OPERATOR ALGEBRAS RELATED TO THOMPSON'S GROUP \boldsymbol{F}

PAUL JOLISSAINT

(Received 24 October 2003; revised 25 November 2004)

Communicated by A. Pryde

Abstract

Let F^{\prime} be the commutator subgroup of F and let Γ_{0} be the cyclic group generated by the first generator of F. We continue the study of the central sequences of the factor $L\left(F^{\prime}\right)$, and we prove that the abelian von Neumann algebra $L\left(\Gamma_{0}\right)$ is a strongly singular MASA in $L(F)$. We also prove that the natural action of F on $[0,1]$ is ergodic and that its ratio set is $\{0] \cup\left\{2^{k} ; k \in \mathbb{Z}\right\}$.

2000 Mathematics subject classification: primary 37A10; secondary 43A07.

1. Introduction

Thompson's group F is a countable group with infinite conjugacy classes which has remarkable properties, discovered in 1965 and rediscovered later by homotopy theorists. It is known that F contains no non abelian free subgroup, and it is still unknown whether it is amenable or not. However, it shares many properties with amenable groups; for instance, it is inner amenable: see [6, 7].

We recall the two most commonly known descriptions of F. On the one hand, as an abstract group, it has the following presentation:

$$
F=\left\langle x_{0}, x_{1}, \ldots \mid x_{i}^{-1} x_{n} x_{i}=x_{n+1}, 0 \leq i<n\right\rangle
$$

On the other hand, it is the group of homeomorphisms of the interval [0,1] that are piecewise linear, differentiable except at finitely many dyadic rational numbers and such that on intervals of differentiability the derivatives are integral powers of 2 . To each of these descriptions corresponds a tool that we present below. We refer to [1, 2] for more details on Thompson's groups F, T and V, and for some results that will be
used here. The first one is the existence of a unique normal form for every non trivial element of F; it is Corollary-Definition 2.7 of [2].

LEMMA 1.1. Every non trivial element of F can be expressed in unique normal form $x_{i_{1}} \cdots x_{i_{k}} x_{j_{m}}^{-1} \cdots x_{j_{1}}^{-1}$, where
(1) $0 \leq i_{1} \leq \cdots \leq i_{k}, j_{1} \leq \cdots \leq j_{m}$ and $i_{k} \neq j_{m}$;
(2) if x_{i} and x_{i}^{-1} appear explicitly in the expression for some i, then also does x_{i+1} or x_{i+1}^{-1}.

The second lemma that will be needed is related to the action of F on $[0,1]$: see [2, Lemma 4.2].

LEMMA 1.2. If $0=a_{0}<a_{1}<\cdots<a_{n}=1$ and $0=b_{0}<b_{1}<\cdots<b_{n}=1$ are partitions of $[0,1]$ consisting of dyadic rational numbers, then there exists $g \in F$ such that $g\left(a_{i}\right)=b_{i}$ for every $i=0, \ldots$, n. If moreover $a_{i-1}=b_{i-1}$ and $a_{i}=b_{i}$ for some $i>0$, then g can be chosen so that $g(t)=t$ for every $t \in\left[a_{i-1}, a_{i}\right]$.

In [7], we studied the von Neumann algebras associated with F and with some of its subgroups: we proved not only that the factor $L(F)$ is a McDuff factor (that is, that $L(F)$ is *-isomorphic to the tensor product factor $L(F) \otimes R$ where R denotes the hyperfinite II_{1} factor), but that the pair $L\left(F^{\prime}\right) \subset L(F)$ has the relative McDuff property: there is a ${ }^{*}$-isomorphism $\Phi: L(F) \otimes R \rightarrow L(F)$ such that its restriction to $L\left(F^{\prime}\right) \otimes R$ is still an isomorphism onto the subfactor $L\left(F^{\prime}\right)$ associated to the derived subgroup $F^{\prime}=[F, F]$ of F.

In Section 2, we present further properties of central sequences of $L\left(F^{\prime}\right):$ on the one hand, we prove that there exists a sequence of unitary operators $\left(u_{n}\right) \subset L\left(F^{\prime}\right)$ such that $\left(u_{n} x u_{n}^{*}\right)$ is a central sequence for every $x \in L\left(F^{\prime}\right)$, and on the other hand, we show that $L\left(F^{\prime}\right)$ is approximately normal in $L(F)$ in the sense of [3].

Section 3 is devoted to the study of the von Neumann subalgebra $L\left(\Gamma_{0}\right)$ where Γ_{0} is the cyclic subgroup of F generated by the generator $x_{0}: L\left(\Gamma_{0}\right)$ is a strongly singular MASA of $L(F)$ (see [8]) and we show that its Pukanszky invariant is $\{\infty\}$.

Finally, we prove in Section 4 that the natural action of F on $[0,1]$ is ergodic and we show that its ratio set is $\{0\} \cup\left\{2^{k} ; k \in \mathbb{Z}\right\}$.

