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RINGS WITH ENOUGH INVERTIBLE IDEALS

P. F. SMITH

All rings are associative with identity element 1 and all modules are
unital. A ring has enough invertible ideals if every ideal containing a
regular element contains an invertible ideal. Lenagan [8, Theorem 3.3]
has shown that right bounded hereditary Noetherian prime rings have
enough invertible ideals. The proof is quite ingenious and involves the
theory of cycles developed by Eisenbud and Robson in [5] and a theorem
which shows that any ring S such that R & S C Q satisfies the right
restricted minimum condition, where Q is the classical quotient ring of R.
In Section 1 we give an elementary proof of Lenagan’s theorem based on
another result of Eisenbud and Robson, namely every ideal of a heredi-
tary Noetherian prime ring can be expressed as the product of an in-
vertible ideal and an eventually idempotent ideal (see [5, Theorem 4.2]).
We also take the opportunity to weaken the conditions on the ring R.

Section 2 is concerned with showing that if R is a prime Noetherian
ring with enough invertible ideals then any locally Artinian R-module M
is the direct sum of a completely faithful submodule C and a submodule
U such that each element of U is annihilated by a non-zero ideal of R.
This result generalises [4, Theorem 3.9].

1. Lenagan’s theorem. Let R be a ring. An element ¢ of R is regular
if both 7¢c # 0 and ¢r # 0 for every non-zero element r of R. Suppose
that R is an order in a ring Q; that is, R is a subring of Q, each regular
element of R is invertible in Q and each element of Q has the forms r¢c!
and d~'s where 7, 5, ¢, d, € R and both ¢ and d are regular. An ideal I of
R will be called ¢nvertible provided there exists a sub-bimodule X of zQr
such that XI = IX = R and in this case we write I~! for X. Note that
if I is invertible then 1 € IT-! implies

n
-1
1= 2017161
i=1

for some positive integer n,a; € I,7;,¢; € Rwith¢;regular (1 < 2 = n).
By [6, Lemma 4.2] it follows that I contains a regular element. We call
an ideal I integral if it contains a regular element.

Throughout this section we shall suppose that R is an order in Q. If I
is an integral ideal of R define

I* = {g € Q:¢] £ R}.
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Suppose further that I is a projective right R-module. By the Dual Basis
Lemma there exist an index set A, elements ay € I and R-homomor-
phisms fy € Hom(Z, R) (A € A) such that

a =2 af\@) (a€l)

and for each ¢ in I, fi(e) = 0 for all but possibly a finite collection of
elements A € A. Since IQ = Q it follows that for each N in A f\ can be
lifted to an endomorphism of Q and hence there exists ¢» € I* such that
N(a) = gaa (a € I). In particular, if ¢ € T and ¢ is regular

m
c = E [liqu
=1

for some positive integer m, a; € I, q; € I* (1 £ 1 < m). Then

m
1 = ;aigi

and so
R<II* and I= ) a,R
i=1

Moreover, I = II*] implies that II* is an idempotent ideal of R. Note
that R < I* and hence I < II*. Conversely, if R < II* then

1= Z aq;
i=1

for some positive integer m and a; € I, g, € I* (1 <1 < m). Then

0= i}z:laxqia) @e 1)

and [ is a projective right R-module by the Dual Basis Lemma. We
have proved:

LeEmMA 1.1. Let I be an integral ideal of R. Then I is a projective right
R-module if and only if R < IT*. In this case I is a finitely generated right
ideal and I*I is an idempotent ideal containing 1.

In particular Lemma 1.1 shows that invertible ideals are projective as
right and left modules. Note also that if 3 is a maximal ideal of R then
M < M*M £ R. Thus M = M*M or M*M = R. It follows that if M
is integral and projective as a right and left module then M is invertible
or idempotent by the lemma. We mention one other consequence of
Lemma 1.1 here. If I is an integral ideal of R and there exist ideals
Ay, ..., A, such that I = 4,... 4, and A4, is a projective right R-
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module (1 = ¢ < n) then I is a projective right R-module. For

An*...Al*I = An*'-' (Al*Al) ...An
< A*...(4*4,) ... A, < R

which implies 4,* . .. A* < I*. Moreover
R £ 4,4,* = A1RA* £ 41(A4:4:.%)A* = I(4,*. .. 4,*%) < IT*
By Lemma 1.1 I is a projective right R-module.

