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1. Introduction. In this paper the author considers the problem of finding a formula
of inversion for the integral transform denned by the equation

F(u)= f f(r)Ju(kr)- (1)

where a > 0 , k > 0 and r~lf{r)eL(a,<x>). This transform appeared in connection with an
earlier investigation [4] in which an attempt was made to devise an integral transform that
could be adapted to the solution of certain boundary value problems involving the space
form of the wave equation and the condition of radiation:

limr1/2[/'(r)-'fc/W] = O. (2)
r—»oo

The transform that is adapted to treat the kind of problem described is that defined by the
equation

F1(u)=f f(r)H(:\kr)- (3)

where the kernel is a Hankel function of the first kind, the notation being that of Watson
[9].

The integral formula derived in [4] is given by the equation

_ 1 f uJ-u(kr)F(u) du 1 f
-'Z: : x:

2i JL sin UTT 2i J c

_ l f uH
2Jc

du

sin u-n

du
H«\ka) { '

where L denotes the imaginary axis of the complex u -plane and C denotes a loop
enclosing the positive real axis. The object in constructing the formula (4) was to generate
the type of expansion which appears in the theory of diffraction and which involves the
eigenfunctions H(J?(kr) where u[, u'2,... are the zeros of the function H^ika) regarded
as a function of the order u. This was achieved through the introduction of the two loop
integrals into the formula (4). In proving the formula (4) it was assumed that, in addition
to satisfying the radiation condition, the function f(r) being expanded also satisfied the
following integrability condition

r~v2[rf'(r) + f'(r) + k2rf(r)] e L(a, oo). (5)
Since
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it follows that the transforms defined by (1) and (3) are related by the equation

iFi(u)sin un = F(-u)-F(u)e~™. (6)

Since F{(u) can be expressed in terms of F(u) by means of the preceding equation it
follows that the equation (4) does provide a formula of inversion for the transform F(u)
but it is not in a very convenient form owing to the appearance of the loop integrals in (4).

In this paper an alternative formula of inversion is developed which contains an
expansion different from the eigenfunction expansion mentioned above and which is
simpler to apply in practice. The formula in question, which appears in the theorem stated
in the next section of this paper, contains a series involving the functions J^ikr), where
u,, u2,... are the zeros of the function Ju(ka) regarded as a function of the order u, and it
is proved without assuming that the function f(r) to be expanded satisfies the condition (5)
which is somewhat restrictive. The essential assumption is that r~^f(r)eL(a,co). An
extensive table of the zeros un has been compiled by S. Conde & S. L. Kalla [1] who have
calculated the first ten such zeros for a large number of values of ka ranging from 0-001
to 106.

2. The integral theorem.

THEOREM. Suppose that f(r) is continuous for r5=a>0 and that r~xf{r)eL(a,v>). Let
the function F(u) be defined by equation (1), then, if r> a,

u<t>(u,r)F(u)du 1 y uJu(kr)Yu(ka)F(u)1 f

2i)L Ju(ka) Trutn (dldu)Ju(ka) { )

where
= Ju(kr)Yu{ka)-Ju(ka)Yu(kr) (8)

and L denotes the imaginary axis of the complex u-plane. The summation in (7) is extended
over all the negative zeros un of the function Ju(ka), regarded as a function of its order u.

When u is large the Bessel function Ju(x) behaves like the function (x/2)"/r(l + u). By
relating the Bessel functions appearing in (7) to their corresponding power functions, the
proof of the above theorem can be reduced to that of the Mellin inversion theorem [8,
p. 46].

We first form the equation

(kt) du

u(ka) W

where R > 0 . The equation (9) follows after substituting the expression (1) for F(u) and
changing the order of integration. In order to justify the inversion of the order of
integration it will be proved that the repeated integral is absolutely convergent. With this
aim in view we appeal to the bound

|/is (fct )|«(2/7rfcr) 1/2cosh(s7r/2). (10)

This bound, which was derived in [5], applies on the imaginary axis where u = is, s real,

r i R u<j>(u,r)F(u)du_ rf()dt r i R u<{>(u, r)Ju

J_iR Ju(ka) I !W t LiR Ju(k
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and holds throughout the interval a =£ r<°°. The factors remaining in the u-integral on the
right hand side of (9) are independent of t and are bounded continuous functions of u in
the relevant interval. Hence the modulus of the repeated integral does not exceed the
quantity

cf"|f(t)lr3/2dt

where C is a constant. Since the above integral exists it follows that the repeated integral
in question is absolutely convergent so that the validity of (9) is established.

