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A non-abelian Stickelberger theorem

David Burns and Henri Johnston

Abstract

Let L/k be a finite Galois extension of number fields with Galois group G. For every odd
prime p satisfying certain mild technical hypotheses, we use values of Artin L-functions
to construct an element in the centre of the group ring Z(p)[G] that annihilates the
p-part of the class group of L.

1. Introduction and statement of the main results

Let K/k be a finite Galois extension of number fields with Galois group G. Let S be a finite
set of places of k containing the infinite places S∞. For any (complex) character χ of G, we let
eχ = (χ(1)/|G|)

∑
g∈G χ(g−1)g denote the corresponding central idempotent of the group algebra

C[G] and let LS(s, χ) denote the truncated Artin L-function attached to χ and S. Summing over
all irreducible characters of G gives a so-called ‘Stickelberger element’,

Θ(K/k, S) :=
∑

χ∈Irr(G)

LS(0, χ̄) · eχ.

Now suppose that k is totally real, K is a CM field, G is abelian and S contains the ramified
places Sram(K/k). Let µK denote the roots of unity in K and let clK denote the class group
of K. In [Cas79, DR80] it was shown independently that

AnnZ[G](µK)Θ(K/k, S)⊆ Z[G].

It is now easy to state Brumer’s conjecture, which can be seen as a generalisation of
Stickelberger’s theorem.

Conjecture 1.1. In the above situation, AnnZ[G](µK)Θ(K/k, S) annihilates clK .

There is a large body of evidence in support of Brumer’s conjecture; see the expository
article [Gre04], for example. Furthermore, under the assumptions that the appropriate special
case of the equivariant Tamagawa number conjecture (ETNC) holds (see § 6) and that the non-2-
part of µK is a cohomologically trivial G-module, Greither has shown that Brumer’s conjecture
holds outside the 2-part (see [Gre07]).

By contrast, as far as we are aware, no Brumer-type annihilation result has yet been proved
for any non-abelian extension. In the present article, we address this situation by proving an
unconditional annihilation result for arbitrary (not necessarily abelian) extensions, from which
a weak form of Brumer’s conjecture can also be deduced.

Before stating the main result, we introduce some additional notation. For any natural
number n, we let ζn denote a primitive nth root of unity. For any number field F , we write F cl for
the normal closure and F+ for the maximal totally real subfield of F . For a complex character χ
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of a finite group G, we let E = Eχ denote a subfield of C over which χ can be realised that is
both Galois and of finite degree over Q, and we let O =OE denote the ring of algebraic integers
of E. Furthermore, we write prχ for the associated ‘projector’

∑
g∈G χ(g−1)g in the group algebra

E[G] and DE/Q for the different of the extension E/Q.
We shall postpone two important definitions until § 2; for the moment we shall only give

brief descriptions. In the theorem below, Uχ is an explicit fractional ideal of O that depends
on Sram(K/k) (it is often the case that Uχ is trivial; see Remark 1.3(ii) and § 2.3). The fractional
O-ideal h(µK , χ) is a natural truncated Euler characteristic of the χ-twist of µK . We abbreviate
LS∞(s, χ) to L(s, χ).

Theorem 1.2. Let L/k be a finite Galois extension of number fields with Galois group G. Fix
a non-trivial irreducible character χ of G. Let K := Lker(χ) be the subfield of L cut out by χ.
Let p be any odd prime satisfying the following condition.

(∗) Suppose that:

(a) k is totally real;
(b) K is a CM field; and
(c) Kcl ⊂ (Kcl)+(ζp).
Then no prime of K+ above p is split in K/K+.

Then, for any element x of D−1
E/Q · h(µK , χ) · Uχ, the sum∑

ω∈Gal(Eχ/Q)

xωL(0, χ̄ω) · prχω

belongs to the centre of Z(p)[G] and annihilates Z(p) ⊗Z clL.

Remark 1.3. The statement of Theorem 1.2 can be simplified in several cases.

(i) If an odd prime p is unramified inK/Q, then (b) forcesKcl 6⊂ (Kcl)+(ζp) and so condition (∗)
holds trivially. Furthermore, if k is normal over Q and [(Kcl)+ : Q] is odd, then condition
(∗) holds for all odd primes p (these hypotheses together with (a), (b) and (c) imply that
all the primes of K+ above p are in fact ramified in K/K+).

