ON FOURIER-STIELTJES TRANSFORMS

A. P. CALDERÓN and A. DEVINATZ

Let \mathscr{M} be the class of bounded non-decreasing functions defined on the real line which are normalized by the conditions $\phi(-\infty)=0, \phi(t+0)=\phi(t)$. Let \mathscr{F} be the class of Fourier-Stieltjes transforms of elements of \mathscr{M}, i.e. the elements of \mathscr{M} and \mathscr{F} are connected by the relation ${ }^{1}$

$$
\Phi(x)=\int e^{i t x} d \phi(t)
$$

where $\phi \in \mathscr{M}_{\text {and }} \Phi \in \mathscr{F}$. It is well known, and easy to verify that this mapping from \mathscr{M} to \mathscr{F} is one to one (1, p. 67, Satz 18).

It is the purpose of this paper to give various topologies to \mathscr{F} and \mathscr{M} so that the mapping from \mathscr{F} to \mathscr{M} will be continuous or at least continuous at certain points of \mathscr{F} depending on the topologies. The topologies which we shall have occasion to use are enumerated below.
A. The almost weak topology on \mathscr{F}. As a neighbourhood basis of an element $\Phi_{0} \in \mathscr{F}$ we shall take the sets in \mathscr{F} which satisfy the relations

$$
\left|\int f_{k}(x)\left[\Phi(x)-\Phi_{0}(x)\right] d x\right|<\delta, \quad k=1,2, \ldots, n
$$

and

$$
\Phi(0)<\Phi_{0}(0)+\delta
$$

where $\left\{f_{k}\right\}_{1}{ }^{n}$ is any finite set of elements in the Lebesgue class $L^{1}(-\infty, \infty)$, and δ is any positive number. We shall designate such neighborhoods by

$$
\mathfrak{M}\left[\left\{f_{k}\right\} ; \delta ; \Phi_{0}\right] .
$$

B. The mean value topology in \mathscr{F}. As a neighborhood basis of an element $\Phi_{0} \in \mathscr{F}$ we shall take the sets in \mathscr{F} which satisfy the relation

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\left|\Phi(x)-\Phi_{0}(x)\right| d x<\delta
$$

and

$$
\Phi(0)<\Phi_{0}(0)+\delta
$$

where $\delta>0$. In case a $\Phi \in \mathrm{U}$ satisfies the above two relations we shall write

$$
\left\|\Phi-\Phi_{0}\right\|_{m}<\delta .
$$

[^0]C. The mean almost weak topology in \mathscr{F}. As a neighborhood basis of a $\Phi_{0} \in \mathscr{F}$ we shall take those sets which for any δ satisfy simultaneously the relations in A and B. We shall designate such neighborhoods by
$$
\mathfrak{M}_{m}\left[\left\{f_{k}\right\} ; \delta ; \Phi_{0}\right] .
$$
D. The uniform topology in \mathscr{F} and \mathscr{M}. Let us write
$$
\left\|\Phi-\Phi_{0}\right\|=\sup \left|\Phi(x)-\Phi_{0}(x)\right|
$$
where the sup is taken over all x on the real line. Then as a neighborhood basis of Φ_{0} we shall take the sets which satisfy
$$
\left\|\Phi-\Phi_{0}\right\|<\delta .
$$

The same type of topology on \mathscr{M} will be called the uniform topology on \mathscr{M}.
E. The variational topology on \mathscr{M}. We shall write

$$
\left\|\phi-\phi_{0}\right\|_{v}=\text { total variation }\left[\phi(t)-\phi_{0}(t)\right],
$$

