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Abstract

This paper deals with the problem of discrete and distributed time-delay exponential
stability for deterministic and uncertain stochastic high-order neural networks. The
concept of a parameter weak coupling linear matrix inequality set (PWCLMIS) is
developed. New results are derived in terms of PWCLMIS. Large mixed time delays
can be obtained by using this approach. Furthermore, these results are more general
than some previous existence results. Two numerical examples are given to show the
merit of the approach.
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1. Introduction

Because high-order neural networks perform better than traditional first-order neural
networks [8], high-order neural networks have been adopted in some fields, for
example, associative memories [16], optimization [13] and pattern recognition [2]. To
achieve good performances, sufficiency conditions for the stability of a neural network
have been studied intensively, see for example [24, 25] and the references therein.

Time delays are frequently the source of instability [1, 5, 6], and sufficient
conditions for the stability of high-order neural networks with time delays have been
presented in the literature. Both delay-dependent and delay-independent sufficiency
conditions have been developed to guarantee the asymptotic, exponential, or absolute
stability for high-order neural networks with discrete time delays, see for example [7,
17, 26].

1College of Information Science and Technology, Donghua University, Shanghai, PR China;
e-mail: wnzhou@dhu.edu.cn.
2Department of Computer Science, Xiamen University, Xiamen, PR China; e-mail: zwni@xmu.edu.cn.
c© Australian Mathematical Society 2010, Serial-fee code 1446-1811/2010 $16.00

123

https://doi.org/10.1017/S144618110900039X Published online by Cambridge University Press

https://doi.org/10.1017/S144618110900039X


124 M. Li, W. Zhou, Z. Ni and M. Wang [2]

Since synaptic transmission is a noisy process brought on by random fluctuations
from the release of neurotransmitters and other probabilistic causes [20], investigating
neural networks with stochastic perturbations is important both in theory and in
practice. Consideration of stochastic inputs that will stabilize or destabilize a neural
network [3] has led to some new results being proposed on stability analysis for
stochastic neural networks, see for example [12, 19], where discrete time delays have
appeared.

In addition to discrete time delays, there is a distribution of propagation delays over
a period of time in neural networks. Mixed time delays, which comprise discrete and
distributed delays, need to be taken into account when modelling a realistic neural
network [18, 27, 28]. The problem of global asymptotic stability for neural networks
with mixed time delays has been analysed in [22, 23]. Global asymptotic stability for
deterministic stochastic high-order neural networks with mixed time invariant delays
has been studied in [20].

For various reasons uncertainties always exist in neural networks, and investigating
the robust stability for neural networks with parameter uncertainties is important [1, 5,
6]. Recently, the robust exponential stability problem for uncertain stochastic neural
networks with mixed time delays has been studied in [21], where a linear matrix
inequality (LMI) approach has been established.

To the best of the authors’ knowledge, large mixed time-varying delay-dependent
exponential stability problems for deterministic and uncertain stochastic high-order
neural networks have not yet been investigated. In this paper, we develop a novel
approach to establish sufficient conditions for high-order neural networks with mixed
delays to be globally exponentially stable. This approach is called a parameter
weak coupling linear matrix inequality set (PWCLMIS) approach. Assuming a LMI
set is coupled by two LMIs, one without system parameters and the other without
stability performance parameters (for example, time delays), the system parameters
and stability performance parameters are coupled weakly. We call such a LMI set
a PWCLMIS. Introducing free-weighting matrices into the PWCLMIS and making
some algebraic transformations, we obtain excellent stability performances. Two
numerical examples are given to illustrate this characteristic. Furthermore, we
encounter both discrete and distributed time-varying delay dependence in this article.
Corresponding conditions in [20] are for distributed time-invariant delay dependence
only. In addition, we remove some restraints to cover some results in recently
published works, such as [7, 17, 20, 26].

1.1. Notation The notation is standard. Throughout this paper, Rn and Rn×m denote,
respectively, the n-dimensional Euclidean space and the set of all n × m real matrices.
The superscript “T” denotes matrix transposition and the notation X ≥ Y (respectively,
X > Y ), where X and Y are symmetric matrices, means that X − Y is positive
semidefinite (respectively, positive definite). We use In to denote the n × n identity
matrix and use | · | to denote the Euclidean norm in Rn . If A is a matrix, denote by ‖A‖
its operator norm, that is, ‖A‖ = sup{|Ax | : |x | = 1} =

√
λmax(AT A) where λmax(·)

https://doi.org/10.1017/S144618110900039X Published online by Cambridge University Press

https://doi.org/10.1017/S144618110900039X


[3] Stability of high-order neural networks subject to mixed delays 125

(respectively, λmin(·)) means the largest (respectively, smallest) eigenvalue of A. Here
l2[0,∞) is the space of square integrable vectors. Moreover, let (�, F, {Ft }t≥0, P)
be a complete probability space with a filtration {Ft }t≥0 satisfying the usual conditions
(that is, the filtration contains all P-null sets and is right continuous). Denote by
L P