(ii) If every inertia subgroup of Gal(K/k) is normal (for example, if χ is linear or every
p ∈ Sram(K/k) is non-split in K/k), then under the assumption that χ is non-trivial and
irreducible, it is straightforward to show that Uχ is trivial (see § 2.3).

(iii) If an odd prime p does not divide |µK |, then h(µK , χ) is relatively prime to p and so this
term can be ignored. In particular, this is the case when p is unramified in K/Q.

Remark 1.4. The purpose of assuming condition (∗) is to ensure that when (a) and (b) hold, the
strong Stark conjecture at p as formulated by Chinburg in [Chi83, Conjecture 2.2] will hold for
the (odd) character χ. Hence condition (∗) can be ignored completely in each of the following
cases, where the strong Stark conjecture is already known to be valid.

(i) The character χ is rational-valued: this was proved by Tate in [Tat84, ch. II, Theorem 8.6].
(ii) The field k is Q and the character χ is linear: this was proved by Ritter and Weiss in [RW97]

(in fact, they showed that the conjecture holds if 2 is unramified in K/Q and that otherwise
it holds outside the 2-part; but this is all we need since p is odd).

(iii) The field k is imaginary quadratic of class number one and χ is a linear character whose
order is divisible only by primes which split completely in k/Q: this follows from [BF03,
§ 3] and the result of Bley in [Ble06, Theorem 4.2].
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Note that, in particular, we are in case (i) if G is isomorphic to the symmetric group on any
number of elements, the quaternion group of order eight, or any direct product of such groups.

We give the proof of the following corollary in § 12, after the proof of Theorem 1.2.

Corollary 1.5. Let L/k be a finite Galois extension of number fields with Galois group G.
Suppose that every inertia subgroup is normal in G (which is the case, for example, when every
p ∈ Sram(L/k) is non-split in L/k). Let S be any finite set of places of k containing the infinite
places S∞. For any irreducible character χ of G, let Q(χ) denote the character field of χ and
let dχ be the minimum of [Eχ : Q(χ)] over all possible choices of Eχ. Let p be any odd prime
that is unramified in L/Q. Then the element∑

χ∈Irr(G),χ6=1

LS(0, χ̄) · dχprχ

belongs to the centre of Z(p)[G] and annihilates Z(p) ⊗Z clL.

Remark 1.6. Note that Eχ can always be taken to be Q(ζn) where n is the exponent of G
(see [CR81, (15.18)]), and so [Q(ζn) : Q(χ)] is an upper bound for dχ. In fact, dχ = 1 whenever G
is abelian or of odd prime power order, or when it is isomorphic to the symmetric group on any
number of letters, the dihedral group of any order, or any direct product of such groups.

Remark 1.7. Suppose that k is totally real, L is a CM field, G is abelian and S contains the
ramified primes Sram(L/k). Then Corollary 1.5 says that for p odd and unramified in L/Q,∑

χ∈Irr(G),χ6=1

LS(0, χ̄) · prχ = |G| ·Θ(L/k, S) annihilates Z(p) ⊗Z clK .

(Note that there is a slight adjustment to be made in the case of k = Q.) Under the hypotheses
on p we have AnnZ[G](µL)⊗Z Z(p) = Z(p)[G], so the above statement is the same as the ‘p-part’ of
Brumer’s conjecture (Conjecture 1.1) but with an extra factor of |G| in the annihilator (of course,
this makes no difference if p does not divide |G|). 2

Remark 1.8. In [Bur09] a conjecture is given which, in the setting of the present article, uses
values of derivatives of Artin L-functions to construct explicit annihilators of ideal class groups.
Upon restriction to the abelian case and to consideration of values of Artin L-functions, the
central conjecture of [Bur09] precisely recovers Brumer’s conjecture. Explicit examples are also
studied in [Bur09] which show that, in some cases, Theorem 1.2 is essentially the strongest
possible annihilation result.

2. Definition of Uχ and h(µK , χ)

In this section we give the necessary background material to make precise the definitions of Uχ
and h(µK , χ) in Theorem 1.2.