and as a neighborhood basis of ϕ_{0} take the sets in \mathscr{M} which satisfy

$$
\left\|\phi-\phi_{0}\right\|_{v}<\delta .
$$

Suppose now that $\phi \in \mathscr{M}$ and t a point where $\phi(t)-\phi(t-0) \geqslant \delta>0$. Let $I(\phi ; \delta ; t)$ be a generic symbol for an open interval which contains the point t and let $\left\{I\left(\phi ; \delta ; t_{k}\right)\right\}$ represent a class of such intervals where the t_{k} run over all points for which the jump of $\phi(t)$ is greater than or equal to δ. Each such class of course contains only a finite number of members.
Theorem 1. Let $\Phi_{0} \in \mathscr{F}$ and $\epsilon>0$ be given. There exists a $\delta>0$ such that if we exclude a small interval about each point of the real axis where the jump of $\phi_{0}(t)$ is greater than or equal to δ, we can find an almost weak neighborhood of $\Phi_{0}, \mathfrak{M}\left[\left\{f_{k}\right\} ; \delta ; \Phi_{0}\right]$, so that outside the excluded intervals each element of \mathscr{M} which corresponds to an element of $\mathfrak{M}\left[\left\{f_{k}\right\} ; \delta ; \Phi_{0}\right]$ is uniformly within ϵ of $\phi_{0}(t)$.

In more technical language the above theorem can be stated as follows: Given $\Phi_{0} \in \mathscr{F}$ and $\epsilon>0$. There exists a $\delta>0$ such that for any $\left\{I\left(\phi_{0} ; \delta ; t_{k}\right)\right\}$ there exists an $\mathfrak{M}\left[\left\{f_{k}\right\} ; \delta ; \Phi_{0}\right]$ so that $\Phi \in \mathfrak{M}\left[\left\{f_{k}\right\} ; \delta ; \Phi_{0}\right]$ implies $\left|\phi(t)-\phi_{0}(t)\right|<\epsilon$ for all $t \notin I\left(\phi_{0} ; \delta ; t_{k}\right)$.
Proof. Let $\delta>0$ be given and choose R sufficiently large so that

$$
\int_{|t|>2} d \phi_{0}(t)<\delta
$$

Further, choose $f_{0}{ }^{*}(t)$ to be of class C^{2} (continuous second derivatives) such that $0 \leqslant f_{0}{ }^{*}(t) \leqslant 1$ and

$$
f_{0}^{*}(t)=\left\{\begin{array}{l}
1,|t| \leqslant R \\
0,|t| \geqslant R+1
\end{array}\right.
$$

Let

$$
f_{0}(x)=\frac{1}{2 \pi} \int e^{-i x t} f_{0}^{*}(t) d t
$$

Integrating by parts twice will immediately show that $f_{0}(x) \in L^{1}(-\infty, \infty)$. Further, since $f_{0}^{*}(t)$ itself belongs to $L^{1}(-\infty, \infty)$, is continuous and of bounded variation over the whole real axis, we have the inversion formula (1, p. 42).

$$
f_{0}^{*}(t)=\int f_{0}(x) e^{i x t} d x
$$

Therefore,

$$
\int f_{0}^{*}(t) d \phi(t)=\int\left[\int f_{0}(x) e^{i x t} d x\right] d \phi(t)
$$

Since $f_{0}(x) \in L^{1}(-\infty, \infty)$ and $\phi(t)$ is bounded we may apply Fubini's theorem (4, p. 77) and we get the Parseval relation

$$
\int f_{0}^{*}(t) d \phi(t)=\int f_{0}(x) \Phi(x) d x
$$

Therefore, if we choose any Φ such that

$$
\begin{equation*}
\left|\int f_{0}(x)\left[\Phi(x)-\Phi_{0}(x)\right] d x\right|<\delta \tag{1}
\end{equation*}
$$

we have for the corresponding $\phi(t)$,

$$
\left|\int f_{0}^{*}(t) d\left[\phi(t)-\phi_{0}(t)\right]\right|<\delta .
$$

If Φ satisfies the further condition

$$
\begin{equation*}
\Phi(0)<\Phi_{0}(0)+\delta \tag{2}
\end{equation*}
$$

then we have
(3) $\quad \Phi_{0}(0)+\delta>\Phi(0) \geqslant \int f_{0}{ }^{*}(t) d \phi(t)>\int f_{0}{ }^{*}(t) d \phi_{0}(t)-\delta>\Phi_{0}(0)-2 \delta$.