F0
([−h, 0]; Rn) the family of all F0-measurable C([−h, 0]; Rn)-valued random

variables ξ = {ξ(θ) : −h ≤ θ ≤ 0} such that sup−h≤θ≤0 E|ξ(θ)|p <∞ where E{·}
stands for the mathematical expectation operator with respect to the given probability
measure P . The shorthand diag{M1, M2, . . . , MN } denotes a block-diagonal matrix
with diagonal blocks being the matrices M1, M2, . . . , MN . Sometimes, the arguments
of a function or a matrix will be omitted in the analysis when no confusion can arise.

2. Preliminaries and problem formulation

We consider high-order neural networks with mixed time delays

dx(t) =

[
−Ax(t)+W0 f (x(t))+W1 f (x(t − h(t)))+W2

∫ t

t−τ(t)
f (x(s)) ds

]
dt

+ σ(t, x(t), x(t − h(t))) dw(t), (2.1)

where

x(t)= (x1(t), x2(t), . . . , xn(t))
T
∈ Rn,

f (x(t))=
(

f1(x(t)), f2(x(t)), . . . , fL(x(t))
)T
∈ RL ,

f (x(t − h(t)))=
(

f1(x(t − h(t))), f2(x(t − h(t))), . . . , fL(x(t − h(t)))
)T
∈ RL ,

A = diag{a1, a2, . . . , an}> 0, W0 = [w0i j ]n×L ∈ Rn×L ,

W1 = [w1i j ]n×L ∈ Rn×L , f j (x(t))=
∏
k∈I j

[gk(xk(t))]
dk( j).

Here Ii (i = 1, 2, . . . , L) is a subset of {1, 2, . . . , n}, dk( j) a positive integer,
gi (·) the activation function with gi (0)= 0, x(t) the state vector associated with the
n neurons, and the matrix A = diag{a1, a2, . . . , an} has positive entries ai > 0. The
matrices W0, W1 and W2 are, respectively, the connection weight matrix, the discretely
delayed connection weight matrix, and the distributively delayed connection weight
matrix. Here f (x(·)) is a product of L activation functions that reflects high-order
characteristics. The scalars h(t) > 0 and τ(t) > 0 are the unknown discrete time delay
and unknown distributed time delay, respectively. The scalars h(t) and τ(t) satisfy

0≤ τ(t)≤ τ, τ̇ (t)≤ dτ ,

0≤ h(t)≤ h, ḣ(t)≤ dh,

τ0 =max(τ, h).

(2.2)

REMARK 1. The dτ < 1 and dh < 1 constraints that usually appear in the literature
have been removed.
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REMARK 2. There are two differences from [20] in our formulation. First, the discrete
time delay h is a time-varying delay here but a time-invariant delay in [20]. Second,
the scalar τ(t)= τ > 0 is the unknown distributed time-varying delay in this note but
a known constant distributed time delay in [20].

The stochastic disturbance w(t)= [w1(t), w2(t), . . . , wm(t)]T ∈ Rm is a Brown-
ian motion defined on the complete probability space (�, F, {Ft }t≥0, P). Assume
that σ : R+ × Rn

× Rn
→ Rn is locally Lipschitz continuous and satisfies a linear

growth condition [11]. Moreover, σ satisfies

trace[σT(t, x(t), x(t − h(t)))σ (t, x(t), x(t − h(t)))]

≤ |61x(t)|2 + |62x(t − h(t))|2, (2.3)

where 61 and 62 are known constant matrices of appropriate dimension.

REMARK 3 ([20]). The condition (2.3) imposed on the stochastic disturbance term,
σT(t, x(t), x(t − h(t))), has been used in recent papers dealing with stochastic neural
networks, see [12] and references therein.

Parameter uncertainties and stochastic perturbations are common sources of
disturbances in neural networks. We model the uncertain stochastic neural networks
with mixed time delays as

dx(t) =

[
−(A +1A)x(t)+ (W0 +1W0) f (x(t))+ (W1 +1W1) f (x(t − h(t)))

+ W2

∫ t

t−τ(t)
f (x(s)) ds

]
dt + σ(t, x(t), x(t − h(t))) dw(t), (2.4)

where1A,1W0 and1W1 are unknown matrices representing time-varying parameter
uncertainties and satisfying the admissible condition[

1A 1W0 1W1
]
= M F

[
N1 N2 N3

]
, (2.5)

where M , N1, N2 and N3 are known real constant matrices, and F is the unknown
time-varying matrix-valued function subject to

FT F ≤ I. (2.6)

We make the following assumptions throughout this paper [17].