2.1 χ-twists

We largely follow the exposition of [Bur08, § 1]. Fix a finite group G and an irreducible (complex)
character χ of G. Let E = Eχ be a subfield of C over which χ can be realised that is both Galois
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and of finite degree over Q. We write O for the ring of algebraic integers in E and set

eχ :=
χ(1)
|G|

∑
g∈G

χ(g−1)g =
χ(1)
|G|

∑
g∈G

χ(g)g, prχ :=
|G|
χ(1)

eχ =
∑
g∈G

χ(g−1)g =
∑
g∈G

χ(g)g.

Here eχ is a primitive central idempotent of E[G] and prχ is the associated ‘projector’.

We choose a maximal O-order M in E[G] containing O[G] and fix an indecomposable
idempotent fχ of eχM. We define an O-torsion-free right O[G]-module by setting Tχ := fχM.
(Note that this is slightly different from the definition given in [Bur08, § 1].) The associated right
E[G]-module E ⊗O Tχ has character χ, and Tχ is locally free of rank χ(1) over O.

For any (left) G-module M we set M [χ] := Tχ ⊗Z M , upon which G acts on the left by
t⊗Z m 7→ tg−1 ⊗Z g(m) for each t ∈ Tχ, m ∈M and g ∈G. For any G-module M and integer i,
we write Ĥ i(G,M) for the Tate cohomology in degree i of M with respect to G. We also
write MG and MG for, respectively, the maximal submodule and maximal quotient module
of M upon which G acts trivially. Then we obtain a left exact functor M 7→Mχ and a right
exact functor M 7→Mχ from the category of left G-modules to the category of O-modules,
by setting Mχ :=M [χ]G and Mχ :=M [χ]G = Tχ ⊗Z[G] M . The action of NormG :=

∑
g∈G g on

M [χ] induces a homomorphism of O-modules t(M, χ) :Mχ→Mχ with kernel Ĥ−1(G,M [χ])
and cokernel Ĥ0(G,M [χ]). Thus t(M, χ) is bijective whenever M , and hence also M [χ], is a
cohomologically trivial G-module.

We shall henceforth take ‘module’ to mean ‘left module’ unless explicitly stated otherwise.

2.2 Reducing to the L=K case

Assume the setting and notation of Theorem 1.2 for the rest of this section. In the definitions of
Uχ and h(µK , χ) below, we shall assume that L=K. Hence χ is a non-trivial irreducible faithful
character of G= Gal(K/k).

For the general case of L 6=K, let φ be the character of Gal(K/k) that inflates to χ. Then φ
is irreducible and faithful, and we have Eχ = Eφ. We define Uχ := Uφ and h(µK , χ) := h(µK , φ).

2.3 Definition of Uχ

We first recall the following construction from [Gre07, § 2]. Let p be a finite prime of k and
fix a prime P of K above p. We use the standard notation Gp , G0,p and Gp =Gp /G0,p for,
respectively, the decomposition group, the inertia group and the residual group of K/k at P.
Choose a lift Fp (fixed for the rest of the paper) of the Frobenius element Frp ∈Gp to Gp ⊂G.
For any subgroup H of G, let NormH :=

∑
h∈H h. We define central idempotents of Q[Gp ] as

follows:

e′p := |G0,p |−1 NormG0,p , e′′p := 1− e′p ;

ēp := |Gp |−1 NormGp , ¯̄ep := 1− ēp .

We define the Z[Gp ]-modules Up by

Up := 〈NormG0,p , 1− e′pF−1
p 〉Z[Gp ] ⊂Q[Gp ]

and note that Up = Z[Gp ] if p is unramified in K/k.
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Let nreχE[G] : eχE[G]→ E be the reduced norm map (see [CR81, § 7D]). More explicitly, this
is the determinant map eχE[G]∼= Matχ(1)(E)→ E. We define a fractional ideal of O by setting

Uχ :=
∏

p∈Sram(K/k)

nreχE[G](eχMUp )O.

Here we use the following notation: for any finitely generated Z[Gp ]-submodule Vp of Q[Gp ], we
write nreχE[G](eχMVp )O for the O-submodule of E that is generated by the elements nreχE[G](x)
as x runs over eχMVp and note that this is indeed a fractional ideal ofO since nreχE[G](eχM) =O.