Notation For $g \in F$ viewed as a homeomorphism of $[0,1]$, we denote by $S(g)$ the set of numbers $t \in[0,1]$ such that $g(t) \neq t$. We will use the following properties which are very easy to prove:
(S1) $S\left(g^{-1}\right)=S(g)$ for every $g \in F$;
(S2) if $t \in S(g)$ then $g(t) \in S(g)$ for every $g \in F$;
(S3) $S\left(g h g^{-1}\right)=g(S(h))$ for all $g, h \in F$;
(S4) if $S(g) \cap S(h)=\emptyset$, then $g h=h g$.

Let M be a finite von Neumann algebra and let τ be a normal, normalized, faithful trace on M. We denote by $\|a\|_{2}=\tau\left(a^{*} a\right)^{1 / 2}$ the associated Hilbertian norm.

If Γ is a countable group, let λ denote its left regular representation on $\ell^{2}(\Gamma)$ defined by:

$$
(\lambda(g) \xi)(h)=\xi\left(g^{-1} h\right)
$$

for all $g, h \in \Gamma$ and $\xi \in \ell^{2}(\Gamma)$. The bicommutant $\lambda(\Gamma)^{\prime \prime}$ in the algebra of linear, bounded operators on $\ell^{2}(\Gamma)$ is a von Neumann algebra denoted by $L(\Gamma)$. It is a finite von Neumann algebra with natural trace τ defined by $\tau(x)=\left\langle x \delta_{e}, \delta_{e}\right\rangle$, where δ_{e} is the characteristic function of $\{e\} . L(\Gamma)$ is a type Π_{1} factor if and only if Γ is an icc group. Every operator $x \in L(\Gamma)$ is expressed as a series $\sum_{g \in \Gamma} x(g) \lambda(g)$ where $x(g)=\tau\left(x \lambda\left(g^{-1}\right)\right)$ and $\sum_{g \in \Gamma}|x(g)|^{2}=\|x\|_{2}^{2}$. If H is a subgroup of Γ, then $L(H)$ is identified in a natural way as a von Neumann subalgebra of $L(\Gamma)$: it is the subset of elements x such that $x(g)=0$ for every $g \notin H$.

Let M be a type Π_{1} factor. A central sequence in M is a bounded sequence $\left(x_{n}\right) \subset M$ such that $\left\|x_{n} y-y x_{n}\right\|_{2} \rightarrow 0$ as $n \rightarrow \infty$ for every $y \in M$. We write sometimes $[a, b]$ for $a b-b a$.

2. The subfactor $L\left(F^{\prime}\right)$ of $L(F)$

Let F^{\prime} denote the commutator subgroup of F as in the preceding section. It is known that it is a simple group, and it is the subgroup of F of elements that coincide with the identity in neighbourhoods of 0 and 1 . Our first result states that $L\left(F^{\prime}\right)$ is inner asymptotically commutative in the sense of [10].

PROPOSITION 2.1. There exists a sequence $\left(u_{n}\right)_{n \geq 1} \subset U\left(L\left(F^{\prime}\right)\right)$ such that

$$
\lim _{n \rightarrow \infty}\left\|\left[u_{n} x u_{n}^{*}, y\right]\right\|_{2}=0
$$

for all $x, y \in L\left(F^{\prime}\right)$. In other words, for every $x \in L\left(F^{\prime}\right),\left(u_{n} x u_{n}^{*}\right)$ is a central sequence of $L\left(F^{\prime}\right)$.

We don't know if $L(F)$ itself is inner asymptotically commutative.
The proof rests on the following lemma of Zeller-Meyer:

Lemma 2.2. Let G be an icc group. If there exists an increasing sequence (E_{n}) of subsets of G and a sequence $\left(g_{n}\right)$ of elements of G such that $\bigcup E_{n}=G$ and $g_{n} g g_{n}^{-1} h=h g_{n} g g_{n}^{-1}$ for all $g, h \in E_{n}$ and for every n, then the factor $L(G)$ is inner asymptotically commutative.

Proof of Proposition 2.1. Set, for $n \geq 1$,

$$
E_{n}=\left\{g \in F^{\prime} ; S(g) \subset\left(1 / 2^{n}, 1-1 / 2^{n}\right)\right\}
$$

so that $E_{n} \subset E_{n+1}$ and $\bigcup_{n} E_{n}=F^{\prime}$.
Fix $n \geq 1$ and consider the following dyadic partitions of [0,1]:

$$
0=a_{0}<a_{1}=\frac{1}{2^{n+1}}<a_{2}=\frac{1}{2^{n}}<a_{3}=1-\frac{1}{2^{n}}<a_{4}=1-\frac{1}{2^{n+1}}<a_{5}=1
$$

and

$$
0=b_{0}<b_{1}=\frac{1}{2^{n+1}}<b_{2}=1-\frac{1}{2^{n}}<b_{3}=1-\frac{3}{2^{n+2}}<b_{4}=1-\frac{1}{2^{n+1}}<b_{5}=1
$$

so that b_{3} is the mean value of $1-1 / 2^{n}$ and $1-1 / 2^{n+1}$. By Lemma 1.2 , one can find $g_{n} \in F$ such that $g_{n}\left(a_{i}\right)=b_{i}$ for $i=0, \ldots, 5$ and that $g_{n}(t)=t$ for $t \in\left[0, a_{1}\right] \cup\left[a_{4}, 1\right]$. Thus $g_{n} \in F^{\prime}$.

