ON FOURIER-STIELTJES TRANSFORMS

A. P. CALDERÓN AND A. DEVINATZ

Let \mathscr{M} be the class of bounded non-decreasing functions defined on the real line which are normalized by the conditions $\phi(-\infty) = 0$, $\phi(t+0) = \phi(t)$. Let \mathscr{F} be the class of Fourier-Stieltjes transforms of elements of \mathscr{M} , i.e. the elements of \mathscr{M} and \mathscr{F} are connected by the relation¹

$$\Phi(x) = \int e^{itx} d\phi(t),$$

where $\phi \in \mathcal{M}$ and $\Phi \in \mathcal{F}$. It is well known, and easy to verify that this mapping from \mathcal{M} to \mathcal{F} is one to one (1, p. 67, Satz 18).

It is the purpose of this paper to give various topologies to \mathcal{F} and \mathcal{M} so that the mapping from \mathcal{F} to \mathcal{M} will be continuous or at least continuous at certain points of \mathcal{F} depending on the topologies. The topologies which we shall have occasion to use are enumerated below.

A. The almost weak topology on \mathscr{F} . As a neighbourhood basis of an element $\Phi_0 \in \mathscr{F}$ we shall take the sets in \mathscr{F} which satisfy the relations

$$\left|\int f_k(x)[\Phi(x) - \Phi_0(x)]\,dx\right| < \delta, \qquad k = 1, 2, \ldots, n,$$

and

 $\Phi(0) < \Phi_0(0) + \delta$

where $\{f_k\}_{1^n}$ is any finite set of elements in the Lebesgue class $L^1(-\infty, \infty)$, and δ is any positive number. We shall designate such neighborhoods by

$$\mathfrak{M}[\{f_k\};\delta;\Phi_0].$$

B. The mean value topology in \mathscr{F} . As a neighborhood basis of an element $\Phi_0 \in \mathscr{F}$ we shall take the sets in \mathscr{F} which satisfy the relation

$$\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^{T}|\Phi(x)-\Phi_0(x)|\,dx<\delta,$$

and

$$\Phi(0) < \Phi_0(0) + \delta$$

- (0) . .

where $\delta > 0$. In case a $\Phi \in U$ satisfies the above two relations we shall write

$$||\Phi - \Phi_0||_m < \delta.$$

Received July 14, 1954.

¹Absence of limits of integration will mean that the integral is taken over the interval $(-\infty,\infty)$.

C. The mean almost weak topology in \mathscr{F} . As a neighborhood basis of a $\Phi_0 \in \mathscr{F}$ we shall take those sets which for any δ satisfy simultaneously the relations in A and B. We shall designate such neighborhoods by

$$\mathfrak{M}_m[\{f_k\}; \delta; \Phi_0].$$

D. The uniform topology in \mathcal{F} and \mathcal{M} . Let us write

$$||\Phi - \Phi_0|| = \sup |\Phi(x) - \Phi_0(x)|,$$

where the sup is taken over all x on the real line. Then as a neighborhood basis of Φ_0 we shall take the sets which satisfy

$$||\Phi - \Phi_0|| < \delta.$$

The same type of topology on \mathcal{M} will be called the uniform topology on \mathcal{M} .

E. The variational topology on \mathcal{M} . We shall write

$$||\phi - \phi_0||_v = \text{total variation } [\phi(t) - \phi_0(t)],$$

and as a neighborhood basis of ϕ_0 take the sets in \mathcal{M} which satisfy

$$||\phi - \phi_0||_v < \delta.$$

Suppose now that $\phi \in \mathcal{M}$ and t a point where $\phi(t) - \phi(t-0) \ge \delta > 0$. Let $I(\phi; \delta; t)$ be a generic symbol for an open interval which contains the point t and let $\{I(\phi; \delta; t_k)\}$ represent a class of such intervals where the t_k run over all points for which the jump of $\phi(t)$ is greater than or equal to δ . Each such class of course contains only a finite number of members.