ASUMPTION 2.1. There exist constants µi > 0 such that

|gi (x)| ≤ µi |x |, ∀x ∈ R, i = 1, 2, . . . , n.

ASUMPTION 2.2. For all gi (·)

|gi (x)| ≤ 1, ∀x ∈ R, i = 1, 2, . . . , n.
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Denote by x(t; ξ) the state trajectory of the neural network (2.1) or (2.4) from the
initial data x(θ)= ξ(θ) on −τ0 ≤ θ ≤ 0 in L2

F0
([−τ0, 0]; Rn). According to [11], the

system (2.1) or (2.4) admits a trivial solution x(t; 0)≡ 0 corresponding to the initial
data ξ = 0.

Before proceeding further, we introduce the definition of global exponential
stability for the uncertain stochastic neural network (2.1) or (2.4) with discrete and
distributed time delays as follows.

DEFINITION 2.3. For the neural network (2.1) or (2.4) and every

ξ ∈ L2
F0
([−h, 0]; Rn)

the trivial solution (equilibrium point) is robustly, globally, exponentially stable in
mean square if there exist positive constants β > 0 and µ > 0 such that every solution
x(t; ξ) of (2.1) or (2.4) satisfies

E
{
‖x(t; ξ)‖2

}
≤ µe−βt sup

−τ0≤s≤0
E
{
‖ξ(s)‖2

}
, ∀t > 0. (2.7)

The main objective of this paper is to establish LMI-based stability criteria to
guarantee the high-order uncertain stochastic neural network is robustly exponentially
stable with mixed time delays and the admissible time delays of stability condition are
large.

3. Main results

Before deriving the main results, we give the following lemmas.

LEMMA 3.1. Let x ∈ Rn , y ∈ Rn and ε > 0. Then xT y + yTx ≤ εxTx + ε−1 yT y.

LEMMA 3.2 (Boyd et al. [4]). Given constant matrices �1, �2 and �3 where
�1 =�

T
1 and 0<�2 =�

T
2 , we then have �1 +�

T
3�
−1
2 �3 < 0 if and only if[

�1 �T
3

�3 −�2

]
< 0 or

[
−�2 �3

�T
3 �1

]
< 0.

LEMMA 3.3 (Gu [10]). For any positive-definite matrix M, scalar γ > 0, vector
function w : [0, γ ] → Rn such that the integrations concerned are well defined, we
have (∫ γ

0
w(s) ds

)T

M

(∫ γ

0
w(s) ds

)
≤ γ

(∫ γ

0
wT(s)Mw(s) ds

)
.

LEMMA 3.4 (Ren and Cao [17]). Let f (x)= ( f1(x), f2(x), . . . , fL(x))T ∈ RL

where L is an integer, and 6µ = diag{µ1, . . . , µn} where µi is defined in
Assumption 2.1. Then, from Assumptions 2.1 and 2.2,

f T(x) f (x)≤ LxT6µ6µx . (3.1)
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LEMMA 3.5 (Petersen [15]). Given matrices�, 0 and4with appropriate dimensions
and with � symmetrical, then

�+ 0F4+4T FT0T < 0

for any F satisfying FT F ≤ I , if and only if there exists a scalar ε > 0 such that

�+ ε00T
+ ε−14T4< 0.

3.1. Exponential stability for deterministic systems The following theorem
provides a sufficient condition for robust global exponential stability in mean square
for the network dynamics system (2.1).

THEOREM 3.6. Consider the dynamics of the high-order stochastic delayed neural
network (2.1). The system is robustly, globally, exponentially stable in mean square
if there exist scalars ρ > 0, εi > 0 (i = 1, 2, 3) and matrices P > 0, Q1 > 0, Q2 > 0,
Z j > 0 ( j = 1, 2, 3, 4),

XT
=

[
XT

1 , XT
2 , XT

3 , XT
4 , XT

5

]
∀X = H, J, K , L , R, S (X)

such that the PWCLMIS

P < ρ I, (3.2)

91 =



�11 PW0 �13 PW1 PW2 ρ6T
1 0 0

∗ −ε1 I 0 0 0 0 0 0
∗ ∗ −ε1 I 0 0 0 0 0
∗ ∗ ∗ −ε2 I 0 0 0 0
∗ ∗ ∗ ∗ −ε3 I 0 0 0
∗ ∗ ∗ ∗ ∗ −ρ I 0 0
∗ ∗ ∗ ∗ ∗ ∗ �77 ρ6T

2
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρ I


< 0, (3.3)

92 =



8 τH τ J τK hL h R hS
∗ −τ Z1 0 0 0 0 0
∗ ∗ −τ Z1 0 0 0 0
∗ ∗ ∗ −τ Z2 0 0 0
∗ ∗ ∗ ∗ −h Z3 0 0
∗ ∗ ∗ ∗ ∗ −h Z3 0
∗ ∗ ∗ ∗ ∗ ∗ −h Z4