Finally, if $x, y \in E_{n}$, Property (S3) of Section 1 gives

$$
S\left(g_{n} x g_{n}^{-1}\right)=g_{n}(S(x)) \subset g_{n}\left(\left(a_{2}, a_{3}\right)\right) \subset\left(b_{2}, b_{3}\right),
$$

and as $S(y) \subset\left(a_{2}, a_{3}\right)$, Property (S4) yields $g_{n} x g_{n}^{-1} y=y g_{n} x g_{n}^{-1}$. Lemma 2.2 implies that $L\left(F^{\prime}\right)$ is inner asymptotically commutative.

Before stating the next proposition, let M be a type II_{1} factor and let N be a subalgebra of $M . N$ is called normal in M if $\left(N^{\prime} \cap M\right)^{\prime} \cap M=N$. Following [3], we say that N is approximately normal in M if

$$
\begin{aligned}
N= & \left\{x \in M ;\left\|y_{n} x-x y_{n}\right\|_{2} \rightarrow 0\right. \text { for all bounded sequences } \\
& \left.\left(y_{n}\right) \subset M \text { such that }\left\|y_{n} y-y y_{n}\right\|_{2} \rightarrow 0 \text { for all } y \in N\right\} .
\end{aligned}
$$

Proposition 2.3. The subfactor $L\left(F^{\prime}\right)$ is approximately normal in $L(F)$.
For future use, denote by \mathscr{T} the set of sequences $\left(g_{n}\right)_{n \geq 1} \subset F^{\prime}$ such that, for every $\varepsilon>0$, there exists an integer $l>0$ such that $S\left(g_{n}\right) \cap[\varepsilon, 1-\varepsilon]=\emptyset$ for every $n>l$. In fact, if $\left(g_{n}\right) \in \mathscr{T}$, then the sequence $\left(\lambda\left(g_{n}\right)\right) \subset L\left(F^{\prime}\right)$ is a central sequence (see for instance the proof of [7, Proposition 2.4]).

The proof of Proposition 2.3 rests on the following lemma:
Lemma 2.4. Let $h \in F \backslash F^{\prime}$. Then there exists $\left(g_{n}\right) \in \mathscr{T}$ such that the set $\left\{g_{n} h g_{n}^{-1} ; n \geq 1\right\}$ is infinite.

Proof. Since $h \notin F$, its right derivative at 0 or its left derivative at 1 is equal to 2^{k} for some non zero integer k. Assume to begin with that there exist $\varepsilon>0$ and a positive
integer k such that $h(t)=2^{k} t$ for $t \in[0, \varepsilon]$. Choose an integer $l \geq 1$ big enough so that $3 / 2^{l+2} \leq \varepsilon$. For $n \geq l$, set $a_{n}=1 / 2^{k+n+1}, b_{n}=3 / 2^{k+n+2}, c_{n}=1 / 2^{k+n}$ and

$$
a_{n}<b_{n}^{\prime}=\frac{3}{2^{k+n+2}}-\frac{1}{2^{k+n+3}}=\frac{5}{2^{k+n+3}}<b_{n} .
$$

There exists $g_{n} \in F^{\prime}$ such that $g_{n}(t)=t$ for $t \in\left[0, a_{n}\right] \cup\left[c_{n}, 1\right]$ and $g_{n}\left(b_{n}\right)=b_{n}^{\prime}$. Thus, setting $g_{n}=e$ for $n \leq l$, we get that $\left(g_{n}\right) \in \mathscr{T}$. Finally, let us check that if $m>k+n$, then $g_{m} h g_{m}^{-1} \neq g_{n} h g_{n}^{-1}$. As $S\left(g_{p}\right) \subset\left(1 / 2^{k+p+1}, 1 / 2^{k+p}\right)$, we get, on the one hand,

$$
g_{n} h g_{n}^{-1}\left(b_{m}^{\prime}\right)=g_{n} h\left(b_{m}^{\prime}\right)=g_{n}\left(2^{k} b_{m}^{\prime}\right)=\frac{5}{2^{m+3}}
$$

since $5 / 2^{m+3}<1 / 2^{k+n+1}$. On the other hand, the same kind of argument using $3 / 2^{m+3} \leq \varepsilon$ shows that

$$
g_{m} h g_{m}^{-1}\left(b_{m}^{\prime}\right)=\frac{3}{2^{m+3}} \neq g_{n} h g_{n}^{-1}\left(b_{m}^{\prime}\right)
$$

If $h(t)=2^{-k} t$ near 0 with $k>0$, then apply the above arguments to h^{-1}. Finally, if $h(t)=t$ near 0 , we reduce to the above cases in using the order two automorphism θ of F defined by $\theta(g)(t)=1-g(1-t)$: apply the above arguments to $\theta(h)$ and take the sequence $\left(\theta\left(g_{n}\right)\right) \in \mathscr{T}$. This ends the proof of the lemma.