Therefore,

$$
0 \leqslant \int d \phi(t)-\int_{|t|<R+1} d \phi(t) \leqslant \int d \phi(t)-\int f_{0}^{*}(t) d \phi(t)<3 \delta
$$

from which we get

$$
\begin{equation*}
\phi(-R-1)<3 \delta . \tag{4}
\end{equation*}
$$

Now, choose a set $\left\{I\left(\phi_{0} ; \delta ; t_{k}\right)\right\}$ and suppose there exists a t_{0} in the complement of $\cup I\left(\phi_{0} ; \delta ; t_{k}\right)$ which lies to the right of $-R-1$. There exists an $h>0$ such that

$$
\begin{equation*}
\left|\phi_{0}\left(t_{0} \pm h\right)-\phi_{0}\left(t_{0}\right)\right|<\delta . \tag{5}
\end{equation*}
$$

Choose $f_{1}{ }^{*}(t)$ and $f_{2}{ }^{*}(t)$ to be in C^{2} with range in $[0,1]$ and defined in the following way:

$$
\begin{aligned}
& f_{1}^{*}(t)= \begin{cases}1, & -R-1 \leqslant t \leqslant t_{0}-h \\
0, & t \leqslant-R-2, \quad t \geqslant t_{0}\end{cases} \\
& f_{2}^{*}(t)= \begin{cases}1, & -R-1 \leqslant t \leqslant t_{0} \\
0, & t \leqslant-R-2, \quad t \geqslant t_{0}+h\end{cases}
\end{aligned}
$$

If $f_{1}(x)$ and $f_{2}(x)$ are the Fourier transforms respectively of $f_{1}{ }^{*}(t)$ and $f_{2}{ }^{*}(t)$, then f_{1} and f_{2} are in $L^{1}(-\infty, \infty)$.

Let $\Phi(x)$ be any element of \mathscr{F} which satisfies (1), (2) and the further conditions

$$
\left|\int f_{k}(x)\left[\Phi(x)-\Phi_{0}(x)\right] d x\right|<\delta, \quad k=1,2 .
$$

By the Parseval relation we have for $k=1,2$,

$$
\begin{equation*}
\left|\int f_{k}^{*}(t) d\left[\phi(t)-\phi_{0}(t)\right]\right|<\delta \tag{6}
\end{equation*}
$$

Consequently, by (4), (5) and (6) we get

$$
\begin{aligned}
& \phi_{0}\left(t_{0}\right)-3 \delta<\int f_{1}^{*}(t) d \phi(t)<\phi\left(t_{0}\right) \\
& \phi\left(t_{0}\right)-3 \delta<\int f_{2}^{*}(t) d \phi(t)<\phi_{0}\left(t_{0}\right)+2 \delta
\end{aligned}
$$

From this it follows that

$$
-5 \delta<\phi_{0}\left(t_{0}\right)-\phi\left(t_{0}\right)<3 \delta
$$

The complement of $\cup I\left(\phi_{0} ; \delta ; t_{k}\right)$ (which we may as well suppose is not the null set) which lies in the interval $(-R-1, \infty)$ consists of a finite number of mutually disjoint intervals. In each such interval it is possible to find a finite set of numbers $\tau_{1}<\tau_{2}<\ldots<\tau_{n}$ such that τ_{1} and τ_{n} are the endpoints of the interval and

$$
\phi_{0}\left(\tau_{k+1}\right)-\phi_{0}\left(\tau_{k}\right)<\delta .
$$

Therefore, there exist functions $\left\{f_{k}(x)\right\}$ each of which belongs to $L^{1}(-\infty, \infty)$ such that if $\Phi(x) \in \mathfrak{M}\left[\left\{f_{k}\right\} ; \delta ; \Phi_{0}\right]$ we have

$$
\left|\phi\left(\tau_{k}\right)-\phi_{0}\left(\tau_{k}\right)\right|<5 \delta .
$$