It will now be proved that the u-integral appearing on the right hand side of (9) is a
symmetric function of (r, f) in the sense that

riRfR u<t>{u, r)Ju(kt) du _ fR U(j)(u, t)Ju(kr) du
L i R Ju(ka) ~J_iR Ju(ka)

To obtain this result we note that the definition (8) of <t>(u, r) implies that

<t>(u, r)Ju(kt)-c(>(u, t)Ju(kr) = Ju(ka)[Ju(kr)Yu(kt)-Ju(kt)Yu(kr)]

= -Ju(ka)[Ju(kr)J_u(kt)-Ju(kt)J-u(kr)]cosec UTT

after using the identity

Yu(x) = [Ju(x)cos U7r-J_u(x)]cosec UTT. (12)

It follows that

\du fiR u[Ju{kr)J_u(kt)-Ju(kt)J_u(kr)]du
J_iR

= 0
sin UTT

since the integrand is an odd function of the variable u.
The f-integration in (9) is now decomposed into the parts (a, r) and (r, °°). By virtue

of (11) the variables r, t may be interchanged in the u-integral that appears in the (a, r)
part of the (-integral. This change yields the equation

u4>{u,t)Ju{kr)du

+ r djr*u*(ur)j(kt)du
Jr t LiR Ju(ka)

It is now convenient to introduce the function h(u, r, t) defined by the equation

TTU<f>(u, r)Ju(kt)

Ju(ka)

The function h(u,r, t) is defined in this way since it will appear shortly that when u is large
the dominant term in the asymptotic expansion of the expression on the left hand side of
(14) is the function (f/r)" -(rf/a2)". The procedure now is to insert the expression (14) into
the integrals on the right hand side of (13). The resulting integrals involving the power
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terms (t/r)" and (rt/a2)" will be evaluated by means of the Mellin inversion theorem,
whilst those involving the function h can be evaluated with the aid of the calculus of
residues. On using (14) to rewrite (13) we find the equation

f" dt [i

= f(t)-\
Jr t J-i

where

) - | h(u,t,r)du, (16)

h(u, r, t) du. (17)
R

The two integrals on the right hand side of (15) involving the term (rtla2) may be
combined to give a single integral over the interval a=st<°°. The other two integrals,
which involve the terms (r/r)u and (t/r)", respectively, may also be combined after
changing the sign of the integration variable u in the first such integral. Since all four
integrals are absolutely convergent, we find, on changing the orders of integration, that

fiR u<j>(u,r)F(u)du fiR - U , r u - U ( , , t

J _ j R J u ( k a ) J_jR Ja

fiR /aV" f" , , ,
( — ) du\ tu~*f(t)dt + Ix + I2. (18)

J-iR \r I Ja

Since r>a the first integral on the right hand side of equation (18) tends as R—>™ to
2iirf(r) by the Mellin inversion theorem [8, p. 46]. However, by the same theorem, the
second integral tends to zero as R -»°° since a2/r<a therein, and

I2nrf(p) a

It follows that

— — = 2iTTj(r) + lim (^ + 12). (19)
L Ju{ka) R->™

The terms in (19) involving Ix and I2 may be determined by means of the calculus of
residues and for this purpose it is necessary to determine the behaviour of the function h
when u is large. This can be obtained from the equation

( 2 0 )

This relation holds whenever u is large and bounded away from the negative integers and
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applies uniformly in any bounded domain of values of x. On substituting the formula (12)
for Yu into the equation (8) we find that

<f>(u, r)= -[Ju(kr)/_u(ka)-Ju(fco)/_u(kr)]cosec wn. (21)

On inserting the expression (20) and appealing to the identity r ( l + u)F(l-u) =
TTU cosec wn we find from (21) the equation

In addition it follows from (20) that

T7r\=(1X\^k2{t2~a2)-O(u-2)] (23)
Ju(ka) W L 4u J

so that, on combining (21) and (22) we find that the function h defined by equation (14)
possesses the asymptotic form

h(u, r,t) = f (r2-t2)(-)+(r2+t2-2a2)(^X + O[M-2(t/r)"]+ O[u-2(rt/a2)"]. (24)
4u \r/ \a I

We consider first the quantity Ix which is defined by equation (16). Since the Bessel
functions are entire functions of the order u the function h defined by (14) is an analytic
function of u except for simple poles at the zeros un of the function Ju(ka) regarded as a
function of u. It is known [3] that these zeros are all real and simple and that the large
such zeros are asymptotic to the large negative integers. Since a ^ l ^ r for Ix it follows
from (24), with r, t interchanged, that the function h(u, t, r) tends to zero as \u\ —»°° in the
half plane Re(u)=sO. If we write u = Reie the contour may be closed by adding the
semicircle C(R) having the segment (-iR, iR) as its diameter and positioned to the left of
this segment. If we take R = m+\, where m is a (large) positive integer, the semicircles
will avoid the poles of the integrand. At a zero un the function </>(u, r) defined by (8)
reduces to the product Ju(kr)Yu(ka) and on using (14) to calculate the residues at those
zeros which are located inside the semicircle C(R) we find the equation

r iR e uJu{kr)Ju(kt)Yu(ka)JM R /•

h(u, t, r)du= h(u, t, r) du + 2iir2 X
-iR 'C(R) u

U ) t (dldu)Ju(ka)
(25)

in which the summation extends over all the zeros un that lie in the interval —R <un<0.
When (25) is substituted into (16) we obtain the equation