Proof of Proposition 2.3. We only need to show that if $x \in L(F)$ is such that $\left\|\left[x, \lambda\left(g_{n}\right)\right]\right\|_{2} \rightarrow 0$ as $n \rightarrow \infty$ for every sequence $\left(g_{n}\right) \in \mathscr{T}$, then $x \in L\left(F^{\prime}\right)$.

Let $h \in F \backslash F^{\prime}$; we will prove that $x(h)=0$. By the previous lemma, one can find a sequence $\left(g_{n}\right) \in \mathscr{T}$ such that $g_{n} h g_{n}^{-1} \neq g_{m} h g_{m}^{-1}$ for all $n \neq m$.

Fix $\varepsilon>0$. There exists an integer $l \geq 1$ such that $\left\|x-\lambda\left(g_{n}^{-1}\right) x \lambda\left(g_{n}\right)\right\|_{2}<\varepsilon / 2$ for $n \geq l$. Moreover, the series

$$
\sum_{n=1}^{\infty}\left|x\left(g_{n} h g_{n}^{-1}\right)\right|^{2}
$$

converges. Hence one can find an integer $l^{\prime} \geq l$ such that $\left|x\left(g_{n} h g_{n}^{-1}\right)\right|<\varepsilon / 2$ for every $n \geq l^{\prime}$. Then we have, for any $n \geq l^{\prime}$,

$$
\begin{aligned}
|x(h)| & =\left|\tau\left(x \lambda\left(h^{-1}\right)\right)\right| \\
& \leq\left|\tau\left(x \lambda\left(h^{-1}\right)-x \lambda\left(g_{n} h^{-1} g_{n}^{-1}\right)\right)\right|+\left|\tau\left(x \lambda\left(g_{n} h^{-1} g_{n}^{-1}\right)\right)\right| \\
& =\left|\tau\left(x \lambda\left(h^{-1}\right)\right)-\tau\left(\lambda\left(g_{n}^{-1}\right) x \lambda\left(g_{n}\right) \lambda\left(h^{-1}\right)\right)\right|+\left|\tau\left(x \lambda\left(g_{n} h^{-1} g_{n}^{-1}\right)\right)\right| \\
& \leq\left\|x-\lambda\left(g_{n}^{-1}\right) x \lambda\left(g_{n}\right)\right\|_{2}+\left|x\left(g_{n} h g_{n}^{-1}\right)\right|<\varepsilon .
\end{aligned}
$$

Thus $x(h)=0$.

3. A strongly singular MASA in $L(F)$

Let Γ be an icc countable group and let Γ_{0} be an abelian subgroup of Γ. When $\Gamma=F, \Gamma_{0}$ denotes exclusively the cyclic subgroup generated by $x_{0} \in F$.

Recall from [8] that an abelian von Neumann subalgebra A of a type II_{1} factor M is strongly singular if the following inequality is true for every unitary element $u \in M$:

$$
\left\|E_{u A u^{*}}-E_{A}\right\|_{\infty, 2} \geq\left\|u-E_{A}(u)\right\|_{2}
$$

where E_{B} denotes the trace-preserving conditional expectation from M onto the von Neumann algebra B, and, for $\phi: M \rightarrow M$ linear,

$$
\|\phi\|_{\infty, 2}=\sup \left\{\|\phi(x)\|_{2} ;\|x\| \leq 1\right\}
$$

Observe that such an algebra is automatically a MASA of M. When $M=L(\Gamma)$ is a factor associated to an icc group Γ and $A=L\left(\Gamma_{0}\right)$ where Γ_{0} is an abelian subgroup of $\Gamma,[8$, Lemma 4.1] gives a sufficient condition in order that A be a strongly singular MASA in M; we recall its statement for convenience.

Lemma 3.1 ([8]). Let Γ be an icc group with an abelian subgroup Γ_{0}. Assume that they satisfy the following condition:
(SS) If $g_{1}, \ldots, g_{m}, h_{1}, \ldots, h_{n} \in \Gamma \backslash \Gamma_{0}$, then there exists $g_{0} \in \Gamma_{0}$ such that $g_{i} g_{0} h_{j} \notin \Gamma_{0}$ for all $i=1, \ldots, m$ and all $j=1, \ldots, n$.
Then $A=L\left(\Gamma_{0}\right)$ is a strongly singular MASA in $L(\Gamma)$.
It turns out that the abelian subgroup Γ_{0} of F satisfies a stronger condition that will be also used to prove an ergodic property for the conditional expectation onto $L\left(\Gamma_{0}\right)$.

