\m, g, n).

The second relation yields d = n and k^., < i, fc « k,, for some 1 ̂  v =£ t + 1 , where g e Gj.
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Hence the first relation gives gek eHmax{i k}. If issfc, this implies geHt. Let i<k; then
g<jpi>lc e Hfc and thus

But then the definition of Ht clearly shows that g e Hf. The first relation above also implies
that m = n. Consequently (m, g, n) e K.

Next let (m, g, m) e K where g e Hf and (n, e,, n) e E. Letting r = min{m, n}, we have

(m, g, m)-'(n, e,, n)(m, g, m) = (m + n - r, (gan-rr1(^am"r)(gatt~r), m + n - r),

(m, g, m)-l(m, g, m){n, e,, n) = (m + n-r, (eia
n-')(eja

m-r), m + n-r).

The group elements on the right-hand sides of these two expressions are idempotents. A
simple inspection shows that

(1) for m>n, they are both equal to 3,
(2) for m < n, they are both equal to e,,
(3) for m = n, they are both equal to emaxlij).

It follows that

(m, g, m)~\n, e,, n)(m, g, m) p (m, g, m ) " 1 ^ , g, m)(n, e,, n).

Consequently (p, X) is a congruence pair for S.
Conversely, let p = p(ku k 2 , . . . , fc,) and assume that (p, K) is a congruence pair for S.

Then K is of the form (4) with the conditions as in Lemma 4.3. Let g e Gf) &„_! <!<&„,
and g<p; eHi + 1. Then for any m € N, we have

(m, g, m)(m, ei+1, m) = (m, g<p,, m) e K,

(m, ej+1, m) p (m, g, m)~\m, g, m),

which by hypothesis implies that (m, g, m) € K, so that g e H{. It is easy to see that the
established property

implies that the Ht have the form specified for them in the first part of this lemma, so we
have K = K(Hki, H k 2 , . . . , HK, Hs_t).

For the congruences r(,ku k 2 , . . . , k,) we have a similar situation.

4.5 LEMMA. Let ku k2, • • • ,k,be a nonempty sequence of integers satisfying —1 = ko<
<... < k , < s - l . For each l^v^t, let HK be a normal subgroup of G^. For
f, assume that ^ ^ . c ^ , and H^^tp^ipo^zH^. For l=£u»£t and

fcu_1<i<fcu, let H^H^T.H; for i>k\, let Ht =Hfcl(<pj,s_1<ps_1<p0,kir
1. Then the system

Ho, Hu..., Hs_! satisfies the conditions in Lemmas 4.2 and 4.3. Denoting K in formula
(4) by K(Hki,H^,...,HO, we have that

(T(fclt k2,..., k,), K(Hki, H^,..., HK))

is a congruence pair for S. Conversely, for a fixed r(ku k2,..., fc,), any such can be so
constructed.
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Proof. The proof of Lemma 4.4 goes through in this case with minor modifications.
We show only that

g e Gs_a, g<ps_! e Ho => g e H,^ .

Assume that ge Gs_! and gip^eHo. Then, for any meN.we have

(m, g, m)(m +1, e0, m +1) = (m + 1 , gtx, m +1)

= (m +1, g<ps_1; m +1) 6 K(Hki, H ^ , . . . , H^)

and also

(m +1, c0. m +1) T(fc1; fc2,..., k.) (m, g, m ) " 1 ^ , g, m).

These imply that (m, g, m) e K(Hkl, H ^ , . . . , H J , so that g e Hs_x.

Note that K(Hki, H ^ , . . . , H^, H^) in Lemma 4.4 depends on one more parameter
than K(Hki, H^,..., H^) in Lemma 4.5.

Letting p be the congruence on S whose trace is p(ki, fc2,. . . , fc,) and whose kernel is
K(Hkl,H^,...,Hfc,,Hs_i) we obtain, for geG{, heG,,

(m e n)o(D l i a ) o I ( m ' g> n ) ' ( m ' g ' n ) p ( k l ' k2> • • •' K) ( p ' h> q) 1(p' h ' q)>

f (n, e,, n)p(fc!, k 2 , . . . , k,)(<j, Cj, q),
l(m, g, n)(q, h"1, P) «: •^-V-"klj -TllciJ • • • , -Tlk,, -Tls-1

i k. for some

Now letting T be the congruence on S whose trace is r(ku k2, • •., k,) and whose
kernel is K(Hkl, H ^ , . . . , H^), in view of the above, it suffices to consider the case
n = q +1 . In this case, again taking geG h heG,, we have

(m e n)r(v h. a ) o i ( q + l f 6" q + 1 } r ( fc l> k2» • • • - fc.) (q, «i, q),(m, g, n)x(p, ^ q )O | ( + 1)(q> fc_lf p )

We have a similar result in the case q = n +1 .