Recalling the hypothesis that χ is faithful and non-trivial, it is a straightforward exercise to
show that Uχ is the trivial ideal if G0,p is normal in G for every p ∈ Sram(K/k) (the point is
that χ must be non-trivial on G0,p and so eχ annihilates both NormG0,p and e′p ). In particular,
this is the case when G is abelian or Hamiltonian (i.e. every subgroup of G is normal), or when
every p ∈ Sram(K/k) is non-split in K/k (i.e. G=Gp ).

2.4 Definition of h(µK , χ)
For any finitely generated O-module M , we let FitO(M) denote the Fitting ideal of M . We define
h(µK , χ) to be the natural truncated Euler characteristic,

h(µK , χ) :=
i=2∏
i=0

FitO(H i(G, µK [χ]))(−1)i .

Note that if µK is cohomologically trivial as a G-module, then h(µK , χ) = FitO(µK [χ]G).

3. Algebraic K-theory

In this section we summarise some of the necessary background material from algebraic K-theory.
Further details can be found in [CR81, CR87], [BB07, § 2] and [Bre04, § 2].

3.1 Relative K-theory
For any integral domain R of characteristic 0, any extension field F of the field of fractions of R
and any finite group G, let K0(R[G], F [G]) denote the relative algebraic K-group associated to
the ring homomorphism R[G] ↪→ F [G]. We write K0(R[G]) for the Grothendieck group of the
category of finitely generated projective R[G]-modules and K1(R[G]) for the Whitehead group.
There is the following long exact sequence of relative K-theory:

K1(R[G])−→K1(F [G])−→K0(R[G], F [G])−→K0(R[G])−→K0(F [G]). (1)

3.2 Reduced norms
Let ζ(F [G])× denote the multiplicative group of the centre of F [G]. There exist a reduced
norm map nrF [G] : (F [G])×→ ζ(F [G])×, with image denoted by ζ(F [G])×+, and a natural
surjective map (F [G])×→K1(F [G]), x 7→ (F [G], xr), where xr denotes right multiplication by x.
However, these maps have the same kernel, namely the commutator subgroup [(F [G])×, (F [G])×],
and so we have the commutative diagram

(F [G])×

nrF [G]

��

//K1(F [G])

nrF [G]

'

wwo o o o o o

ζ(F [G])×+
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where nrF [G] is the induced isomorphism. Note that the inverse map nr−1
F [G] : ζ(F [G])×+→

K1(F [G]) can be described explicitly by nrF [G](x) 7→ (F [G], xr). By composing the map nr−1
F [G] :

ζ(F [G])×+→K1(F [G]) with the boundary map K1(F [G])→K0(R[G], F [G]), we obtain a
homomorphism

∂R[G],F [G] : ζ(F [G])×+ −→K0(R[G], F [G]), nrF [G](x) 7→ (R[G], xr, R[G]). (2)

We note that if F is algebraically closed, then nrF [G] is surjective, i.e. ζ(F [G])×+ = ζ(F [G])×.
In any case, we always have (ζ(F [G])×)2 ⊆ ζ(F [G])×+.

3.3 Induction

Let H be a subgroup of G. The functor M 7→R[G]⊗R[H] M from projective R[H]-modules to
projective R[G]-modules and the corresponding functor from F [H]-modules to F [G]-modules
induce induction maps indGH for all K-groups in the exact sequence (1). We also obtain
an induction map

iGH := nrF [G] ◦ indGH ◦ nr−1
F [H] : ζ(F [H])×+→ ζ(F [G])×+.

Specialising to the case where R= Z and F = R, we obtain the following commutative
diagram.

(R[H])×

nrR[H]

��

inclusion // (R[G])×

nrR[G]

��
ζ(R[H])×+

iGH //

nr−1
R[H]'

��
∂Z[H],R[H]

##

ζ(R[G])×+

∂Z[G],R[G]

{{

nr−1
R[G] '

��
K1(R[H])

��

indGH //K1(R[G])

��
K0(Z[H], R[H])

indGH //K0(Z[G], R[G])

(3)

3.4 The extended boundary homomorphism

We recall some properties of the ‘extended boundary homomorphism’

∂̂Z[G],R[G] : ζ(R[G])×→K0(Z[G], R[G]),

which was first introduced in [BF01, Lemma 9] (a more conceptual description was given
in [BB07, Lemma 2.2]). The restriction of ∂̂Z[G],R[G] to ζ(R[G])×+ is ∂Z[G],R[G].