< 0, (3.4)

holds, where

�11 =−AP − P A + Q1 + Q2, �13 = ε1L1/26µ,

�77 = ε2L6µ6µ − (1− dh)Q2,

8=81 +82 +8
T
2 , 81 = diag{0,−(1− dτ )Q1, 0, 0, 0},

82 =
[
H + K + L + S −H + J −J − K −L + R −R − S

]
.
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PROOF. Define a Lyapunov–Krasovskii functional V (t, x(t)) by

V (t, x(t)) = xT(t)Px(t)+
∫ t

t−τ(t)
xT(s)Q1x(s) ds +

∫ t

t−h(t)
xT(s)Q2x(s) ds

+

∫ 0

−τ

∫ 0

t+θ
xT(s)(ε3τ L6µ6µ)x(s) ds dθ

+

∫ 0

−τ

∫ 0

t+θ
ẋT(s)(Z1 + Z2)ẋ(s) ds dθ

+

∫ 0

−h

∫ 0

t+θ
ẋT(s)(Z3 + Z4)ẋ(s) ds dθ. (3.5)

By Itô’s differential formula [9], the stochastic derivative of V (t, x(t)) along (2.1)
is

dV (t, x(t))

=

[
xT(t)Pσ(t, x(t), x(t − h(t)))+ σT(t, x(t), x(t − h(t)))Px(t)

]
dw(t)

+ LV (t, x(t)) dt, (3.6)

where

LV (t, x(t)) = xT(t)
(
−AT P − P A + Q1 + Q2

)
x(t)

−
(
1− τ̇ (t)

)
xT(t − τ(t))Q1x(t − τ(t))

−
(
1− ḣ(t)

)
xT(t − h(t))Q2x(t − h(t))+ 2xT(t)PW0 f (x(t))

+ 2xT(t)PW1 f (x(t − h(t)))+ 2xT(t)PW2

∫ t

t−τ
f (x(s)) ds

−

∫ t

t−τ
xT(s)(ε3τ L6µ6µ)x(s) ds −

∫ t

t−τ
ẋT(s)(Z1 + Z2)ẋ(s) ds

−

∫ t

t−h
ẋT(s)(Z3 + Z4)ẋ(s) ds

+ trace
[
σT(t, x(t), x(t − h(t))

)
Pσ
(
t, x(t), x(t − h(t))

)]
. (3.7)

According to conditions (2.3) and (3.2),

trace
[
σT(t, x(t), x(t − h(t))

)
Pσ
(
t, x(t), x(t − h(t))

)]
≤ ρ

[
xT(t)6T

161x(t)+ xT(t − h(t))6T
262x(t − h(t))

]
. (3.8)
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By Lemmas 3.1 and 3.4,

2xT(t)PW0 f (x(t)) ≤ ε1 f T(x(t)) f (x(t))+ ε−1
1 xT(t)PW0W T

0 Px(t)

≤ xT(t)
(
ε1L6µ6µ + ε

−1
1 PW0W T

0 P
)

x(t), (3.9)

2xT(t)PW1 f (x(t − h(t))) ≤ ε2 f T(x(t − h(t))) f (x(t − h(t)))

+ ε−1
2 xT(t)PW1W T

1 Px(t)

≤ ε2xT(t − h(t))L6µ6µx(t − h(t))

+ ε−1
2 xT(t)PW1W T

1 Px(t) (3.10)

and

2xT(t)PW2

∫ t

t−τ
f (x(s)) ds ≤ ε3

(∫ t

t−τ
f (x(s)) ds

)T ∫ t

t−τ
f (x(s)) ds

+ ε−1
3 xT(t)PW2W T

2 Px(t), (3.11)

where ε1, ε2, ε3 > 0.
By Lemmas 3.3 and 3.4, we have that

ε3

(∫ t

t−τ
f (x(s)) ds

)T ∫ t

t−τ
f (x(s)) ds ≤ ε3τ

∫ t

t−τ
f T(x(s)) f (x(s)) ds

≤

∫ t

t−τ
xT(s)(ε3τ L6µ6µ)x(s) ds. (3.12)

Substituting (3.8)–(3.12) into (3.7) and taking note of (2.2) gives

LV (t, x(t))≤ LV1(t, x(t))+ LV2(t, x(t)), (3.13)

where
LV1(t, x(t))= ξT

1 (t)4ξ1(t), (3.14)

for

ξ1(t)=
[
xT(t) xT(t − h(t))