LEMMA 3.2. The pair $\left(\Gamma_{0}, F\right)$ satisfies the following condition:
(ST) If $g_{1}, \ldots, g_{m}, h_{1}, \ldots, h_{n} \in F \backslash \Gamma_{0}$, then there exists a finite subset E of Γ_{0} such that $g_{i} g_{0} h_{j} \notin \Gamma_{0}$ for all $i=1, \ldots, m$, all $j=1, \ldots, n$ and for every $g_{0} \in \Gamma_{0} \backslash E$.

Proof. Fix $g_{1}, \ldots, g_{m}, h_{1}, \ldots, h_{n} \in F \backslash \Gamma_{0}$. We write $g_{i}=x_{0}^{p_{i}} g_{i}^{\prime} x_{0}^{-q_{i}}$ and $h_{j}=$ $x_{0}^{r_{j}} h_{j}^{\prime} x_{0}^{-s_{j}}$ for all i, j, where p_{i}, q_{i}, r_{j} and s_{j} are non negative integers, and where $g_{i}^{\prime}, h_{j}^{\prime}$ all belong to $F_{1} \backslash\{e\}$, where F_{1} is the subgroup of F generated by $\left\{x_{1}, x_{2}, \ldots\right\}$. It is the range of the 'shift map' $\phi: F \rightarrow F$ defined by $\phi\left(x_{n}\right)=x_{n+1}$ for every $n \geq 0$. See [1, page 369]. Hence $x_{0}^{-k} g x_{0}^{k}=\phi^{k}(g)$ for every positive integer k and every $g \in F_{1}$. Using normal forms of g_{i}^{\prime} and h_{j}^{\prime}, observe that if l is a sufficiently large integer, then $\phi^{\prime}\left(g_{i}^{\prime}\right) h_{j}^{\prime} \notin \Gamma_{0}$ for all i, j. Thus, if $k>0$ is large enough and if we put $l_{i, j}=k-q_{i}+r_{j}$, we get $g_{i} x_{0}^{k} h_{j}=x_{0}^{p_{i}} g_{i}^{\prime} x_{0}^{l_{i j}} h_{j}^{\prime} x_{0}^{-s_{j}}=x_{0}^{p_{i}+l_{i j}} \phi^{l_{i j}}\left(g_{i}^{\prime}\right) h_{j}^{\prime} x_{0}^{-s_{j}}$, and we deduce that $g_{i} x_{0}^{k} h_{j}$ does not belong to Γ_{0}.

When $k=-k^{\prime}$ is negative, we have $g_{i}^{\prime} x_{0}^{-k^{\prime}} h_{j}^{\prime}=g_{i}^{\prime} \phi^{k^{\prime}}\left(h_{j}^{\prime}\right) x_{0}^{-k^{\prime}}$ for all i, j, which gives the same conclusion.

Similarly, it is easy to see that if Γ is the free group F_{N} of rank $N \geq 2$ on free generators a_{1}, \ldots, a_{N} and if Γ_{0} is the subgroup generated by some a_{i}, then the pair (Γ_{0}, Γ) satisfies condition (ST).

Proposition 3.3. Assume that Γ_{0} is an abelian subgroup of an icc group Γ and that the pair $\left(\Gamma_{0}, \Gamma\right)$ satisfies condition (ST). Set $A=L\left(\Gamma_{0}\right)$ and $M=L(\Gamma)$. Then A is a strongly singular MASA in M and the conditional expectation E_{A} satisfies:

$$
E_{A}(x)=w-\lim _{g_{0} \rightarrow \infty} \lambda\left(g_{0}\right) x \lambda\left(g_{0}^{-1}\right)
$$

for every $x \in M$.
Proof. The first assertion follows from Lemma 3.1. In order to prove the second one, fix x and $y \in M$ such that $\{g \in \Gamma ; x(g) \neq 0\}$ and $\{g \in \Gamma ; y(g) \neq 0\}$ are finite. We will prove that there exists a finite subset E of Γ_{0} such that

$$
\tau\left(E_{A}(x) y^{*}\right)=\tau\left(\lambda\left(g_{0}\right) x \lambda\left(g_{0}^{-1}\right) y^{*}\right)
$$

for every $g_{0} \in \Gamma_{0} \backslash E$. We write $C=\left\{g \in \Gamma \backslash \Gamma_{0} ; x(g) \neq 0\right\}$ and $D=\left\{g \in \Gamma \backslash \Gamma_{0}\right.$; $y(g) \neq 0\}$, which are finite sets, and we decompose x and y as $x=E_{A}(x)+x^{\prime}$ and $y=E_{A}(y)+y^{\prime}$ so that $x^{\prime}=\sum_{g \in C} x(g) \lambda(g)$ and $y^{\prime}=\sum_{g \in D} y(g) \lambda(g)$ are orthogonal to A.