L C ( R ) ^ (d/du)Ju(ka) Ja t

It will be shown that the repeated integral occurring on the right hand side of the preceding
equation is O(R~U2) as R —* °°. To do this the interval (a, r) appearing in this integral is
decomposed into the parts (a, r-i?~1/2) and (r-JR"1/2, r) which are considered separately.
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For values of f in the first such interval we can obtain the bound

rYdu J™z/r\R™e . M
do-

'C(R) t) u U t) R log(r/0

where M is a constant. Since the least value of log(r/0 in the stated interval is
- log( l - r - 'R- 1 / 2 )>r 1 R- 1 / 2 it follows that

(r\udu Mr
JC(R) \tJ U -R1

In the remaining segment r-.R~1/2=sr=£r we see, since Re(u )«0 , that

I Jc(R)

Similar bounds apply to the contributions of the O-terms in (24) as well as that from the
{rt/a2) term. On forming the total contribution we find that it is O(R~1/2) as stated. Hence
the equation (26) implies that

where -R<un<0 in the summation.
We consider now the quantity I2 which is defined by equation (17). The f-integration

in (17) is decomposed into the three parts (r, r + R~u2), (r + R~U2, t0) and (t0, °°) where t0

is chosen large enough to ensure that

f 1/(017< e. (28)

Since a =£ r « t in I2 it follows from (24) that the function h(u, r, t) tends to zero as u -» oo
in the half plane Re(u)=£0, so that the value of the u-integral in J2 can be obtained as
before by closing the contour on the left by means of the semicircle C(R) and taking the
residues at the poles. This procedure leads to the equation

^ (29)
u(ka) Jr t

where the summation is such that -R<un<0 and

r dt(iR

Io= f(t)-\ Hu,r,t)du.

It will now be shown that / 0 = O(e). On setting u = is in the above equation and inserting
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the value of the function h(is, r, f) obtained from (14) we find the equation

Io= j / M y } " [(rtla2r-{t/rr]ds

>
Now

R l o g ( t / r ) ]

log(t/r) "k>g(fo/r)"

A similar bound applies to the (rf/a2) integral in (30). Hence the magnitude of the first
repeated integral in (30) is, by (28), O(e).

To estimate the value of the second repeated integral in (30) appeal is made to the
following formula [2, p. 140]

[ ( ^ ) ^ ] [ ^ ^ ] (31)
where

P = (s2 + /c2t2)1/2. (32)

The formula (31) applies as s —» +°o uniformly for 0=£f<°°. If we set t = a in (31) and
simplify the resulting expression we obtain the expansion

^ ^ ] (33)

(34)

(35)

On dividing (31) by (33) we obtain the formula
1/2

77rHJis(ka) \p
where

. , 1 1 fc2a2 5is2 ^ . ,,
g(s) = — + - — + - — + r - ^ + O ( S " 2 ) . (36)

8ip 12is 4is 24p

The asymptotic behaviour of the factor <£(is, r) appearing in (30) is obtained from
equation (22) after setting u = is therein. This yields the equation

Now let Si, s2 be large. It is shown in the appendix to this paper that
s* eihsl (kt) ds f s , \ 1 1 2
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and

The formula (38) applies for sus2 arbitrarily large, s2>s^ and uniformly for t^3r. It
follows from (38) on setting b = log(a/r) and s2 = R that

; (a/r)isJis(/ct) ds

where M is a constant. Similar bounds hold when the factor (a/r)ls in the above integral is
replaced by (r/a)'s and for the corresponding integrals that contain the additional factor
$"•'. Therefore on substituting the expression (37) we find that

(is, r)Jis(kt)ds
= O(e). (39)

This applies for arbitrarily large R and e is independent of R. In addition it follows with
the aid of (10) and (28) that

s<f>(is, r)cosh(s-n-/2)I f dt T> s&js^VJMds fs-

On adding (39), (40) we find, if C, is a constant, the equation

ds. (40)

If dt
m t

dt (Rs<f>(is,r)Jis(kt)ds
Jis(ka)

g

A similar result applies to the corresponding integral in which the s-integration is taken
over the interval (—R, 0) so that on combining these bounds it is seen that the magnitude
of the second repeated integral appearing in equation (30) is O(e) as claimed and the
quantity /0 is itself O(e).