((2) and (3) also give us this relation for $\tau_{k}=\infty$.)
Suppose $\tau_{k} \leqslant t \leqslant \tau_{k+1}$. Then

$$
\phi_{0}\left(\tau_{k}\right) \leqslant \phi_{0}(t) \leqslant \phi_{0}\left(\tau_{k+1}\right), \quad \phi\left(\tau_{k}\right) \leqslant \phi(t) \leqslant \phi\left(\tau_{k+1}\right) .
$$

Therefore

$$
\begin{equation*}
-6 \delta<\phi\left(\tau_{k}\right)-\phi_{0}\left(\tau_{k+1}\right) \leqslant \phi(t)-\phi_{0}(t) \leqslant \phi\left(\tau_{k+1}\right)-\phi_{0}\left(\tau_{k}\right)<6 \delta \tag{7}
\end{equation*}
$$

Since we are dealing with only a finite number of intervals in the complement of $\cup I\left(\phi_{0} ; \delta ; t_{k}\right)$ which lies in $(-R-1, \infty)$ we can find an almost weak
neighborhood of Φ_{0} such that if Φ belongs to this neighborhood, then the corresponding functions satisfy (7). If we now choose $\delta=\frac{1}{6} \epsilon$ we have our theorem.

Corollary. If $\phi_{0}(t)$ is continuous then the mapping from \mathscr{F}, with the almost weak topology, to \mathscr{M}, with the uniform topology, is continuous at Φ_{0}.

Theorem 2. Let $\phi_{0}(t) \in \mathscr{M}$ be a step function. Then given $\epsilon>0$, there exists $a \delta>0$ such that

$$
\left\|\Phi-\Phi_{0}\right\|_{m}<\delta
$$

implies

$$
\left\|\phi-\phi_{0}\right\|_{0}<\epsilon .
$$

Proof. Given $\phi(t)$ and $\phi_{0}(t)$, let t_{n} be the set of points where either $\phi(t)$ or $\phi_{0}(t)$ has a jump. Let a_{n} and b_{n} be respectively the jump of $\phi_{0}(t)$ and $\phi(t)$ at t_{n}. Let us write

$$
\phi(t)=S(t)+D(t)
$$

where $S(t)$ is a step function and $D(t)$ is a continuous function. We then have

$$
\phi(t)-\phi_{0}(t)=\left\{S(t)-\phi_{0}(t)\right\}+D(t)
$$

Since $\phi_{0}(t)$ is a step function, $S(t)-\phi_{0}(t)$ is either a step function or identically zero since $S(-\infty)=\phi_{0}(-\infty)=0$. This gives us the decomposition of $\phi(t)-\phi_{0}(t)$ into a step function and a continuous function. Therefore (2, pp. 189-190)

$$
\left\|\phi-\phi_{0}\right\|_{0}=\left\|S-\phi_{0}\right\|_{0}+\|D\|_{0}
$$

Now, let $\psi(t)=S(t)-\phi_{0}(t)$. Then (2, pp. 188-190),

$$
\left\|S-\phi_{0}\right\|_{v}=\|\psi\|_{v}=\sum_{n=1}^{\infty}\left\{\left|\psi\left(t_{n}+0\right)-\psi\left(t_{n}\right)\right|+\left|\psi\left(t_{n}\right)-\psi\left(t_{n}-0\right)\right|\right\}
$$

By normalization of the functions in $\mathscr{M}_{\text {we }}$ have

$$
\left|\psi\left(t_{n}+0\right)-\psi\left(t_{n}\right)\right|=0
$$

Therefore

$$
\left\|S-\phi_{0}\right\|_{0}=\sum_{n=1}^{\infty}\left|b_{n}-a_{n}\right|
$$

Consequently

$$
\begin{aligned}
\left\|\phi-\phi_{0}\right\|_{0} & =\sum_{n=1}^{\infty}\left|b_{n}-a_{n}\right|+\|D\|_{0} \\
& \leqslant \sum_{n=1}^{N}\left|b_{n}-a_{n}\right|+\|D\|_{0}+\sum_{n=N+1}^{\infty} b_{n}+\sum_{n=N+1}^{\infty} a_{n} .
\end{aligned}
$$