LEMMA 1.2. Let R be a ring such that the integral prime ideals are
Sfinitely generated as right ideals. Let I be an integral ideal of R. Then there
exists a finite collection of prime ideals P; containing I (1 £ 1 < n) such
Ifh(LlPl...Pn = I

Proof. Suppose not and let {Ix:\ € A}, A some index set, be a chain of
integral ideals for each of which the result fails. Let I be the integral
ideal UAIA. If

I\
D=

Py... P,

IIA

I P,

o,
]
-

with P; prime (1 £ ¢ < #n) then P,... P, is a finitely generated right
ideal and hence P,... P, < I, for some X\ in A, a contradiction. Thus
Zorn’s Lemma can be applied to give an ideal J maximal with respect to
the property that there does not exist a finite collection of prime ideals
P; (1 £1 = n) with

lIA

J

IIA

Py...P, N P,

i=1

Clearly J is not prime. It follows that there exist ideals A and B properly
containing J such that AB < J. By the choice of J there exist prime
ideals Q; (1 = 7 < n) such that

IIA

x m
Ql...QkéAéolQi and Qit1...0n =B 1—Q+1Qi

for some 1 £ B < m. Then

3

01...0nSAB<J<ANBZNQ,

i=1

a contradiction. The result follows.

COROLLARY 1.3. Let R be a ring such that the integral prime ideals are
finitely generated as right ideals. Then R satisfies the ascending chain con-
dition on integral semiprime ideals.

Proof. Let X; = X» < ... bean ascending chain of integral semiprime
ideals of R and let X be the ideal U ;»1 X ;. By the lemma there exists a
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finite collection of prime ideals P; containing X (1 £ ¢ £ n) such that
Pi...P, = X. Since each P, is a finitely generated right ideal it follows
that P, ... P,is a finitely generated right ideal and hence P,... P, £ X,,
for some positive integer m. Hence X* < P,... P, < X,, and X £ X,,
because X, is semiprime. Thus X,, = X,,;1 =

We next generalize [5, Theorem 4.2]. The proof is rather similar in
parts but is included for completeness. An ideal I is called eventually
idempotent if I¥ = I*+! for some positive integer k.

THEOREM 1.4. Let R be an order in a ring Q. Let I be an integral ideal
of R such that the prime ideals containing I are invertible or maximal and
projective as right and left modules. Then there exists an invertible ideal
A and an eventually idempotent ideal B such that I = AB.

Proof. By Lemma 1.1 any prime ideal containing [ is a finitely gener-
ated right ideal. Thus by Corollary 1.3 R/I satisfies the ascending chain
condition on semiprime ideals and there exists a finite collection of prime
ideals P; (1 £4 < mn) such that P,Z P, 1 #37), I C P, 1 £i=n)
and N* C T for some positive integer k& where N = (=, P; (Lemma
1.2). Clearly N is a semiprime ideal. Suppose the result is false for I and
I is chosen so that N is as large as possible.

Suppose first that the intersection of any collection of the ideals P,
is not invertible. In particular this means that each ideal P; is maximal
(1 £ 1 £ n). By the Chinese Remainder Theorem

R/N= (R/P)) ® ... ® (R/P,).

Since P, is a projective right R-module it follows that the right R-module
R/P; has projective dimension at most 1 (1 £ 7 < #) and hence the
right R-module R/N has projective dimension at most 1. By Schanuel’s
Lemma N is a projective right R-module. Similarly N is a projective
left R-module. By assumption N is not invertible. Suppose N*N # R.
If N = N*N then N is idempotent (Lemma 1.1) and hence I = N.
Suppose N < N*N. Again using the Chinese Remainder Theorem, if
X = N*N then there exists an ideal YV such that R = X + ¥V and
X MY = N. Moreover N = NX and hence

XV=XNY=N=NX=VYX=XNY=N

sothat N = YX and XV £ VX. Since N < ¥ < R it follows that V' is
the intersection of a proper subset of the P, (1 < ¢ < n) and, by the
choice of I, ¥ = AB where 4 is invertible and B eventually idempotent.
Since N < 4 and the intersection of any collection of the ideals P; is
not invertible we have 4 = R and hence YV is eventually idempotent,
say Y™ = Y™+! Then

Nm g Nm+1 — (YX)m+1 g Ym+1XﬂL+1 — me g (YX)WL — Nm’
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giving N™ = N™*1, Since N* < I it follows that I is eventually idem-
potent.