We can now summarize our discussion as follows. First S = 38(G, a) can be given by
the sequence of groups and their homomorphisms

& o * C J I * <j2 * • • • * Gs_j > Go.
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For i <j we let <pif = <Pi<pi+i... <p,_1 and take <pfi to be the identity mapping on Gj(0s= i, j «=
s —1

s — 1). This determines the multiplication in G — (J Q and specifies a : G —* Go by
i=O

g« = g<Pi,s-i<P,-i

Let ki, k2, • • •, K be a sequence of integers, possibly empty, satisfying Os£fc1<fc2<
. . . < k , < s - l . Let fco = - l and fc,+1 = s - l . For l=£u*£r + l, let HK be a normal
subgroup of GK and assume that

S H ^ , (1 =2 v *£ r), Hs_1<ps_1<po,kl c Hki. (6)

Define a relation p = p(Hkl, H ^ , . . . , H^, H,_x) on S by

(m, g, n) p (p, h, q)

f m=p,n=q,k u _ 1 <i ,y^k u , ( ? )

Ug<Pi.kn)(
n<Pi,kv) fcHk, for some l ^ u ^ t + 1,

where g € Gt, h e G,.
We assume now that the above sequence fcx, k 2 , . . . , k, is nonempty. Let HK be as

above for l « u < r , and assume the first part of (6) for 1 « v < t and also that

Define a relation T = r(Hkl, H^,..., HK) on S by

(m, g, n) T (p, h, q)

either (7) occurs for t; j= t +1,

or

m = p +1 , n = q +1 , i *£ k1( j > k,, (g(ha)-1)<pi,ki e Hkl,

or
p = m +1, q = n +1 , j =s fc1; i > k,, ((ga)h-1)<p),kl e Hkl.

We can thus announce

4.6 THEOREM. The relations p(Hki, H^,..., HK, H ^ ) and T(Hkl, H ^ , . . . , H^) are
congruences on S. Conversely, every non-group congruence on S can be uniquely written in
the form of one of these congruences.

We can now easily deduce a result of Kocin [8, Theorem 1]. In his terminology, a
congruence p on a semigroup T is locally idempotent-separating if no two distinct
©-equivalent idempotents of T are p-equivalent.

4.7 COROLLARY. Euery non-group congruence on S is locally idempotent-separating.

For any peA, let p,,^ and p^,, denote the greatest and the least congruences
6 -related to p, respectively.
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For p = p(Hkl, H^,..., Hk,, H,^), we see at once that

Pmax = P(Gkl, Gfc,, . . . , GK, Gs_t)

which implies that ker pmax = EC, a fact mentioned earlier. The same is true for T =
T(Hki, H ^ , . . . , HK). We thus deduce

4.8 COROLLARY. If p is any non-group congruence on S, then ker pmax = E£.

With the p before Corollary 4.8, we obviously have

Pmin = P({«kJ. {CfcJ, • • • , K } , {e,-!}),

where e( is the identity of Gf. The same type of statement holds for T.

5. Group congruences. For bisimple <a -semigroups group congruences were exp-
licitly constructed by Ault [1]. We could adapt her construction to the present situation.
Instead, we will reduce our case to hers. Indeed, we will show that our S has essentially
the same group congruences as one of its bisimple a>-subsemigroups, and will then apply
her result.

Let

g, n)eS | m,neM,geG0}.

It is clear that So is a subsemigroup of S isomorphic to 98 (Go, a0) where ao = a | Go.
Group congruences on inverse semigroups are uniquely determined by their kernels.
These are normal subsemigroups K of S satisfying: ae e K, e e E => a 6 K. It is easy to see
that this condition, for a normal subsemigroup of S, is equivalent to K being (right)
unitary in S. Note that the group congruence p determined by K is given by: x p y «
xy-'eK.

If K is a unitary normal subsemigroup of S, then it follows at once that Ko = K n So is
a unitary normal subsemigroup of So. Conversely, we have

5.1 LEMMA. Let Ko be a unitary normal subsemigroup of So, and let

Then K is the unique unitary normal subsemigroup of S for which KC\S0 = Ko.