Lemma 3.1. Letting α and β denote the natural inclusions, the diagram

ζ(R[G])×

α
��

∂̂Z[G],R[G] //K0(Z[G], R[G])

β
��

ζ(C[G])×
∂Z[G],C[G] //K0(Z[G], C[G])

commutes up to elements of order two. In other words, given x ∈ ζ(R[G])×, we have

β(∂̂Z[G],R[G](x)) = ∂Z[G],C[G](α(x)) · u

for some u ∈K0(Z[G], C[G]) of order at most two.
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Proof. Reduced norms commute with extension of scalars, and squares in ζ(R[G])× are reduced
norms. Thus, for x ∈ ζ(R[G])× we have

β(∂̂Z[G],R[G](x))2 = β(∂̂Z[G],R[G](x
2)) = β(∂Z[G],R[G](x

2)) = ∂Z[G],C[G](α(x2)) = ∂Z[G],C[G](α(x))2,

from which the desired result follows immediately. 2

Regarding G as fixed, we henceforth abbreviate ∂̂Z[G],R[G] and ∂Z[G],R[G] to ∂̂ and ∂,
respectively.

4. Centres of complex group algebras

Let G be a finite group and let Irr(G) be the set of irreducible complex characters of G.
Recall that there is a canonical isomorphism ζ(C[G]) =

∏
χ∈Irr(G) C. We shall henceforth use

this identification without further mention.

4.1 Explicit induction
Let H be a subgroup of G, and define a map

iGH : ζ(C[H])→ ζ(C[G]), (αψ)ψ∈Irr(H) 7→
( ∏
ψ∈Irr(H)

α
〈χ|H ,ψ〉H
ψ

)
χ∈Irr(G)

, (4)

where 〈χ|H , ψ〉H denotes the usual inner product of characters of H. The restriction of this
map to ζ(C[H])× is the same as the map iGH : ζ(C[H])×→ ζ(C[G])× defined in § 3.3 (with
F = C) so that using the same name for these maps is justified. This map restricts further
to iGH : ζ(R[H])×+→ ζ(R[G])×+ (as defined in § 3.3 with F = R).

4.2 The involution #
We write α 7→ α# for the involution of ζ(C[G]) induced by the C-linear anti-involution of
C[G] that sends each element of G to its inverse. If α= (αχ)χ∈Irr(G), then α# = (αχ̄)χ∈Irr(G).
Furthermore, # restricts to an involution of ζ(R[G])×+ which is compatible with induction;
that is, if α ∈ ζ(R[H])×+, then iGH(x#) = iGH(x)#.

4.3 Meromorphic ζ(C[G])-valued functions
A meromorphic ζ(C[G])-valued function is a function of a complex variable s of the form
s 7→ g(s) = (g(s, χ))χ∈Irr(G) where each function s 7→ g(s, χ) is meromorphic. If r(χ) denotes
the order of vanishing of g(s, χ) at s= 0, then we set g∗(0, χ) := lims→0 s

−r(χ)g(s, χ) and
g∗(0) := (g∗(0, χ))χ∈Irr(G) ∈ ζ(C[G])×.

5. L-functions

Let K/k be a finite Galois extension of number fields with Galois group G, and let S be a finite
set of places of k containing the infinite places S∞.

5.1 Artin L-functions
Let p be a finite prime of k. Let ψ be a complex character of Gp and choose a C[Gp ]-module Vψ
with character ψ. Recalling the notation from § 2.3, we define

LKP /kp
(s, ψ) := detC(1− Fp (Np)−s|V G0,p

ψ )−1, (5)
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where Np is the cardinality of the residue field of p. Note that LKP /kp
(s, ψ) depends only on p

and not on the choice of P. Furthermore, it is easy to see that

LKP /kp
(s, ψ + ψ′) = LKP /kp

(s, ψ)LKP /kp
(s, ψ′)

for any two characters ψ and ψ′ of Gp ; thus the definition extends to all virtual characters of Gp .
Now let χ ∈ Irr(G) and, for each p, let χp denote the restriction of χ to Gp . The Artin

L-function attached to S and χ is defined as an infinite product

LK/k,S(s, χ) :=
∏
p /∈S

LKP /kp
(s, χp ), (6)

which converges for Re(s)> 1 and can be extended to the whole complex plane by meromorphic
continuation.