Now suppose that Py M ...\ P, is invertible where 1 < ¢t < » and
no intersection of ¢ + 1 of the ideals P, (1 < 7 £ n) is invertible. Let

C=P1f\f\P,

If D is the intersection of any collection of the ideals P; (¢t + 1 < 7 < n)
then CN D = CV where V is the ideal C-*(CN\ D). Then CV £ D
and C £ P, (t+ 1 = ¢ < n) together imply V £ D. ThusCN\ D = CD
and similarly C/MN D = DC. This shows in particular that for all

t+ 1= 17 £ n, P,;isnot invertible and hence is maximal. Define

G= N P, ift<n

i=1t+1

and G = R if t = n. Then
N=CG=GCand C+ G = R.

It follows that C*G* < I. Suppose I < C*1. Then C + G*¥ = R implies
Ct = CH! + CFGF < CF1

and C = R, a contradiction. There exists a positive integer s < k such
that I < C%, I € C*t'. Consider the ideal C—*I. Clearly

I £ C—*I and C*G* £ C—*I.

If C—I = R then I = C* and I is invertible. Otherwise there exist a
positive integer v and prime ideals Q; (1 < ¢ < v) such that if Ny =
Ni=1Q; then C*I < N, and N, £ C—°I for some ¢ = 1. Since
C—sG* £ C—*I it follows that N < N,. f N = Ny then C*I S N C
and hence I £ C**!, a contradiction. Thus, N < N, and by the choice
of I, C—I = EF for some invertible ideal E and eventually idempotent
ideal F. Thus I = (C*E) F and C°E is invertible, a contradiction.

We shall not require Theorem 1.4 in full in the sequel but only the
following result which generalizes [5, Lemma 6.2] and which is proved
in the course of proving Theorem 1.4.

COROLLARY 1.5. Let I be an integral ideal of a ring R such that the prime
ideals containing I are invertible or maximal and projective as right and
left modules. Then there exists an invertible ideal A and an integral idem-
potent ideal B such that AB = BA < I and A + B = R.

Note too that the proof of Theorem 1.4 shows that if R is a ring such
that the integral prime ideals are invertible or maximal and projective as
right and left modules and if R has the further property that integral
maximal ideals commute then every integral ideal of R is projective as a
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right and left module. For in this situation any integral ideal J = AT
where 4 is an invertible ideal and I an idempotent ideal. There exists a
semiprime ideal N such that 7 £ N and N* £ I for some positive
integer k. Moreover, N = B\ C = BC = CB where B is invertible
and C a finite intersection of idempotent maximal ideals. As before C is
a projective right R-module. Moreover, C is idempotent. Thus I idem-
potent implies

I =I"<Nt=BOY=BC=s1I
and hence I = B*¥C. Thus J = DC where D = AB* is invertible. Then
J* = C*D-1
and
R = DRD-!' £ D(CC*)D~* = JJ*
and it follows that J is a projective right R-module (Lemma 1.1).
Similarly J is a projective left R-module.