]T
, 4= diag{411, 422},

411 = −AP − P A + Q1 + Q2 + ρ6
T
161 + ε1L6µ6µ + ε

−1
1 PW0W T

0 P

+ ε−1
2 PW1W T

1 P + ε−1
3 PW2W T

2 P,

422 = ε2L6µ6µ + ρ6
T
262 − (1− dh)Q2

and

LV2(t, x(t)) = −(1− dτ )x
T(t − τ(t))Q1x(t − τ(t))−

∫ t

t−τ
ẋT(s)(Z1 + Z2)ẋ(s) ds

−

∫ t

t−h
ẋT(s)(Z3 + Z4)ẋ(s) ds. (3.15)
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It follows from the Schur complement lemma (Lemma 3.2) that (3.3) implies that
4< 0, so we obtain

LV1(t, x(t)) < 0. (3.16)

Next, we observe LV2(t, x(t)).
By the Leibniz–Newton formula, for any matrices H , J , K , L , R and S with

appropriate dimensions:

2ξT
2 (t)H

[
x(t)− x(t − τ(t))−

∫ t

t−τ(t)
ẋ(s) ds

]
= 0,

2ξT
2 (t)J

[
x(t − τ(t))− x(t − τ)−

∫ t−τ(t)

t−τ
ẋ(s) ds

]
= 0,

2ξT
2 (t)K

[
x(t)− x(t − τ)−

∫ t

t−τ
ẋ(s) ds

]
= 0,

2ξT
2 (t)L

[
x(t)− x(t − h(t))−

∫ t

t−h(t)
ẋ(s) ds

]
= 0,

2ξT
2 (t)R

[
x(t − h(t))− x(t − h)−

∫ t−h(t)

t−h
ẋ(s) ds

]
= 0,

2ξT
2 (t)S

[
x(t)− x(t − h)−

∫ t

t−h
ẋ(s) ds

]
= 0,

where

ξ2(t)=
[
xT(t) xT(t − τ(t)) xT(t − τ) xT(t − h(t)) xT(t − h)

]T
.

On adding the left-hand sides to (3.15), we obtain

LV2(t, x(t))

≤−(1− dτ )x
T(t − τ(t))Q1x(t − τ(t))+ 2ξT

2 (t)H [x(t)− x(t − τ(t))]

+ 2ξT
2 (t)J [x(t − τ(t))− x(t − τ)] + 2ξT

2 (t)K [x(t)− x(t − τ)]

+ τξT
2 (t)

(
H Z−1

1 HT
+ J Z−1

1 J T
+ K Z−1

2 K T
)
ξT

2 (t)

−

∫ t

t−τ(t)

[
ẋT(s)Z1 + ξ

T
2 (t)H

]
Z−1

1

[
ZT

1 ẋ(s)+ HTξ2(t)
]

ds

−

∫ t−τ(t)

t−τ

[
ẋT(s)Z1 + ξ

T
2 (t)J

]
Z−1

1

[
ZT

1 ẋ(s)+ J Tξ2(t)
]

ds
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−

∫ t

t−τ

[
ẋT(s)Z2 + ξ

T
2 (t)K

]
Z−1

2

[
ZT

2 ẋ(s)+ K Tξ2(t)
]

ds

+ 2ξT
2 (t)L[x(t)− x(t − h(t))] + 2ξT

2 (t)S[x(t)− x(t − h)]

+ 2ξT
2 (t)R[x(t − h(t))− x(t − h)]

+ hξT
2 (t)(L Z−1

3 LT
+ RZ−1

3 RT
+ SZ−1

4 ST)ξT
2 (t)

−

∫ t

t−h(t)

[
ẋT(s)Z3 + ξ

T
2 (t)L

]
Z−1

3

[
ZT

3 ẋ(s)+ LTξ2(t)
]

ds

−

∫ t−h(t)

t−h

[
ẋT(s)Z3 + ξ

T
2 (t)R

]
Z−1

3

[
ZT

3 ẋ(s)+ RTξ2(t)
]

ds

−

∫ t

t−h

[
ẋT(s)Z4 + ξ

T
2 (t)S

]
Z−1

4

[
ZT

4 ẋ(s)+ STξ2(t)
]

ds

≤ ξT
2 (t)

[
8+ τH Z−1

1 HT
+ τ J Z−1

1 J T
+ τK Z−1

2 K T
+ hL Z−1

3 LT

+ h RZ−1
3 RT

+ hSZ−1
4 ST

]
ξ2(t). (3.17)

From (3.4), by the Schur complement lemma (Lemma 3.2), we obtain

8+ τH Z−1
1 HT

+ τ J Z−1
1 J T

+ τK Z−1
2 K T

+ hL Z−1
3 LT

+ h RZ−1
3 RT

+ hSZ−1
4 ST < 0,

so that

LV2(t, x(t)) < 0. (3.18)

Thus, from (3.13), (3.14), (3.15), (3.17) and (3.18),

LV (t, x(t))= LV1(t, x(t))+ LV2(t, x(t)) < 0. (3.19)