If we let R —» °° in equations (27) and (29) and add the resulting equations we find
that

2 T-> uJu(kr)Yu(ka)
lim (ij+ /2) = io + 2ITT

R—•«=
(dldu)Ju(ka)

f
t

(41)

where the summation now extends over all of the negative zeros of Ju(ka). Finally it is
shown in the appendix to this paper that, if C2 is a further constant,

uJu(kr)Yu(ka)
C2e

1/2

Since e is arbitrarily small it follows from (41), (42) that

r uJu(kr)Yu(ka) dt
- .

(42)

(43)

The formula (7) of the theorem now follows after inserting the above result into equation
(19).
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Appendix. The formula (38) used in the paper is proved by substituting the
expression (34) into the integral occurring on the right hand side of equation (38). This
leads to the equation

ibs Ckj f2 2

: ? [ ] (IY'^d+l (SlPy'2e^g(s)ds (A.1)Jis(ka) JSi JSi

where i|> = 1I' + bs and *& is defined by equation (35). It can be shown by successive
differentiation of (35) that ip"(s) = (p-s)l(ps) which is positive since p>s. It follows that
the function t|/'(s) is an increasing function of s and it can be shown that this function
cannot be less than log2 whenever s>3fcr and t>3r. It can be shown by further
differentiation that ip'"(s) = (s3-p3)s~2p~3 which is negative so that ip"(s) is a decreasing
function of s. The monotone properties stated enable the various integrals that appear on
the right hand side of equation (A.I) to be estimated by means of the second mean value
theorem [8, p. 379]. With this aim in mind the first term on the right hand side of (A.I) is
transformed by an integration by parts which yields the equation

(s/p)l/Vli/ds = ;(-L) , , / ' , - ' (—) -77
JS, V*l ' ^ ( S l ) \ P 2 ' V <•(s2)

fcV /S\1 / 2 ifr"(j
1/2^5/2 ^ y ^f^

Now (s/p) is an increasing function of s whereas t//"(s) and ^'(s)'1 are decreasing functions
of s, therefore after two applications of the mean value theorem we find the equation,

fs* (s\1/2 »j/"(s) cos tltds _ (S2V12 f *•2 ij/"(s) cos if/ ds

1/2

(A.3)

where s ,<s |<S2<s2 . Since i//"(sl)^(sj)"1 ^sV1 the expression (A.3) is O(s~[^) uniformly
for t^3r. The remaining part of the integral on the right hand side of (A.2) can also be
estimated by means of a single application of the mean value theorem, in which the factor
I2s~l/2p~5/2[t|/'(s)r2 is extracted, to show that it too is O(s^) uniformly for ts=3r. Thus
the equation (A.2) reveals that

fs2/s\i/2 /s,V2 cil('(s') /s-,\1/2 e'*0^
(±) e«ds = i(?A 7 7 - T - i P ) ^T-T+CXsT1). (A.4)

JSl \pl \piJ iA(s,) \p2/ ^(s2)

Similar methods can be used to estimate the five integrals that appear when the formula
(36) for g(s) is inserted into the second integral on the right hand side of equation (A.I)
and to show that this integral is also O(s7'). On combining the equation (A.4) with the
simplified form of equation (A.I) we obtain the formula (38) quoted earlier.

It remains to establish the inequality (42) and for this purpose it is necessary to
estimate the values of the various Bessel functions appearing in this inequality. Each of
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these functions is evaluated at a negative zero un of the function Ju(ka). The necessary
bounds needed to estimate these quantities can be obtained by following a procedure
similar to that adopted in [5,6] where two related expansion theorems were studied, but
under more restrictive conditions on the function being expanded. Since the method is the
same as that used in [5,6], except for minor changes, it is sufficient to state the final
results. If u is a negative zero of Ju(ka) it can be shown that

(A.5)

(A.6)

(A.I)

1 / r \ | u |

\uJu(kr)Yu(ka)\^-(-) ,

d

du

A bound on the integral present in (42) may be found by applying the Schwarz inequality
which shows that

Now the function /(() is bounded so that | / |«sM2 where M is a constant. On applying (28)
we find that

£. (A.9)

The Bessel function integral in (A.8) does not exceed that in (A.5) so that equation (A.8)
states that

1/2 n,,1-1/2-Mem\2u (A. 10)

On combining (A.6), (A.7) and (A. 10) we find that the summation in (42) does not exceed
the quantity

2Me1 / 2y (fcr/2)1"-1
(A. 11)

where the summation is extended over all of the negative zeros un. Since these zeros are
asymptotic to the large negative integers the series in (A. 11) is convergent. Therefore the
expression (All) is itself O(e1/2) so that (42) is proved.
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