5.2 Equivariant L-functions
We define meromorphic ζ(C[Gp ])-valued functions by

LKP /kp
(s) := (LKP /kp

(s, ψ))ψ∈Irr(Gp )

and define the equivariant Artin L-function to be the meromorphic ζ(C[G])-valued function

LK/k,S(s) := (LK/k,S(s, χ))χ∈Irr(G).

From (4) and (6) it is straightforward to check that for Re(s)> 1 we have

LK/k,S(s) =
∏
p /∈S

iGGp
(LKP /kp

(s)). (7)

Note that L∗KP /kp
(0) ∈ ζ(R[Gp ])×+ and L∗K/k,S(0) ∈ ζ(R[G])× (see [BB07, Lemma 2.7]). We

henceforth abbreviate LK/k,S(s) to LS(s) and LS∞(s) to L(s).

6. Tate sequences, refined Euler characteristics and the ETNC

Let K/k be a finite Galois extension of number fields with Galois group G, and take S to be
a finite G-stable set of places of K containing the set of archimedean places S∞. We let Sram

denote the places of K ramified in K/k. The set of k-places below places in S (respectively,
in S∞ or Sram) will be denoted by S (respectively, S∞ or Sram). (Note that this is different from
the notation used in [Gre07].) Let ES =O×K,S and let ∆S be the kernel of the augmentation map
ZS→ Z. We shall henceforth use the abbreviations ‘c.t.’ for ‘cohomologically trivial’ and ‘f.g.’
for ‘finitely generated’. Note that as G is finite, ‘G-c.t.’ is equivalent to ‘of projective dimension
at most one over Z[G]’.

Now let S′ denote a finite G-stable set of places of K that is ‘large’, i.e. S∞ ∪ Sram ⊆ S′
and clK,S′ = 0. Tate defined a canonical class τ = τS′ ∈ Ext2

Z[G](∆S
′, ES′); see [Tat66] or [Tat84,

ch. II]. The fundamental properties of τ ensure the existence of so-called Tate sequences,
i.e. four-term exact sequences of f.g. Z[G]-modules

0−→ ES′ −→A−→B −→∆S′ −→ 0 (8)

that represent τ , with A G-c.t. and B projective. In [RW96], Ritter and Weiss constructed a
Tate sequence for S ‘small’:

0−→ ES −→A−→B −→∇−→ 0,

where ∇ is given by a short exact sequence 0→ clK,S →∇→∇→ 0.
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In order to take full advantage of these sequences, we shall use refined Euler characteristics,
which we now briefly review in the special case of interest to us. For a full account, we refer
the reader to [Bur04] (also see [Bur01, § 1.2]). Following [Gre07, § 3], we adopt a slight change
from the usual convention (this results in merely a sign change). A ‘metrised’ complex over Z[G]
consists of a complex in degrees zero and one,

A−→B,

together with an R[G]-isomorphism

ϕ : R⊗ U −→ R⊗ V, (9)

with both A and B being f.g. and c.t. over G and where U (respectively, V ) is the kernel
(respectively, cokernel) of A→B. To every metrised complex E = (A→B, ϕ) we can associate
a refined Euler characteristic χref(E) ∈K0(Z[G], R[G]) as follows. We can write down a four-term
exact sequence

0−→ U −→A−→B −→ V −→ 0, (10)

which gives rise to the tautological exact sequences

0−→ ker(R⊗B→ R⊗ V )−→ R⊗B −→ R⊗ V −→ 0,
0−→ R⊗ U −→ R⊗A−→ im(R⊗A→ R⊗B)−→ 0.

We choose splittings for these sequences and obtain an isomorphism ϕ̃ : R⊗A→ R⊗B,

R⊗A ∼= im(R⊗A→ R⊗B)⊕ (R⊗ U) = ker(R⊗B→ R⊗ V )⊕ (R⊗ U)
∼= ker(R⊗B→ R⊗ V )⊕ (R⊗ V )
∼= R⊗B,

where the first and third maps are obtained from the chosen splittings and the second map is
induced by ϕ. (We refer to ϕ̃ as a ‘transpose’ of ϕ.) If A and B are both Z[G]-projective, we
define χref(A→B, ϕ) = (A, ϕ̃, B) ∈K0(Z[G], R[G]). This definition can be extended to the more
general case where A and B are c.t. over G. In all cases, χref(A→B, ϕ) can be shown to be
independent of the choice of splittings.