It is easy to see that condition (ST) implies the existence of a finite subset E of Γ_{0} such that $g_{0} C g_{0}^{-1} \cap D=\emptyset$ for every $g_{0} \in \Gamma_{0} \backslash E$. Take $g_{0} \in \Gamma_{0} \backslash E$; since Γ_{0} is abelian, we have $\lambda\left(g_{0}\right) E_{A}(x) \lambda\left(g_{0}^{-1}\right)=E_{A}(x)$ and similarly for y. Thus

$$
\begin{aligned}
\tau\left(\lambda\left(g_{0}\right) x \lambda\left(g_{0}^{-1}\right) y^{*}\right) & =\tau\left(E_{A}(x) y^{*}\right)+\tau\left(\lambda\left(g_{0}\right) x^{\prime} \lambda\left(g_{0}^{-1}\right) y^{*}\right) \\
& =\tau\left(E_{A}(x) y^{*}\right)+\tau\left(x^{\prime} E_{A}\left(y^{*}\right)\right)+\tau\left(x^{\prime} \lambda\left(g_{0}^{-1}\right) y^{\prime *} \lambda\left(g_{0}\right)\right) \\
& =\tau\left(E_{A}(x) y^{*}\right)
\end{aligned}
$$

since $\tau\left(x^{\prime} E_{A}\left(y^{*}\right)\right)=0$ by orthogonality, and

$$
\begin{aligned}
\tau\left(x^{\prime} \lambda\left(g_{0}^{-1}\right) y^{\prime *} \lambda\left(g_{0}\right)\right) & =\tau\left(\sum_{h, k \in \Gamma \backslash \Gamma_{0}} x(h) \overline{y(k)} \lambda\left(h g_{0}^{-1} k^{-1} g_{0}\right)\right) \\
& =\sum_{h \in C} x(h) \overline{y\left(g_{0} h g_{0}^{-1}\right)}=0
\end{aligned}
$$

because $g_{0} C g_{0}^{-1} \cap D=\emptyset$.

Our last result about $L\left(\Gamma_{0}\right) \subset L(F)$ is the computation of its Pukanszky invariant which was suggested to us by G. Robertson. Let A be a MASA of some type Π_{1} factor M. Denote by \mathscr{A} the type I von Neumann algebra generated by $A \cup A^{\prime}$ in the algebra $B\left(L^{2}(M)\right)$, where A^{\prime} is the commutant of A. The orthogonal projection e_{A} of $L^{2}(M)$ onto $L^{2}(A)$ lies in the centre of \mathscr{A}^{\prime} and the reduced algebra $\mathscr{A}^{\prime} e_{A}$ is abelian. The reduced von Neumann algebra $\mathscr{A}^{\prime}\left(1-e_{A}\right)$ decomposes as a direct sum $\mathscr{A}^{\prime}\left(1-e_{A}\right)=$ $\mathscr{A}_{n_{1}}^{\prime} \oplus \mathscr{A}_{n_{2}}^{\prime} \oplus \ldots$ of homogeneous type $\mathrm{I}_{n_{i}}$ algebras, where $1 \leq n_{1}<n_{2}<\cdots \leq \infty$. Then the Pukanszky invariant of the pair $A \subset M$ is the set $\left\{n_{1}, n_{2}, \ldots\right\}$.

Let us recall [9, Proposition 3.6] which gives a way to compute Pukanszky invariant for pairs $L\left(\Gamma_{0}\right) \subset L(\Gamma)$ as above.

PROPOSITION 3.4 ([9]). Suppose that Γ_{0} is an abelian subgroup of an icc group Γ such that $L\left(\Gamma_{0}\right)$ is a MASA in $L(\Gamma)$. If $g^{-1} \Gamma_{0} g \cap \Gamma_{0}=\{e\}$ for every $g \in \Gamma \backslash \Gamma_{0}$, then the Pukanszky invariant of the pair $L\left(\Gamma_{0}\right) \subset L(\Gamma)$ is the set reduced to the number n of double classes $\Gamma_{0} g \Gamma_{0}$.

PROPOSITION 3.5. The Pukanszky invariant of the pair $L\left(\Gamma_{0}\right) \subset L(F)$ is $\{\infty\}$.
PROOF. There exists a homomorphism $\psi: F \rightarrow \mathbb{Z}$ such that $\psi\left(x_{n}\right)=1$ for every $n \geq 0$ because the defining relations of F are homogeneous. If there would exist $g \in F \backslash \Gamma_{0}$ and $k, l \in \mathbb{Z}$ such that $g x_{0}^{k} g^{-1}=x_{0}^{l}$, then, applying ψ on both sides gives $k=l$ which can be assumed positive. Let us write $g=x_{0}^{p} g^{\prime} x_{0}^{-q}$ with $g^{\prime} \in F_{1} \backslash\{e\}$ as in the proof of Lemma 2.4. We would get $g^{\prime} x_{0}^{k}=x_{0}^{k} g^{\prime}$, thus $\phi^{k}\left(g^{\prime}\right)=g^{\prime}$, but this would imply that $g^{\prime}=e$, hence that $g \in \Gamma_{0}$, but this is a contradiction.