A ring R will be called right truncated if for every element a in R the
descending chain

aR =z a®R =2 a°R = . ..

terminates. Left perfect rings have descending chain condition on prin-
cipal right ideals (see for example [2, p. 315. Theorem 28.4]) and hence
are right truncated. On the other hand let K be a field of characteristic
p > 0, G the Priifer group of type p® and R the group algebra KG. Then
R is a commutative ring and its augmentation ideal A is the unique
maximal ideal. The ideal 4 is nil and hence R is truncated. However R
is not perfect for if G is generated by the elements {x;:7 = 1} where
%? =1, 2541 = x; (1 = 1) then

This is so because

(1 —1) ... (e — {1 — (ko1 — )} =0

for some # =1 and 7 in R implies (x; — 1) ... (x, — 1) = 0 since
(%441 — 1)7 € A and so is nilpotent. If (x; — 1) ... (x, — 1) = 0 then

@ =D =1 . (x,— 1) =0
and hence
L4+p+...4p—1 2 pn,

a contradiction.
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A ring R is right bounded provided every essential right ideal contains
an integral ideal. Note that if R is an order in a ring Q then R satisfies
the right Ore condition with respect to the regular elements of R and
hence cR is an essential right ideal for any regular element ¢ of R.

TuEOREM 1.6. Let R be an order in a ring Q such that every integral prime
ideal is invertible or maximal and projective as a right and left R-module.
Suppose further that R is right bounded and R/I is right truncated for every
integral idempotent ideal 1. Then R has enough invertible ideals.

Proof. Let A be an integral ideal of R. Let ¢ be a regular element in 4.
Let B be an integral ideal contained in ¢R. By Corollary 1.5 there
exists an invertible ideal U and an integral idempotent ideal I such that
UI = IU £ B. Consider the descending chain

¢cR+TI=c¢R+1=....

There exists a positive integer k such that ¢*R < ¢*+'R + I because R/I
is right truncated. Now B**! < ¢*+1R and hence

IU*! = (UI)¥1 £ B! < *HIR.
Now
CkUk+1 é (C’C+1R + I) Uk+1 — Ck+1 Uk+1 + IUk+l é Ck_HR.

Thus U¥! < ¢R £ 4 and U**! is an invertible ideal. This proves the
theorem.

A ring R has the right restricted minimum condition provided the right
R-module R/E is Artinian for any essential right ideal E of R. Theorem
1.6 generalizes the following result of Lenagan [8, Theorem 3.3].

COROLLARY 1.7. Any right bounded hereditary Noetherian prime ring has
enough invertible ideals.

Proof. By [6, Theorems 4.1 and 4.4] R is an order in a simple Artinian
ring. Also by a theorem of Webber [12] (or see [4, Theorem 1.3]) R
satisfies the right restricted minimum condition so that every integral
(i.e., non-zero) prime ideal is maximal and R/I is right truncated for
every non-zero ideal I. Now apply the theorem.

To put Theorem 1.6 more into perspective we prove:

THEOREM 1.8. Let R be a right Noetherian order in a simple Artinian
ring such that every integral prime ideal is invertible or maximal and pro-
Jective as a right and left R-module. Suppose further that R is right bounded
and R/I is right truncated for every integral idempotent ideal I. Then R is
right and left hereditary and left Noetherian.
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Proof. Suppose P is a prime ideal of R and R/P is right truncated. If
¢ € Rand ¢ + P is a regular element of R/P then R/P right truncated
implies that ¢ + P is a unit in R/P. By [6, Theorem 3.9] R/P is a simple
right Artinian ring.

Now suppose P is an invertible prime ideal. Let

P

s

X:

n=1

Il

Then X is a prime ideal of R. For let 4 and B be ideals of R and suppose
A € X, B £ X. There exist m, n = 0 such that 4 < P, 4 { P™+,
B £ P*, B £ P!, where we take P° = R. Then P4 and BP~" are
ideals of R and 4B < P™"*! implies

(P-"4)-(BP—") < P.

But P is a prime ideal and so P4 < P (and 4 £ P™*') or BP™" £ P
(and B = P*t1), giving a contradiction. Thus X is a prime ideal. Clearly
P invertible implies P > X. If X 3 0 then X is invertible and X = PX
gives R = P, a contradiction. Thus X = 0. By the proof of (7, Lemma 1]
R/P is a simple right Artinian ring. Also by the proof of [7, Theorem] R
is right hereditary.