THEOREM 1. Let $\Phi_0 \in \mathscr{F}$ and $\epsilon > 0$ be given. There exists a $\delta > 0$ such that if we exclude a small interval about each point of the real axis where the jump of $\phi_0(t)$ is greater than or equal to δ , we can find an almost weak neighborhood of $\Phi_0, \mathfrak{M}[\{f_k\}; \delta; \Phi_0]$, so that outside the excluded intervals each element of \mathscr{M} which corresponds to an element of $\mathfrak{M}[\{f_k\}; \delta; \Phi_0]$ is uniformly within ϵ of $\phi_0(t)$.

In more technical language the above theorem can be stated as follows: Given $\Phi_0 \in \mathscr{F}$ and $\epsilon > 0$. There exists a $\delta > 0$ such that for any $\{I(\phi_0; \delta; t_k)\}$ there exists an $\mathfrak{M}[\{f_k\}; \delta; \Phi_0]$ so that $\Phi \in \mathfrak{M}[\{f_k\}; \delta; \Phi_0]$ implies $|\phi(t) - \phi_0(t)| < \epsilon$ for all $t \notin \bigcup I(\phi_0; \delta; t_k)$.

Proof. Let $\delta > 0$ be given and choose *R* sufficiently large so that

$$\int_{|t|\geqslant R} d\phi_0(t) < \delta$$

Further, choose $f_0^*(t)$ to be of class C^2 (continuous second derivatives) such that $0 \leq f_0^*(t) \leq 1$ and

$$f_0^*(t) = \begin{cases} 1, \ |t| \le R \\ 0, \ |t| \ge R+1 \end{cases}$$

Let

$$f_0(x) = \frac{1}{2\pi} \int e^{-ixt} f_0^*(t) \, dt.$$

Integrating by parts twice will immediately show that $f_0(x) \in L^1(-\infty, \infty)$. Further, since $f_0^*(t)$ itself belongs to $L^1(-\infty, \infty)$, is continuous and of bounded variation over the whole real axis, we have the inversion formula (1, p. 42).

$$f_0^*(t) = \int f_0(x) e^{ixt} dx.$$

Therefore,

$$\int f_0^*(t) d\phi(t) = \int \left[\int f_0(x) e^{ixt} dx \right] d\phi(t).$$

Since $f_0(x) \in L^1(-\infty, \infty)$ and $\phi(t)$ is bounded we may apply Fubini's theorem (4, p. 77) and we get the Parseval relation

$$\int f_0^*(t) d\phi(t) = \int f_0(x) \Phi(x) dx,$$

Therefore, if we choose any Φ such that

(1)
$$\left|\int f_0(x)[\Phi(x) - \Phi_0(x)]\,dx\right| < \delta,$$

we have for the corresponding $\phi(t)$,

$$\left|\int f_0^*(t) d[\phi(t) - \phi_0(t)]\right| < \delta.$$

If Φ satisfies the further condition

$$\Phi(0) < \Phi_0(0) + \delta$$

then we have

(3)
$$\Phi_0(0) + \delta > \Phi(0) \ge \int f_0^*(t) d\phi(t) > \int f_0^*(t) d\phi_0(t) - \delta > \Phi_0(0) - 2\delta.$$

Therefore,

$$0 \leqslant \int d\phi(t) - \int_{|t| < R+1} d\phi(t) \leqslant \int d\phi(t) - \int f_0^*(t) d\phi(t) < 3\delta,$$

from which we get (4)

$$\phi(-R-1) < 3\delta.$$

Now, choose a set $\{I(\phi_0; \delta; t_k)\}$ and suppose there exists a t_0 in the complement of $\bigcup I(\phi_0; \delta; t_k)$ which lies to the right of -R - 1. There exists an h > 0 such that