Finally, set, for every integer $n>0: g_{n}=x_{1} \cdots x_{n}$. Then it is easy to see that the double classes $\Gamma_{0} g_{n} \Gamma_{0}$ are pairwise distinct.

4. The natural action of \boldsymbol{F} and the associated Krieger factor

Let Γ be a group acting (on the left) in a measure class preserving way on a standard probability space (Ω, μ). Recall that the full group $[\Gamma]$ of the action of Γ on Ω is the group of all automorphisms T of Ω such that $T \omega \in \Gamma \omega$ for μ-a.e. $\omega \in \Omega$. We also set

$$
[\Gamma]_{0}=\{T \in[\Gamma] ; \mu \circ T=\mu\}
$$

which is the subgroup of elements of [Γ] that preserve μ. The ratio set of the action of Γ on Ω is the set $r(\Gamma)$ of all numbers $\lambda \geq 0$ such that, for every $\varepsilon>0$ and for every Borel subset A with positive measure, there exists a subset B of A with positive measure and $g \in \Gamma$ such that $g B \subset A$ and

$$
\left|\frac{d \mu \circ g}{d \mu}(\omega)-\lambda\right|<\varepsilon \quad \forall \omega \in B
$$

Then $r(\Gamma)$ is a closed subset of $[0, \infty)$ and $r(\Gamma) \backslash\{0\}$ is a closed subgroup of the multiplicative group \mathbb{R}_{+}^{*}. Moreover, one has: $r(\Gamma)=r([\Gamma])$.

We consider here the natural action of F on the interval $[0,1]$ gifted with Lebesgue measure μ. Our goal is to prove that the action of F is ergodic and to compute its ratio set.

Proposition 4.1. The action of F on $[0,1]$ is ergodic and its ratio set is

$$
r(F)=\{0\} \cup\left\{2^{k} ; k \in \mathbb{Z}\right\}
$$

Let R_{F} be the equivalence relation on $[0,1]$ defined by the action of $F:$ if $s, t \in$ $[0,1]$, then the pair (s, t) belongs to R_{F} if and only if s and t are in the same F orbit. Let $M\left(R_{F}\right)$ be the associated Feldman-Moore factor [5]; it generalizes the group measure space construction of Murray and von Neumann for not necessarily free actions. Then the next result follows immediately from Proposition 4.1 and from [5, Proposition 2.11].

Corollary 4.2. $M\left(R_{F}\right)$ is a factor of type $\mathrm{III}_{1 / 2}$.
The proof of Proposition 4.1 is inspired by [4, Section 2].
Let K be the following group of bijections of $[0,1]:$ a bijection φ from $[0,1]$ to itself belongs to K if and only if there exists a partition $0<a_{1}<\cdots<a_{n}<1$ of [0,1] into dyadic rational numbers such that
(K1) $\varphi(t)=t$ for every $t \in\left[0, a_{1}\right) \cup\left[a_{n}, 1\right]$;
(K2) for every $1 \leq j \leq n-1$, there exists a dyadic rational number α_{j} such that $\varphi(t)=t+\alpha_{j}$ for every $t \in\left[a_{j}, a_{j+1}\right)$.

Lemma 4.3. K is a subgroup of $[F]_{0}$. In particular, $\mu \circ \varphi=\mu$ for every $\varphi \in K$.

PROOF. It suffices to prove that, if a, b and α are rational dyadic numbers such that $0<a<b<1$ and $0<a+\alpha<b+\alpha<1$, then there exists $f \in F$ such that $f(t)=t+\alpha$ for every $a \leq t<b$. We apply Lemma 1.2 with $a_{1}=a, a_{2}=b$ and $b_{1}=a+\alpha, b_{2}=b+\alpha$ (and $a_{0}=b_{0}=0, a_{3}=b_{3}=1$): there exists $g \in F$ such that $g\left(a_{j}\right)=b_{j}$ for $j=0, \ldots, 3$. If $g(t)=t+\alpha$ for $t \in[a, b)$, then set $f=g$. If not, set $f(t)=g(t)$ for $t \in[0, a) \cup[b, 1]$ and $f(t)=t+\alpha$ for $a \leq t<b$. Then $f \in F$.

Proof of Proposition 4.1. In order to prove that the action of F is ergodic, it suffices to show that the action of K is. Indeed, Lemma 4.3 implies thus that the action of the full group [F] is ergodic, and [4, Lemma 2.8] applies to show that the action of F is, too. We argue as in the proof of [4, Lemma 2.1]. Thus, let $X_{0} \subset[0,1]$
be a Borel set such that $\varphi X_{0}=X_{0}$ for every $\varphi \in K$ and that $\mu\left(X_{0}\right)>0$. Define a measure v on $[0,1]$ by

$$
v(B)=\frac{\mu\left(B \cap X_{0}\right)}{\mu\left(X_{0}\right)}
$$

for every Borel set B. We have for every $\varphi \in K$ and every Borel set B

$$
\begin{aligned}
v(\varphi B) & =\frac{\mu\left((\varphi B) \cap X_{0}\right)}{\mu\left(X_{0}\right)}=\frac{\mu\left(B \cap \varphi^{-1} X_{0}\right)}{\mu\left(X_{0}\right)} \\
& \leq \frac{\mu\left(B \cap X_{0}\right)}{\mu\left(X_{0}\right)}+\frac{\mu\left(B \cap\left(\varphi^{-1} X_{0} \backslash X_{0}\right)\right)}{\mu\left(X_{0}\right)} \\
& =\frac{\mu\left(B \cap X_{0}\right)}{\mu\left(X_{0}\right)}=v(B)
\end{aligned}
$$