Let E be an essential left ideal of R. Let ¢ be a regular element in E
[6, Theorem 3.9]. There exists an invertible ideal J such that J < ¢R
(Theorem 1.6). Then ¢='J = R and hence ¢! € J~'. Thus J¢~! £ R and
we conclude J = Rc £ E. Thus R is left bounded. Since the prime ideals
are finitely generated as left ideals and J contains a finite product of
non-zero prime ideals (Lemmas 1.1 and 1.2) it follows that R/J is left
Artinian and hence left Noetherian. Thus the fact that J is a finitely
generated left ideal implies E is finitely generated. It follows that R is
left Noetherian. By [11, Corollary 3] R is left hereditary.

2. Completely faithful modules. Let R be a ring. An R-module M is
faithful provided Mr # 0 for every non-zero element r of R, otherwise
it is unfaithful. An R-module M is completely faithful if X/ YV is faithful
for all submodules X > Y of M. Clearly any submodule and any factor
module of a completely faithful module are completely faithful.

LEMMA 2.1. Let N be a submodule of « module M such that N and M/N
are both completely faithful. Then M is completely faithful.

Proof. Let X = V be submodules of M such that Xr = YV for some

non-zero element 7 in R. Then (X M N)r = (¥ M N) and N completely
faithful together imply

XNN=YNN.
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Similarly (X + N)r £ Y+ N and M/N completely faithful give
X 4+ N =Y+ N. Then

Y=Y+ (XNN) =17
It follows that M is completely faithful.
LEMMA 2.2. For any module M there exists a unique maximal completely

faithful submodule C which contains every completely faithful submodule
of M.

Proof. Suppose M contains non-zero completely faithful submodules,
otherwise take C = 0. Let.% denote the collection of completely faithful
submodules of M. Define

C= Yy X.

Xe&

It remains to prove that the submodule C is completely faithful. Let
A > B be submodules of C and suppose 47 < B for some element r of R.
Leta € 4, a ¢ B. Then there exist a positive integer # and completely
faithful submodules X; (1 £ ¢ < n) of M such thata € X, + ... + X,.
By Lemma 2.1 and induction on # the module X; & ... ® X, is com-
pletely faithful and hence so is X; + ... 4+ X,. Thus (¢R)r £ (aR N B)
implies » = 0. It follows that C is completely faithful.

Let M be a module. The unique maximal completely faithful sub-
module of M will be denoted by C(M). Note that C(M/C(M)) = 0 by
Lemma 2.1. Note further that if M = @, M,, for some index set A,
then

C(M) = @A C(M)\)'

For, by Lemma 2.2 C(M) = @, C(M,); also if m: M — My is the
canonical projection then m(C(M)) is a completely faithful submodule
of M, and hence

m(C(M)) < C(M) (N € A)
so that C(M) £ @ 4 C(M,). In addition if N is a submodule of M then
NN C(M) = C(N).
For, by Lemma 2.2,
NNCM) £ C(N)and N/(NNC(M)) = (N + C(M))/C(M)
implies
C(N/(NN C(M))) = 0.

If M is a module then it may well happen that C(M) = 0. Indeed if R
is a ring then a necessary and sufficient condition for the existence of a
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non-zero completely faithful right R-module is that R be right primitive.
For, if R is right primitive and V is a faithful irreducible right R-module
then clearly V is completely faithful. Conversely, suppose M is a non-
zero completely faithful right R-module. Let m € M, m # 0. Then mR
is completely faithful and any irreducible homomorphic image of mR is
faithful. Thus R is right primitive.

A module M is locally unfaithful provided every finitely generated
submodule is unfaithful. If R is a prime ring then an R-module M is
locally unfaithful if and only if for any non-zero element m in M there
exists a non-zero ideal I of R such that mI = 0.

Let R be a ring such that every non-zero ideal contains an invertible
ideal. Then R is a prime ring. Conversely, if R is a prime Goldie ring with
enough invertible ideals then every non-zero ideal of R contains an
invertible ideal.

LeEMMA 2.3. Let R be a ring such that every non-zero ideal contains an
invertible ideal. Let M be a cyclic R-module and N a submodule of M such
that

(i) N s completely faithful and M/N unfaithful, or

(i1) N 1s unfaithful and M /N completely faithful.
Then N is a direct summand of M.