(5)
$$|\phi_0(t_0 \pm h) - \phi_0(t_0)| < \delta.$$

Choose $f_1^*(t)$ and $f_2^*(t)$ to be in C^2 with range in [0, 1] and defined in the following way:

$$f_1^*(t) = \begin{cases} 1, & -R-1 \le t \le t_0 - h, \\ 0, & t \le -R - 2, & t \ge t_0, \end{cases}$$
$$f_2^*(t) = \begin{cases} 1, & -R-1 \le t \le t_0, \\ 0, & t \le -R - 2, & t \ge t_0 + h \end{cases}$$

If $f_1(x)$ and $f_2(x)$ are the Fourier transforms respectively of $f_1^*(t)$ and $f_2^*(t)$, then f_1 and f_2 are in $L^1(-\infty, \infty)$. Let $\Phi(x)$ be any element of \mathscr{F} which satisfies (1), (2) and the further condi-

Let $\Phi(x)$ be any element of \mathscr{F} which satisfies (1), (2) and the further conditions

$$\left|\int f_k(x)[\Phi(x) - \Phi_0(x)]\,dx\right| < \delta, \qquad k = 1, 2.$$

By the Parseval relation we have for k = 1, 2,

(6)
$$\left|\int f_{k}^{*}(t) d[\phi(t) - \phi_{0}(t)]\right| < \delta$$

Consequently, by (4), (5) and (6) we get

$$\begin{aligned} \phi_0(t_0) &- 3\delta < \int f_1^*(t) \, d\phi(t) < \phi(t_0), \\ \phi(t_0) &- 3\delta < \int f_2^*(t) \, d\phi(t) < \phi_0(t_0) + 2\delta. \end{aligned}$$

From this it follows that

$$-5\delta < \phi_0(t_0) - \phi(t_0) < 3\delta.$$

The complement of $\bigcup I(\phi_0; \delta; t_k)$ (which we may as well suppose is not the null set) which lies in the interval $(-R - 1, \infty)$ consists of a finite number of mutually disjoint intervals. In each such interval it is possible to find a finite set of numbers $\tau_1 < \tau_2 < \ldots < \tau_n$ such that τ_1 and τ_n are the endpoints of the interval and

$$\phi_0(\tau_{k+1}) - \phi_0(\tau_k) < \delta.$$

Therefore, there exist functions $\{f_k(x)\}$ each of which belongs to $L^1(-\infty, \infty)$ such that if $\Phi(x) \in \mathfrak{M}[\{f_k\}; \delta; \Phi_0]$ we have

$$|\phi(\tau_k) - \phi_0(\tau_k)| < 5\delta.$$

((2) and (3) also give us this relation for $\tau_k = \infty$.)

Suppose $\tau_k \leq t \leq \tau_{k+1}$. Then

$$\phi_0(\tau_k) \leqslant \phi_0(t) \leqslant \phi_0(\tau_{k+1}), \quad \phi(\tau_k) \leqslant \phi(t) \leqslant \phi(\tau_{k+1}),$$

Therefore

(7)
$$-6\delta < \phi(\tau_k) - \phi_0(\tau_{k+1}) \leqslant \phi(t) - \phi_0(t) \leqslant \phi(\tau_{k+1}) - \phi_0(\tau_k) < 6\delta.$$

Since we are dealing with only a finite number of intervals in the complement of $\bigcup I(\phi_0; \delta; t_k)$ which lies in $(-R - 1, \infty)$ we can find an almost weak

neighborhood of Φ_0 such that if Φ belongs to this neighborhood, then the corresponding functions satisfy (7). If we now choose $\delta = \frac{1}{6}\epsilon$ we have our theorem.

COROLLARY. If $\phi_0(t)$ is continuous then the mapping from \mathscr{F} , with the almost weak topology, to \mathscr{M} , with the uniform topology, is continuous at Φ_0 .