Since

$$
\Phi(0)=\|\phi\|_{0}=\sum_{n=1}^{\infty} b_{n}+\|D\|_{0}
$$

we have

$$
\left\|\phi-\phi_{0}\right\|_{v}=\sum_{n=1}^{N}\left|b_{n}-a_{n}\right|+\Phi(0)-\sum_{n=1}^{N} b_{n}+\sum_{n=N+1}^{\infty} a_{n} .
$$

Let us here make the parenthetical remark that if either $\phi(t)$ or $\phi_{0}(t)$ has a finite number of jumps, then b_{n} or a_{n} from some point on will be zero.

Now,

$$
\Phi(0)-\sum_{n=1}^{N} b_{n}=\Phi(0)-\Phi_{0}(0)+\sum_{n=N+1}^{\infty} a_{n}-\sum_{n=1}^{N}\left(b_{n}-a_{n}\right) .
$$

Therefore

$$
\left\|\phi-\phi_{0}\right\|_{v} \leqslant 2 \sum_{n=1}^{N}\left|b_{n}-a_{n}\right|+2 \sum_{n=N+1}^{\infty} a_{n}+\Phi(0)-\Phi_{0}(0) .
$$

Choose N so that

$$
\sum_{n=N+1}^{\infty} a_{n}<\epsilon / 5
$$

and then choose $\delta \leqslant \epsilon / 5 N$. It is well known (1, p. 79, Satz 24) that

$$
\begin{aligned}
a_{n} & =\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} e^{-i t_{n} x} \phi_{0}(x) d x \\
b_{n} & =\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} e^{-i t_{n} x} \phi(x) d x
\end{aligned}
$$

Therefore

$$
\left|b_{n}-a_{n}\right| \leqslant \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\left|\phi(x)-\phi_{0}(x)\right| d x .
$$

From this inequality we get the desired result.
From the two preceding results we might expect that if \mathscr{F} is given the mean almost weak topology and \mathscr{M} the uniform topology, then the mapping from \mathscr{F} to \mathscr{M} is continuous. This is shown by the next theorem.

Theorem 3. Given $\Phi_{0} \in \mathscr{F}$ and $\epsilon>0$, there exists a neighborhood $\mathfrak{M}_{m}\left(\left\{f_{k}\right\} ; \delta ; \Phi_{0}\right)$ such that $\Phi \in \mathfrak{M}_{m}$ implies

$$
\left\|\phi-\phi_{0}\right\|<\epsilon .
$$

Proof. As in the proof of Theorem 1, let $\delta>0$ be given and choose R sufficiently large so that

$$
\int_{|t| \geqslant R} d \phi_{0}(t)<\delta .
$$

Also, choose $f_{0}^{*}(t)$ as in Theorem 1 and let $f_{0}(x)$ be its Fourier transform. Then if $\Phi \in \mathscr{F}$ is such that

$$
\begin{equation*}
\Phi(0) \leqslant \Phi_{0}(0)+\delta \tag{2}
\end{equation*}
$$

and

$$
\left|\int f_{0}(x)\left[\Phi(x)-\Phi_{0}(x)\right] d x\right|<\delta
$$

as in Theorem 1 we get, for $t \leqslant-R-1$,

$$
0 \leqslant \phi(t) \leqslant \phi(-R-1)<3 \delta
$$

and

$$
\Phi(0)>\Phi_{0}(0)-2 \delta
$$

Suppose now that $\left\{\tau_{k}\right\}$ is the finite set of points to the right of $-R-1$ for which $\phi_{0}\left(\tau_{k}\right)-\phi_{0}\left(\tau_{k}-0\right) \geqslant \delta$. The interval $\left[\tau_{k}, \tau_{k+1}\right]$ may be subdivided by a finite number of points

$$
\tau_{k}=\tau_{0, k}<\tau_{1, k}<\ldots<\tau_{m, k}=\tau_{k+1}
$$

such that

$$
\phi_{0}\left(\tau_{j+1, k}\right)-\phi_{0}\left(\tau_{j, k}\right)<\delta, \quad j=0,1, \ldots, m-1,
$$

and

$$
\phi_{0}\left(\tau_{k+1}-0\right)-\phi_{0}\left(\tau_{m-1, k}\right)<\delta .
$$