If λ1 :=mini∈S{λmin(−91)}, λ2 :=mini∈S{λmin(−92)} and

E{LV (t, x(t))} ≤ −λ1E{‖x(t)‖2} − λ2E{‖x(t)‖2} ≤ −λ1E{‖x(t)‖2}< 0. (3.20)

The function

W (t, x(t)) := ekt V (t, x(t)), k > 0, (3.21)

has infinitesimal operator L given by

LW (t, x(t))= kekt V (t, x(t))+ ekt LV (t, x(t)). (3.22)
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Let φ(t)= [ξT
2 (t) ẋT(s)]T. By the generalized Itô formula we can obtain

from (3.21) that

E{W (t, x(t))} = E{W (0, x(0))} +
∫ t

0
kektE{V (s, x(s))} ds

+

∫ t

0
ektE{LV (s, x(s))} ds

≤ λmax(P)E{‖x(0)‖2} + kekt
[
λmax(P)+ τλmax(Q1)+ hλmax(Q2)

+ τλmax(Z1 + Z2)+ hλmax(Z3 + Z4)+ ε3τ
2L6µ6µ

]
×

∫ τ0

0
E{‖φ(s)‖2} ds − λ1ekt

∫ τ0

0
E{‖x(s)‖2} ds

≤ η sup
−τ0≤s≤0

E{‖φ(t)‖2}, (3.23)

where

η = λmax(P)+ τ0kekt[λmax(P)+ τλmax(Q1)+ hλmax(Q2)+ τλmax(Z1 + Z2)

+ hλmax(Z3 + Z4)+ ε3τ
2L6µ6µ

]
.

Also, it is easy to see that

E{V (t, x(t))} ≥ λmin(P)E{‖x(t)‖2}. (3.24)

From (3.23) and (3.24), if follows that

E{‖x(t)‖2} ≤ λ−1
min(P)ηe−kt sup

−τ0≤s≤0
E{‖φ(s)‖2}. (3.25)

This completes the proof. 2

REMARK 4. Theorem 3.6 gives a new stability criteria for system (2.1). We define
a new Lyapunov–Krasovskii functional (3.5) which makes full use of the information
about discrete and distributed time delays to derive the result. Furthermore, some
novel techniques have been exploited in the calculation of the time derivative of V (t).
First, no assumptions about Q1 and Q2 are involved in the system (2.1). However,
Q1 = ε2L6µ6µ + ρ6T

262 and Q2 = ε3τ L6µ6µ have been adopted in [20]. Thus,
the presented criteria have the potential to yield more general results. Second, our
result concerns exponential stability while the result in [20] relates to asymptotic
stability. So our result gives faster convergence. Finally, the PWCLMIS presented
in [14] has been employed in this note.

If only discrete time delay appears in the neural network, (2.1) can be simplified to

dx(t) = [−Ax(t)+W0 f (x(t))+W1 f (x(t − h(t)))] dt

+ σ(t, x(t), x(t − h(t))) dw(t). (3.26)
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The stability issue for stochastic high-order neural networks with discrete delays
has been investigated in [20], and the following corollary provides a more universal
result.

COROLLARY 3.7. Consider the dynamics of the neural network (3.26). The system
is robustly, globally, exponentially stable in mean square if there exist scalars ρ > 0,
ε1 > 0 and ε2 > 0 and matrices P > 0, Q2 > 0, Z3 > 0 and Z4 > 0,

L =

L1
L2
L3

, R =

R1
R2
R3

, S =

S1
S2
S3

 (Y)

such that the following PWCLMIS holds:

P < ρ I, (3.27)

�̄11 PW0 �13 PW1 ρ6T
1 0 0

∗ −ε1 I 0 0 0 0 0
∗ ∗ −ε1 I 0 0 0 0
∗ ∗ ∗ −ε2 I 0 0 0
∗ ∗ ∗ ∗ −ρ I 0 0
∗ ∗ ∗ ∗ ∗ �77 ρ6T

2
∗ ∗ ∗ ∗ ∗ ∗ −ρ I


< 0, (3.28)


8̄ hL h R hS
∗ −h Z3 0 0
∗ ∗ −h Z3 0
∗ ∗ ∗ −h Z4

< 0, (3.29)

where

�̄11 =−AP − P A + Q2, 8̄= 8̄2 + 8̄
T
2 , 8̄2 =

[
L + S −L + R −R − S

]
.

Furthermore, if there are no stochastic perturbations, the neural network (3.26) will
reduce to

dx(t)= [−Ax(t)+W0 f (x(t))+W1 f (x(t − h(t)))] dt. (3.30)

High-order neural networks of the type (3.30) have been investigated intensively
in the literature, for example in [7, 17, 20, 26]. The following corollary provides
a complementary method to the results in [7, 17, 26]. Furthermore, the following
corollary is less restrictive than that in [20].