THEOREM 2. Let $\phi_0(t) \in \mathcal{M}$ be a step function. Then given $\epsilon > 0$, there exists a $\delta > 0$ such that

$$||\Phi - \Phi_0||_m < \delta$$

implies

 $||\phi - \phi_0||_v < \epsilon.$

Proof. Given $\phi(t)$ and $\phi_0(t)$, let t_n be the set of points where either $\phi(t)$ or $\phi_0(t)$ has a jump. Let a_n and b_n be respectively the jump of $\phi_0(t)$ and $\phi(t)$ at t_n . Let us write

$$\phi(t) = S(t) + D(t),$$

where S(t) is a step function and D(t) is a continuous function. We then have

$$\phi(t) - \phi_0(t) = \{S(t) - \phi_0(t)\} + D(t).$$

Since $\phi_0(t)$ is a step function, $S(t) - \phi_0(t)$ is either a step function or identically zero since $S(-\infty) = \phi_0(-\infty) = 0$. This gives us the decomposition of $\phi(t) - \phi_0(t)$ into a step function and a continuous function. Therefore (2, pp. 189–190)

$$||\phi - \phi_0||_v = ||S - \phi_0||_v + ||D||_v$$

Now, let $\psi(t) = S(t) - \phi_0(t)$. Then (2, pp. 188–190),

$$||S - \phi_0||_{\mathfrak{v}} = ||\psi||_{\mathfrak{v}} = \sum_{n=1}^{\infty} \{|\psi(t_n + 0) - \psi(t_n)| + |\psi(t_n) - \psi(t_n - 0)|\}$$

By normalization of the functions in \mathcal{M} we have

$$|\psi(t_n+0)-\psi(t_n)|=0$$

Therefore

$$||S - \phi_0||_{v} = \sum_{n=1}^{\infty} |b_n - a_n|.$$

Consequently

$$\begin{aligned} ||\phi - \phi_0||_{v} &= \sum_{n=1}^{\infty} |b_n - a_n| + ||D||_{v} \\ &\leqslant \sum_{n=1}^{N} |b_n - a_n| + ||D||_{v} + \sum_{n=N+1}^{\infty} b_n + \sum_{n=N+1}^{\infty} a_n. \end{aligned}$$

Since

$$\Phi(0) = ||\phi||_{v} = \sum_{n=1}^{\infty} b_{n} + ||D||_{v},$$

we have

$$||\phi - \phi_0||_v = \sum_{n=1}^N |b_n - a_n| + \Phi(0) - \sum_{n=1}^N b_n + \sum_{n=N+1}^\infty a_n.$$

Let us here make the parenthetical remark that if either $\phi(t)$ or $\phi_0(t)$ has a finite number of jumps, then b_n or a_n from some point on will be zero.

Now,

$$\Phi(0) - \sum_{n=1}^{N} b_n = \Phi(0) - \Phi_0(0) + \sum_{n=N+1}^{\infty} a_n - \sum_{n=1}^{N} (b_n - a_n).$$

Therefore

$$||\phi - \phi_0||_v \leq 2\sum_{n=1}^N |b_n - a_n| + 2\sum_{n=N+1}^\infty a_n + \Phi(0) - \Phi_0(0).$$

Choose N so that

$$\sum_{n=N+1}^{\infty} a_n < \epsilon/5$$

and then choose $\delta \leq \epsilon/5N$. It is well known (1, p. 79, Satz 24) that

$$a_n = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-it_n x} \phi_0(x) \, dx,$$

$$b_n = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-it_n x} \phi(x) \, dx.$$

Therefore

$$|b_n-a_n| \leq \lim_{T\to\infty} \frac{1}{2T} \int_{-T}^T |\phi(x)-\phi_0(x)| \, dx.$$

From this inequality we get the desired result.

From the two preceding results we might expect that if \mathscr{F} is given the mean almost weak topology and \mathscr{M} the uniform topology, then the mapping from \mathscr{F} to \mathscr{M} is continuous. This is shown by the next theorem.