The proof uses arguments similar to those used to prove [4, Theorem
3.9 and Lemma 3.10] but we include it for completeness.

Proof. Suppose M is a right R-module. Without loss of generality we
can suppose M = R/E, N = F/E where E < F are right ideals of R.

(i) There exists an invertible ideal I such that I £ F. Since F/E is
completely faithful it follows that F = FI + E. Hence I = FI +
(E M I). Since I is invertible we have

R=1I[""=F+ (ENII.

Moreover, EI < EMN I implies E = (EMN I)I~'. Also
{(FN(ENDHIY = E

implies F M\ (E N I)I~' = E because F/E is completely faithful. Thus
R/E = (F/E) ® {(ENI)I7'/E}.

(ii) There exists an invertible ideal J such that FJ =< E. Since R/F is
completely faithful it follows that R = F 4+ J. Now (FNJ)J ' is a
right ideal of R and

(FNDNHTJ W =FNJZ<F
Since R/F is completely faithful it follows that (FMN J)J~! £ F and
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hence FMNJ £ FJ £ E. Thus
R/E = F/E ® (J + E)/E.
The next result concerns the exact sequence
1) 0-4—-B—->C—0
of right R-modules.

THEOREM 2.4. Let R be an order in a ring Q such that every non-zero ideal
contains an invertible ideal. Then the exact sequence (1) splits provided any
one of the following statements holds:

(1) A 1s completely faithful and C locally unfaithful, or
(ii) A s unfaithful and C completely faithful, or

(iii) R s right Noetherian, A is locally unfaithful and C completely

Sfaithful.

Proof. Without loss of generality we can suppose that A isasubmodule
of B.Letb € B, b ¢ A. Consider the cyclic module bR. In (i) bR M A4 is
a completely faithful submodule of bR and bR/ (bR M 4) = (bR + A)/A
is unfaithful. By Lemma 2.3

(2) bR = (RN A) ® D,

for some submodule D,. In cases (ii) and (iii) bR M A4 is an unfaithful
submodule of bR (in (iii) because bR is a Noetherian module and hence
bRM A is finitely generated) and bR/(BRM A) = (bR + A)/A is
completely faithful. Again by Lemma 2.3 there exists a submodule D,
such that (2) holds.

Let D = ZbDb. Note that in (i) D, is unfaithful (b € B) and so D is
locally unfaithful. On the other hand in (ii) and (iii) D, is completely
faithful (b € B) and hence so is D (Lemma 2.2). Clearly

B=A44+D

and in all cases one of 4, D is completely faithful and the other locally
unfaithful. Thus 4 N D = 0 and we conclude B = 4 @ D.

COROLLARY 2.5. Let R be a ring such that every non-zero ideal contains an
invertible 1deal. Let M be an R-module such that there exists a finite chain

M=MzM y2Z2...2M,=0

of submodules M ; such that M, /M ; is completely faithful or unfaithful
(1 £ 1 £ n). Then there exists an unfaithful submodule U of M such that
M=CM) @ U.

Proof. We prove the result by induction on n. The case n = 1 is clear.
Let N = M. Then N = C(N) ® V for some unfaithful submodule V
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of N. If M/N is unfaithful apply (i) of the theorem to the module M/V
to obtain

M/V =N/V®WV

for some submodule W of M such that V < W and W/V is unfaithful.
Since R is prime it follows that W is unfaithful and M = C(N) & W.
Now suppose M/N is completely faithful. In this case apply (ii) of the
theorem to M/C(N) to obtain

M/C(N) = N/C(N) ® D/C(N)

for some submodule D of M containing C(N). Since D/C(N) = M/N it
follows that D/C(N), and hence D, is completely faithful (Lemma 2.1).
Thus M = D ® V and since V is unfaithful we have D = C(M).

Corollary 2.5 generalizes [4, Theorem 3.9] as does the next result. A
module M is locally Artintan provided every finitely generated submodule
is Artinian. Clearly any infinite direct sum of irreducible modules is
locally Artinian but not Artinian.