COROLLARY 3.8. Consider the dynamics of the neural network (3.30). The system
is robustly, globally, exponentially stable if there exist scalars ε1 > 0 and ε2 > 0 and
matrices P > 0, Q2 > 0, Z3 > 0 and Z4 > 0, and (Y) such that the PWCLMIS which
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is constructed by (3.29) and the LMI
�̄11 PW0 �13 PW1 0
∗ −ε1 I 0 0 0
∗ ∗ −ε1 I 0 0
∗ ∗ ∗ −ε2 I 0
∗ ∗ ∗ ∗ �77

< 0 (3.31)

holds.

3.2. Exponential stability for uncertain systems The following theorem gives a
sufficient condition of robustly exponentially stable in mean square for the network
dynamics of (2.4).

THEOREM 3.9. Consider the dynamics of the high-order uncertain stochastic delayed
neural network (2.4). The system is robustly, globally, exponentially stable in the mean
square if there exist scalars ρ > 0, εi > 0 (i = 1, 2, 3) and matrices P > 0, Q1 > 0,
Q2 > 0, Z j > 0 ( j = 1, 2, 3, 4) and (X) such that the PWCLMIS which is constructed
by (3.2), (3.4) and the following LMI holds:

�11 PW0 �13 PW1 PW2 ρ6T
1 P M −ε4 N T

1 0 0

∗ −ε1 I 0 0 0 0 0 ε4 N T
2 0 0

∗ ∗ −ε1 I 0 0 0 0 0 0 0
∗ ∗ ∗ −ε2 I 0 0 0 ε4 N T

3 0 0
∗ ∗ ∗ ∗ −ε3 I 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −ρ I 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε4 I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε4 I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �77 ρ6T

2
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρ I


< 0.

(3.32)

PROOF. From Theorem 3.6, the system (2.4) is robustly, globally, exponentially stable
in mean square if there exist scalars ρ > 0 and εi > 0 (i = 1, 2, 3) and matrices P > 0,
Q1 > 0, Q2 > 0 and Z j > 0 ( j = 1, 2, 3, 4), and (X) such that the PWCLMIS which
is constructed by (3.2), (3.4) and the LMI

�̃11 P(W0 +1W0) �13 P(W1 +1W1) PW2 ρ6T
1 0 0

∗ −ε1 I 0 0 0 0 0 0
∗ ∗ −ε1 I 0 0 0 0 0
∗ ∗ ∗ −ε2 I 0 0 0 0
∗ ∗ ∗ ∗ −ε3 I 0 0 0
∗ ∗ ∗ ∗ ∗ −ρ I 0 0
∗ ∗ ∗ ∗ ∗ ∗ �77 ρ6T

2
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρ I


< 0,

(3.33)
holds, where �̃11 =−(A +1A)P − P(A +1A)+ Q1 + Q2.
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Defining

9̂ =



�11 PW0 �13 PW1 PW2 ρ6T
1 0 0

∗ −ε1 I 0 0 0 0 0 0
∗ ∗ −ε1 I 0 0 0 0 0
∗ ∗ ∗ −ε2 I 0 0 0 0
∗ ∗ ∗ ∗ −ε3 I 0 0 0
∗ ∗ ∗ ∗ ∗ −ρ I 0 0
∗ ∗ ∗ ∗ ∗ ∗ �77 ρ6T

2
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρ I


,

cT
1 =

[
MT P 0 0 0 0 0 0 0

]
and

r1 =
[
−N1 N2 0 N3 0 0 0 0

]
and using (2.5) allows us to rewrite (3.33) as

9̂ + c1 Fr1 + rT
1 FTcT

1 < 0. (3.34)

By Lemma 3.5, Equation (3.34) holds if and only if there is a scalar ε4 > 0 such
that

9̂ + ε−1
4 c1cT

1 + εr
T
1 r1 < 0. (3.35)

It follows from the Schur complement lemma (Lemma 3.2) that (3.35) holds if and
only if (3.39) holds. The proof of Theorem 3.9 is complete. 2

If only the discrete time delay appears in the neural network, (2.4) can be simplified
to

dx(t) =
[
−(A +1A)x(t)+ (W0 +1W0) f (x(t))+ (W1 +1W1) f (x(t − h(t)))

]
dt

+ σ(t, x(t), x(t − h)) dw(t). (3.36)

We have the following corollary.