THEOREM 3. Given $\Phi_0 \in \mathscr{F}$ and $\epsilon > 0$, there exists a neighborhood $\mathfrak{M}_m(\{f_k\}; \delta; \Phi_0)$ such that $\Phi \in \mathfrak{M}_m$ implies

$$||\phi - \phi_0|| < \epsilon.$$

Proof. As in the proof of Theorem 1, let $\delta > 0$ be given and choose R sufficiently large so that

$$\int_{|t|\geqslant R} d\phi_0(t) < \delta$$

Also, choose $f_0^*(t)$ as in Theorem 1 and let $f_0(x)$ be its Fourier transform. Then if $\Phi \in \mathscr{F}$ is such that

(2) $\Phi(0) \leqslant \Phi_0(0) + \delta$

and

$$\left|\int f_0(x)[\Phi(x) - \Phi_0(x)]\,dx\right| < \delta;$$

as in Theorem 1 we get, for $t \leq -R - 1$,

$$0 \leqslant \phi(t) \leqslant \phi(-R-1) < 3\delta,$$

and

$$\Phi(0) > \Phi_0(0) - 2\delta.$$

Suppose now that $\{\tau_k\}$ is the finite set of points to the right of -R - 1 for which $\phi_0(\tau_k) - \phi_0(\tau_k - 0) \ge \delta$. The interval $[\tau_k, \tau_{k+1}]$ may be subdivided by a finite number of points

$$au_k = au_{0,k} < au_{1,k} < \ldots < au_{m,k} = au_{k+1}$$

such that

$$\phi_0(\tau_{j+1,k}) - \phi_0(\tau_{j,k}) < \delta, \qquad j = 0, 1, \ldots, m-1,$$

and

$$\phi_0(\tau_{k+1}-0) - \phi_0(\tau_{m-1,k}) < \delta.$$

Therefore, there exists a finite set of points, $-R - 1 = t_0 < t_1 < \ldots < t_n = \infty$, which includes the set $\{\tau_k\}$ and such that

$$\phi_0(t_{k+1}) - \phi_0(t_k) < \delta, \qquad t_{k+1} \notin \{\tau_k\},$$

and

$$\phi_0(t_{k+1}-0) - \phi_0(t_k) < \delta, \qquad t_{k+1} \in \{\tau_k\}.$$

For k = 1, ..., n - 2, choose, as in Theorem 1, $f_k^*(t) \in C^2$ and with range in [0, 1] in the following manner:

$$f_{k}^{*}(t) = \begin{cases} 1, & t_{0} \leqslant t \leqslant t_{k} \\ 0, & t \geqslant t_{k+1}, & t \leqslant t_{0} - 1. \end{cases}$$

Further, choose $f_{n-1}^*(t) \in C^2$ such that $0 \leq f_{n-1}^*(t) \leq 1$ and

$$f_{n-1}^{*}(t) = \begin{cases} 1, & t_0 \leq t \leq t_{n-1} \\ 0, & t \geq t_{n-1} + 1, & t \leq t_0 - 1. \end{cases}$$

Let $f_k(x)$ be the Fourier transform of $f_k^*(t)$. Then if we choose Φ to satisfy (2) and

(8)
$$\left| \int f_k(x) [\Phi(x) - \Phi_0(x)] dx \right| < \delta, \quad k = 0, 1, \dots, n-1,$$

then for $t_k \notin \{\tau_k\}$, by the same method of proof as in Theorem 1 we have

$$|\phi(t_k) - \phi_0(t_k)| < 5\delta.$$

If $t_k \in \{\tau_k\}$ then we have

$$\phi_0(t_k-0)-3\delta < \int_{t_{k-1}}^{*} (t) d\phi(t) \leqslant \phi(t_k-0),$$

from which

$$\phi_0(t_k-0)-\phi(t_k-0)<3\delta.$$

Further, for the same t_k

$$\phi(t_k) - \phi(-R-1) \leqslant \int f_k^*(t) \, d\phi(t) < \phi_0(t_k) + 2\delta,$$

from which

$$\phi_0(t_k) - \phi(t_k) > -5\delta.$$

In addition to (2) and (8) let us now pick $\Phi \in U$ to also satisfy

(9)
$$\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^{T}|\Phi(x)-\Phi_0(x)|\,dx<\delta.$$