THEOREM 2.6. Let R be a right Noetherian order in a simple Artinian
ring such that R has enough invertible ideals and let M be a locally Artinian
right R-module. Then there exists a locally unfaithful submodule N of M
such that M = C(M) ® N.

Proof. By Theorem 2.4(i) it is sufficient to prove that M/C(M) is
locally unfaithful. Let m,, . . ., m, be a finite collection of elements of M
and consider the module

X =CM)+mR+ ...+ m,R.

Clearly X/C(M) has finite composition length and C(X/C(M)) = 0. By
Corollary 2.5 X/C(M) is unfaithful. It follows that M/C(M) is locally
unfaithful and the result follows.

Note that in Theorem 2.6
N = {m € M:mI = 0 for some non-zero ideal I of R}.

COROLLARY 2.7. Let R be a prime Noetherian ring with enough invertible
ideals and let M be a locally Artinian R-module. Then M 1is completely
faithful if and only if the socle of M is completely faithful.

Finally we mention some examples of primitive rings with enough in-
vertible ideals. A ring R is called hypercentral provided whenever I > J
are ideals of R the ideal I/J of the ring R/J contains a non-zero central
element of R/J. In particular every non-zero ideal of R contains a non-
zero central element of R. Let R be an order in a ring Q such that R is
prime and hypercentral; then every non-zero ideal of R contains an
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invertible ideal. This is because the ideal c¢R is invertible for any non-zero
element c.

Example 2.8. Let A, denote the nth Weyl algebra over a field F of
characteristic 0 and D, the division ring of fractions of 4,. Let ¢ be any
positive integer with { < n. Then the polynomial ring D,[xy, . .., x,] is
a primitive Noetherian hypercentral ring and so has enough invertible
ideals.

Let R = D,[x;,...,x,]. Then R is primitive by [1, Theorem 3] and
Noetherian by the Hilbert Basis Theorem. That R is hypercentral
follows at once from the next result.

LEMMA 2.9. Let H be a hypercentral ring and S the polynomial ring
H(x). Then S 1s a hypercentral ring.

Proof. Let I > J be ideals of S. Let k be the least non-negative integer
such that there is an element of degree k& which lies in I but not J. Let
I, Ji denote, respectively, the set of leading coefficients of elements of
degree k in I, J together with the zero element in each case. Then I, = J;
and I; and J; are ideals of H. Let

a=a +ax+...+axfel

but a ¢ J where a; € H (0 <1 £ k). Then a; € I}, ax ¢ Ji, otherwise
there exists b € J such that ¢ — b has degree <k and hencea — b € J.
Thus I; > J,. There exists ¢; € I such that ¢, + J; is a non-zero central
element of the ring R/J;. There exist c; € H (0 =7 < k — 1) such that

c=co+cx+ ... +cxF el

If » € H then the leading coefficient of ch — hc belongs to Jy and hence,
by the choice of &k, ch — he € J. It follows that ¢ + J is a non-zero
central element of R/J. Hence R is a hypercentral ring.

Next we give a class of non-Noetherian examples.

Example 2.10. Let K be a field and G a torsion-free nilpotent group with
centre Z such that G contains an Abelian subgroup A4 of rank not less
than the cardinality of the group algebra KZ such that A N\ Z = 1. Let
R be the group algebra KG. Then R is a primitive hypercentral right and
left Ore domain. Moreover R is a non-Noetherian ring with enough
invertible ideals.

The fact that R is primitive can be found in [3, Corollary 3.4]. That
R is hypercentral is a consequence of [10, Theorem A]. The ring R is a
right and left Ore domain by [9, Lemmas 13.1.6, 13.1.9 and 13.3.6].

An example of a group which satisfies the hypotheses of Example 2.10
can be obtained as follows. For each positive integer » define

H, = (X3, Yu, 2ai [%ns 2] = [Yur 2] = 1, [0, 0] = 20)-
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Let G be the direct product of the groups H, (n = 1) and 4 the sub-
group of G generated by the elements x, (» = 1). Then G is torsion-free

nilpotent of class 2, A M Z = 1 and the rank of 4 has the required
property if K is a countable field.
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