COROLLARY 3.10. Consider the dynamics of the neural network (3.36). The system
is robustly, globally, exponentially stable in mean square if there exist scalars ρ > 0,
ε1 > 0 and ε2 > 0 and matrices P > 0, Q2 > 0, Z3 > 0 and Z4 > 0, and (Y) such that
the PWCLMIS which is constructed by (3.27), (3.29) and the LMI

�11 PW0 �13 PW1 ρ6T
1 P M −ε4 N T

1 0 0

∗ −ε1 I 0 0 0 0 ε4 N T
2 0 0

∗ ∗ −ε1 I 0 0 0 0 0 0
∗ ∗ ∗ −ε2 I 0 0 ε4 N T

3 0 0
∗ ∗ ∗ ∗ −ρ I 0 0 0 0
∗ ∗ ∗ ∗ ∗ −ε4 I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε4 I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ �77 ρ6T

2
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρ I


< 0 (3.37)

holds.
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If there are no stochastic perturbations σ(t, x(t), x(t − h)), the neural
network (3.36) will be reduced to

dx(t) =
[
−(A +1A)x(t)+ (W0 +1W0) f (x(t))

+ (W1 +1W1) f (x(t − h(t)))
]

dt. (3.38)

We have the following corollary.

COROLLARY 3.11. Consider the dynamics of the neural network (3.38). The system
is robustly, globally, exponentially stable if there exist scalars ε1 > 0 and ε2 > 0 and
matrices P > 0, Q2 > 0, Z3 > 0 and Z4 > 0, and (Y) such that the PWCLMIS which
is constructed by (3.29) and the LMI

�11 PW0 �13 PW1 P M −ε4 N T
1 0

∗ −ε1 I 0 0 0 ε4 N T
2 0

∗ ∗ −ε1 I 0 0 0 0
∗ ∗ ∗ −ε2 I 0 ε4 N T

3 0
∗ ∗ ∗ ∗ −ε4 I 0 0
∗ ∗ ∗ ∗ ∗ −ε4 I 0
∗ ∗ ∗ ∗ ∗ ∗ �77


< 0 (3.39)

holds.

4. Numerical examples

EXAMPLE 1. Consider a two-neuron stochastic neural network (2.1) with both
discrete and distributed delays, where dτ = 0.5, dh = 0.5, L = 1.2 and

A =

[
1.2 0
0 1.2

]
, W0 =

[
1.5 −1.6
−1.6 1.5

]
, W1 =

[
1.2 0.3
0.3 0.9

]
,

W2 =

[
0.16 −0.64
−0.64 0.16

]
,

6µ =

[
0.2 0
0 0.2

]
, 61 =

[
0.08 0

0 0.08

]
and 62 =

[
0.09 0

0 0.09

]
.

Table 1 gives the maximum allowable value h for different τ determined by
Theorem 3.6.

TABLE 1. Maximum h calculated for various τ from Theorem 3.6 for Example 1.

τ Maximum allowable value of h

1.0000× 1020 3.1467× 1015

1.0000× 1015 1.3350× 1021

1.0000× 1010 5.0000× 1020
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However, by applying Theorem 1 of [20], we gain the maximum allowable value
τ = 1.7855. At the same time, Theorem 1 of [20] is discrete time-delay h independent.

EXAMPLE 2. Consider a two-neuron uncertain stochastic neural network (2.4) with
mixed delays, where dτ = 0.5, dh = 0.5, L = 1.2 and

A =

[
0.4 0
0 0.4

]
, W0 =

[
0.1 −0.2
−0.2 0.1

]
, W1 =

[
0.2 0.3
0.3 0.1

]
,

W2 =

[
0.1 −0.64
−0.64 0.1

]
,

6µ =

[
0.1 0
0 0.1

]
, 61 =

[
0.01 0

0 0.01

]
, 62 =

[
0.04 0

0 0.04

]
,

M = N2 =

[
0.1 0
0 0.2

]
and N1 = N3 =

[
0.2 0
0 0.1

]
.

Table 2 gives the maximum allowable value h for different τ determined by
Theorem 3.9.

TABLE 2. Maximum h calculated for various τ from Theorem 3.9 for Example 2.

τ Maximum allowable value of h

1.0000× 1020 5.6448× 1014

1.0000× 1015 1.2302× 1020

1.0000× 1010 2.8015× 1019

From Theorems 3.6 and 3.9, the admissible mixed time delays are large. We are able
to obtain such large mixed time delays because of the PWCLMIS approach and the fact
that the value fields of time delays in the PWCLMIS are free. In the PWCLMIS, all
system parameters A, W0, W1, W2, 6µ, 61, 62, M , N1, N2 and N3 are in one LMI
and the time delays τ and h in the other which is without system parameters. At the
same time, there are free-weighting matrices H , J , K , L , R, S in the latter LMI. So
the value fields of the time delays are large (or free).

5. Conclusion

This paper has proposed new sufficient conditions of global exponential stability for
deterministic and uncertain stochastic high-order neural networks. These conditions
are discrete and distributed time-varying delay-dependent conditions. The concept of
a PWCLMIS has been developed. The criteria have been developed in terms of the
PWCLMIS, by which large mixed time delays can be achieved. The criteria are more
general than those in some recent works. Two numerical examples have been given to
demonstrate the merit of the criteria presented.
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