Therefore, there exists a finite set of points, $-R-1=t_{0}<t_{1}<\ldots<t_{n}=\infty$, which includes the set $\left\{\tau_{k}\right\}$ and such that

$$
\phi_{0}\left(t_{k+1}\right)-\phi_{0}\left(t_{k}\right)<\delta, \quad t_{k+1} \notin\left\{\tau_{k}\right\},
$$

and

$$
\phi_{0}\left(t_{k+1}-0\right)-\phi_{0}\left(t_{k}\right)<\delta, \quad t_{k+1} \in\left\{\tau_{k}\right\}
$$

For $k=1, \ldots, n-2$, choose, as in Theorem $1, f_{k}^{*}(t) \in C^{2}$ and with range in $[0,1]$ in the following manner:

$$
f_{k}^{*}(t)= \begin{cases}1, \quad t_{0} \leqslant t \leqslant t_{k} \\ 0, & t \geqslant t_{k+1}, \quad t \leqslant t_{0}-1\end{cases}
$$

Further, choose $f_{n-1}^{*}(t) \in C^{2}$ such that $0 \leqslant f_{n-1}^{*}(t) \leqslant 1$ and

$$
f_{n-1}^{*}(t)= \begin{cases}1, & t_{0} \leqslant t \leqslant t_{n-1} \\ 0, & t \geqslant t_{n-1}+1, \quad t \leqslant t_{0}-1\end{cases}
$$

Let $f_{k}(x)$ be the Fourier transform of $f_{k}{ }^{*}(t)$. Then if we choose Φ to satisfy (2) and

$$
\begin{equation*}
\left|\int f_{k}(x)\left[\Phi(x)-\Phi_{0}(x)\right] d x\right|<\delta, \quad k=0,1, \ldots, n-1, \tag{8}
\end{equation*}
$$

then for $t_{k} \notin\left\{\tau_{k}\right\}$, by the same method of proof as in Theorem 1 we have

$$
\left|\phi\left(t_{k}\right)-\phi_{0}\left(t_{k}\right)\right|<5 \delta
$$

If $t_{k} \in\left\{\tau_{k}\right\}$ then we have

$$
\phi_{0}\left(t_{k}-0\right)-3 \delta<\int f_{k-1}^{*}(t) d \phi(t) \leqslant \phi\left(t_{k}-0\right)
$$

from which

$$
\phi_{0}\left(t_{k}-0\right)-\phi\left(t_{k}-0\right)<3 \delta
$$

Further, for the same t_{k}

$$
\phi\left(t_{k}\right)-\phi(-R-1) \leqslant \int f_{k}^{*}(t) d \phi(t)<\phi_{0}\left(t_{k}\right)+2 \delta
$$

from which

$$
\phi_{0}\left(t_{k}\right)-\phi\left(t_{k}\right)>-5 \delta .
$$

In addition to (2) and (8) let us now pick $\Phi \in \mathrm{U}$ to also satisfy

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\left|\Phi(x)-\Phi_{0}(x)\right| d x<\delta \tag{9}
\end{equation*}
$$

Suppose

$$
\phi_{0}\left(t_{k}-0\right)-\phi\left(t_{k}-0\right) \leqslant-6 \delta \text { or } \phi_{0}\left(t_{k}\right)-\phi\left(t_{k}\right) \geqslant 5 \delta .
$$