Hence $v(\varphi B)=\nu(B)$ for every φ. In particular, one has $v([a+\alpha, b+\alpha))=\nu([a, b))$ for all dyadic rational numbers a, b and α such that $[a, b] \cup[a+\alpha, b+\alpha] \subset[0,1]$, and this gives

$$
v\left(\left[\frac{l}{2^{n}}, \frac{l+1}{2^{n}}\right)\right)=\frac{1}{2^{n}}
$$

for every positive integer n and every integer $0 \leq l \leq n$. Uniqueness of μ implies that $\nu=\mu$, and that $\mu\left(X_{0}\right)=1$. This proves ergodicity of the action of K.

It remains to compute $r(F)$. Denote by Γ the group generated by F and K. One has $[\Gamma]=[F]$, since $K \subset[F]$, and $r(\Gamma)=r(F)$.

As $(d \mu \circ g)(t) / d \mu \in\left\{2^{k} ; k \in \mathbb{Z}\right\}$ for μ-a.e. $t \in[0,1]$ and for every $g \in F$, one has $r(F) \subset\{0\} \cup\left\{2^{k} ; k \in \mathbb{Z}\right\}$. As $r(F)$ is closed, the proof will be complete if we show that $2^{k} \in r(F)$ for every integer k. Then fix such a k and choose $g \in F$ and dyadic rational numbers $0<a<b<1$ such that

$$
\frac{d \mu \circ g}{d \mu}(t)=\frac{d g}{d t}(t)=2^{k}
$$

for every $t \in(a, b)$. Let $A \subset[0,1]$ be a Borel set with positive measure. As the action of K is ergodic, there exist φ and $\psi \in K$ such that the Borel set

$$
B=\{t \in A ; \psi(t) \in(a, b) \text { and } \varphi g \psi(t) \in A\}
$$

has positive measure (see the proof of [4, Proposition 3.3]). Set $h=\varphi g \psi \in \Gamma$. One has $B \cup h B \subset A$ and

$$
\frac{d \mu \circ h}{d \mu}(t)=\frac{d \mu \circ g}{d \mu}(\psi(t))=2^{k}
$$

for every $t \in B$ since $\psi(t) \in(a, b)$. Hence $2^{k} \in r(F)$.

Remark. In fact, condition (K1) shows that K is a subgroup of the full group of the commutator subgroup F^{\prime}. Hence the latter acts ergodically on $[0,1]$ as well, and it has the same ratio set as F. However, it gives the same equivalence relation on $[0,1]$, and thus the same factor $M\left(R_{F}\right)$.

References

[1] K. S. Brown and R. R. Geoghegan, 'An infinite-dimensional torsion-free $F P_{\infty}$ group', Invent. Math. 77 (1984), 367-381.
[2] J. W. Cannon, W. J. Floyd and W. R. Parry, 'Introductory notes on Richard Thompson's groups', Enseign. Math. 42 (1996), 215-256.
[3] M. Choda, 'A condition to construct a full II_{1}-factor with an application to approximate normalcy', Math. Japon. 28 (1983), 383-398.
[4] P. Cutting and G. Robertson, 'Type III actions on boundaries of \tilde{A}_{n} buildings', J. Operator Theory 49 (2003), 25-44.
[5] J. Feldman and C. C. Moore, 'Ergodic equivalence relations, cohomology and von Neumann algebras II', Trans. Amer. Math. Soc. 234 (1977), 325-359.
[6] P. Jolissaint, 'Moyennabilité intérieure du groupe F de Thompson', C. R. Math. Acad. Sci. Paris 325 (1997), 61-64.
[7] ——_, 'Central sequences in the factor associated with Thompson's group F', Ann. Inst. Fourier (Grenoble) 48 (1998), 1093-1106.
[8] G. Robertson, A. M. Sinclair and R. R. Smith, 'Strong singularity for subalgebras of finite factors', Internat. J. Math. 14 (2003), 235-258.
[9] G. Robertson and T. Steger, 'Maximal subalgebras of the group factor of an \tilde{A}_{2} group', J. Operator Theory 36 (1996), 317-334.
[10] G. Zeller-Meier, 'Deux autres facteurs de type II_{1} ', Invent. Math. 7 (1969), 235-242.
Institut de Mathémathiques
Université de Neuchâtel
Emile-Argand 11
CH-2000 Neuchâtel
Switzerland
e-mail: paul.jolissaint@unine.ch