Proof. First note that gaeG 0 for any geG, so that indeed (m + 1, ga, n + l)eS0.
Further,

(m + l ,ga,n + l)(p + l ,ha,q + l) = (m + p+2- t , (ga p + 2 - ) (ha n + 2 - ) ,n+q+2- t ) , (1)

where t = min{n +1, p +1} = 1+min{n, p}. Letting r = min{n, p}, we obtain that the expres-
sion in (1) is equal to

This shows that K is closed under multiplication. It is obvious that K is closed under the
taking of inverses and that it is full.
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Let r = min{n, p}. We assume that r*£m and compute

(p, h, q)-\m, g, n)(p, h,q) = (m + q-r, (h-1am-r)(gap-')(.han-r), n+q-r) (2)

where r = min{n, p}, and on the other hand,

(p +1 , ha, q + l)~\m +1 , ga, n + l)(p +1 , ha, q +1)

= (m +q + 2 - 1 , (h-1am+2-')(gap+2-')(han+2-), n +q + 2-1)

= ((m + q - r) +1 , [(h-1am-')(gap-')(ha'-')]a, (n + a - r) +1) (3)

since t = min{n +1 , p +1} = r +1 . A comparison of (2) and (3) shows that if (m, g, n) 6 K,
then also

(p,h,q)~\m,g,n)(p,h,q)eK for all (p, h,q)eS.

The case r > m is treated similarly. Hence K is self-conjugate.
Next let (m, g, n)(p, ek, p)e K. It follows that

where t = min{n + l, p + 1} and r = min{n,p}. Hence (m + 1, ga, n + l )eK 0 and thus
(m, g, n) € K. Consequently K is unitary in S.

Now observe that for m,nEN and geG, we have

(m +1 , ga, n +1) = (m, g, n)(n +1 , e0, n +1), (4)

where (n + 1, e0, n + 1) is an idempotent in So. If (m, g, n)eK0, then (4) yields that
(m +1 , ga, n +1) e Ko and thus (m, g, n) e K Conversely, let (m, g, n) e K D So. Then by
definition, (m +1 , ga, n +1) e Ko. Hence (4) gives (m, g, n) e Ko since Ko is unitary in So.
We have proved that K0 = KnS0.

Finally let K' be a unitary normal subsemigroup of S such that K'(~\S0 = Ko. A simple
argument involving equation (4) shows that K = K', establishing uniqueness.

We can now apply the description of (right) unitary normal subsemigroups of Ault [1,
Theorem 1] to S0 = S8(G0, a0), which we state as follows.

5.2 THEOREM. Let N be a normal subgroup of Go, x be an element of Go, and k be a
nonnegative integer satisfying

(i)
(ii)

for all geG 0 . Let

Ko ~ {("i> g, n) e So | n - m = ak for some integer a, ge Nx"},

where if k = 0, then a = 0. Then Ko is a unitary normal subsemigroup of So. Conversely, any
such can be so obtained for some N, x, k.

With this notation, we immediately obtain from Lemma 5.1 the following characteri-
zation.
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5.3 LEMMA. For N, x, k satisfying the conditions of Theorem 5.2, the set

K = {(m, g, n) e S | n — m = akfor some integer a, ga 6 JVxa}

is a unitary normal subsemigroup of S. Conversely, any such can be so constructed for some
N, x, k.

Keeping the same notation, we can finally state the characterization of group
congruences on S.

5.4 THEOREM. For N, x, k satisfying the conditions in Theorem 5.2, define a relation
a - o-(N, x, k) by

f(n — m) - (q — p) = ak for some integer a,
(goq+1)(hoB+T1eNxa.

Then a(N, x, k) is a group congruence on S. Conversely, every group congruence on S can be
so constructed for some N, x, k.

Proof. This follows from Lemma 5.3 using [1, Lemma].

In light of Lemma 5.1, we have that group congruences on So are precisely the
restrictions to So of group congruences on S. Furthermore, each group congruence on So

extends uniquely to a group congruence on S. Because of this relationship, we can use all
the results of Ault [1] and adapt them easily to the congruences on S. In particular, we get
this way the inclusion relation, the join and the meet of group congruences on S in the
above representation.

We have characterized the meet and the join of normal congruences on E after
Theorem 3.6. For the congruences on S, we have

stTT, ker p c ker T.

(m, g, n) a (p, h, q) O I

Using the description of congruences p(Hkl, H ^ , . . . , HK, Hs--d and r(Hkl,
in the preceding section and a(N, x, k) in this section, it is easy to establish the inclusion
relation for arbitrary congruences on S. The meet and the join of these congruences is
somewhat more intricate but, in principle, does not involve serious obstacles.

Using Munn's [10] description of o> -semigroups with a proper kernel and the results
obtained above, we can describe congruences also on such semigroups. This is notationally
somewhat involved, but can be done without great difficulties. Congruences on the
remaining to-semigroups, that is, w-chains of groups, can be characterized in a straightfor-
ward manner.
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