Then, if a_{k} and b_{k} are respectively the jump of $\phi_{0}(t)$ and $\phi(t)$ at t_{k} we have

$$
a_{k}-b_{k} \geqslant \delta
$$

But since

$$
\left|a_{k}-b_{k}\right| \leqslant \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\left|\Phi(x)-\Phi_{0}(x)\right| d x<\delta
$$

we get a contradiction. Therefore,

$$
\left|\phi_{0}\left(t_{k}-0\right)-\phi\left(t_{k}-0\right)\right|<6 \delta
$$

and

$$
\left|\phi_{0}\left(t_{k}\right)-\phi\left(t_{k}\right)\right|<5 \delta .
$$

If we now proceed as in Theorem 1, the proof of our theorem is complete.
From this theorem we get the following corollary, which was originally proved by Dyson (3).

Corollary. Given $\Phi_{0} \in \mathscr{F}$ and $\epsilon>0$, there exists $a \delta_{1}>0$ such that

$$
\left\|\Phi-\Phi_{0}\right\|<\delta_{1} \text { implies }\left\|\phi-\phi_{0}\right\|<\epsilon
$$

Proof. Let

$$
M=\max _{k} \int\left|f_{k}(x)\right| d x
$$

where $\left\{f_{k}\right\}$ is the set in Theorem 3. Then choose $\delta_{1}=\delta / M$, where δ is that of Theorem 3.

In closing this paper we wish to remark that if we replace the space \mathscr{M} by the space \mathscr{B} of all functions of total bounded variation defined on the line and normalized in the same way as in \mathscr{M}, then our previous theorems can be given a meaning. We shall write down these corresponding theorems without proof and only remark that the proofs follow the pattern we have established before with only some slight modification.

Theorem 1'. Let a continuous $\phi_{0} \epsilon \mathscr{B}$ and $\epsilon>0$ be given. Then there exists $a \delta>0$ and functions $\left\{f_{k}\right\}_{1}{ }^{n} \subset C^{2}$ such that

$$
\left|\int f_{k} d\left[\phi-\phi_{0}\right]\right|<\delta,
$$

and

$$
\|\phi\|_{0} \leqslant\left\|\phi_{0}\right\|_{0}+\delta
$$

implies

$$
\left\|\phi-\phi_{0}\right\|<\epsilon
$$

Theorem 2'. Let $\phi_{0} \in \mathscr{B}$ be a step function. Then given $\epsilon>0$, there exists a $\delta>0$ such that

$$
\max \mid \text { saltus }\left[\phi(t)-\phi_{0}(t)\right] \mid<\delta
$$

and

$$
\|\phi\|_{v} \leqslant\left\|\phi_{0}\right\|_{v}+\delta
$$

implies

$$
\left\|\phi-\phi_{0}\right\|_{0}<\epsilon
$$

Theorem 3^{\prime}. Let $\phi_{0} \in \mathscr{B}$ and $\epsilon>0$ be given. Then there exist $a \delta>0$ and $\left\{f_{k}\right\}_{1}{ }^{n} \subset C^{2}$ such that

$$
\left|\int f_{k} d\left[\phi-\phi_{0}\right]\right|<\delta, \quad \max \left|\operatorname{saltus}\left[\phi(t)-\phi_{0}(t)\right]\right|<\delta,
$$

and

$$
\|\phi\|_{0} \leqslant\left\|\phi_{0}\right\|_{0}+\delta
$$

implies

$$
\left\|\phi-\phi_{0}\right\|<\epsilon
$$

In the above theorems it is of course understood that ϕ belongs to \mathscr{B}.

References

1. S. Bochner, Vorlesungen über Fouriersche Integrale (Leipzig, 1932).
2. C. Caratheodory, Vorlesungen über reelle Funktionen (Leipzig und Berlin, 1918).
3. F. J. Dyson, Fourier transforms of distribution functions, Can. J. Math., 5 (1953), 554-558.
4. S. Saks, Theory of the integral (New York, 1937).

Institute for Advanced Study

[^0]: Received July 14, 1954.
 ${ }^{1}$ Absence of limits of integration will mean that the integral is taken over the interval $(-\infty, \infty)$.