Suppose

$$\phi_0(t_k-0)-\phi(t_k-0)\leqslant -6\delta \text{ or } \phi_0(t_k)-\phi(t_k)\geqslant 5\delta.$$

Then, if a_k and b_k are respectively the jump of $\phi_0(t)$ and $\phi(t)$ at t_k we have

$$a_k - b_k \geqslant \delta$$

But since

$$|a_k - b_k| \leq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T |\Phi(x) - \Phi_0(x)| \, dx < \delta,$$

we get a contradiction. Therefore,

$$|\phi_0(t_k-0)-\phi(t_k-0)|<6\delta$$

and

$$|\phi_0(t_k) - \phi(t_k)| < 5\delta.$$

If we now proceed as in Theorem 1, the proof of our theorem is complete.

From this theorem we get the following corollary, which was originally proved by Dyson (3).

COROLLARY. Given $\Phi_0 \in \mathscr{F}$ and $\epsilon > 0$, there exists a $\delta_1 > 0$ such that $||\Phi - \Phi_0|| < \delta_1 \text{ implies } ||\phi - \phi_0|| < \epsilon.$

Proof. Let

$$M = \max_{k} \int |f_k(x)| \, dx,$$

where $\{f_k\}$ is the set in Theorem 3. Then choose $\delta_1 = \delta/M$, where δ is that of Theorem 3.

In closing this paper we wish to remark that if we replace the space \mathscr{M} by the space \mathscr{B} of all functions of total bounded variation defined on the line and normalized in the same way as in \mathscr{M} , then our previous theorems can be given a meaning. We shall write down these corresponding theorems without proof and only remark that the proofs follow the pattern we have established before with only some slight modification.

THEOREM 1'. Let a continuous $\phi_0 \in \mathscr{B}$ and $\epsilon > 0$ be given. Then there exists a $\delta > 0$ and functions $\{f_k\}_{1^n} \subset C^2$ such that

$$\left|\int f_k d[\phi - \phi_0]\right| < \delta$$

and

$$||\phi||_v \leq ||\phi_0||_v + \delta$$

implies

THEOREM 2'. Let $\phi_0 \in \mathscr{B}$ be a step function. Then given $\epsilon > 0$, there exists a $\delta > 0$ such that

 $||\phi - \phi_0|| < \epsilon.$

$$\max |\text{saltus} [\phi(t) - \phi_0(t)]| < \delta$$

and

$$||\phi||_v \leq ||\phi_0||_v + \delta$$

implies

$$||\phi - \phi_0||_v < \epsilon.$$

THEOREM 3'. Let $\phi_0 \in \mathscr{B}$ and $\epsilon > 0$ be given. Then there exist a $\delta > 0$ and $\{f_k\}_1^n \subset C^2$ such that

$$\left|\int f_k d[\phi - \phi_0]\right| < \delta, \quad \max|\operatorname{saltus}[\phi(t) - \phi_0(t)]| < \delta,$$

and

$$||\phi||_v \leq ||\phi_0||_v + \delta$$

implies

$$||\phi - \phi_0|| < \epsilon.$$

In the above theorems it is of course understood that ϕ belongs to \mathscr{B} .

References

1. S. Bochner, Vorlesungen über Fouriersche Integrale (Leipzig, 1932).

ı.

- 2. C. Caratheodory, Vorlesungen über reelle Funktionen (Leipzig und Berlin, 1918).
- 3. F. J. Dyson, Fourier transforms of distribution functions, Can. J. Math., 5 (1953), 554-558.

4. S. Saks, Theory of the integral (New York, 1937).

Institute for Advanced Study