We note several properties of χref . First, χref(A→B, ϕ) remains unchanged if ϕ is composed
with an automorphism of determinant 1 on either side; see [Bur01, Proposition 1.2.1(ii)]. Second,
if the metrisation (9) is given, then the class of the exact sequence (10) in Ext2

Z[G](V, U)
uniquely determines χref(A→B, ϕ); see [Bur01, Proposition 1.2.2 and Remark 1.2.3]. Finally,
it is straightforward to show that χref is compatible with induction, i.e. if H is a subgroup of G
and A→B is an appropriate complex of Z[H]-modules with metrisation ϕ, then

indGH(χref(A→B, ϕ)) = χref(indGHA→ indGHB, indGHϕ). (11)

Now let E be the complex formed by the middle two terms of the Tate sequence (8), and
metrise it by setting U = ES′ , V = ∆S′ and ϕ−1 : RES′ → R∆S′ to be the negative of the usual
Dirichlet map, i.e. ϕ−1(u) =−

∑
v∈S′ log |u|v · v. The equivariant Tamagawa number is defined

to be

TΩ(K/k, 0) := ψ∗G(∂̂(L∗S′(0)#)− χref(E)) ∈K0(Z[G], R[G]),

where ψ∗G is a certain involution of K0(Z[G], R[G]) which can be ignored for our purposes. (Note
that we have −χref(E) rather than +χref(E) here because, as mentioned above, our definition of
χref is slightly different from the usual convention, resulting in a sign change.) The equivariant
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Tamagawa number conjecture (ETNC) in this context (i.e. for the motive h0(K) with coefficients
in Z[G]) simply states that TΩ(K/k, 0) is zero (see [Bur01, BF01]). One can also re-interpret
other well-known conjectures using this framework. For example, Stark’s main conjecture is
equivalent to the statement that TΩ(K/k, 0) belongs to K0(Z[G],Q). IfM is a maximal Z-order
in Q[G] containing Z[G], then the strong Stark conjecture can be interpreted as

TΩ(K/k, 0) ∈K0(Z[G],Q[G])tors = ker(K0(Z[G],Q[G])→K0(M,Q[G])),

i.e. as saying that ‘the ETNC holds modulo torsion’ (see [Bur01, § 2.2]).

7. Metrised commutative diagrams

We briefly review Greither’s construction of certain metrised commutative diagrams which we
shall use in a crucial way; we leave the reader to consult [Gre07] for further details. The principal
tool used in this construction is the aforementioned ‘Tate sequence for small S’ of Ritter and
Weiss [RW96]. Although the only application in [Gre07] is to the case where G is abelian, the
explicit construction given there is in fact valid for the general case, once one makes some
minor modifications to the ‘core diagram’ of [Gre07, § 5] as described in the proof of [Nic09,
Proposition 4.4].

We adopt the setup and notation of § 6 and add the further hypotheses that k is totally real,
K is a CM field and S′ is ‘larger’ in the sense of [RW96], i.e. S∞ ∪ Sram ⊆ S′, clK,S′ = 0 and
G=

⋃
p∈S′ Gp . We write j for the unique complex conjugation in G and define R :=

Z[G][1/2]/(1 + j). For every G-module M we let M− :=R⊗Z[G] M (this notation, which includes
inversion of 2, is used in [Gre07] and is non-standard but practical). Note that the construction
of the refined Euler characteristic also works for complexes over R.

Let C be the free Z[G]-module with basis elements xp , where p runs over S ′\S∞. Using the
Tate sequences for S ‘larger’ and for S ‘small’, Greither constructed the following diagrams.

ES′ //A //BS′ // ∆S′

C ⊕ ES∞ //

OO

C ⊕A //

OO

BS∞ //

OO

∇

OO

Z ′ //

OO

C //

OO

C //

OO

Z ′′

OO (D1)

ES∞ //A //B̃ //∇/δ(C)

C ⊕ ES∞ //

OO

C ⊕A //

OO

BS∞ //

OO

∇

OO

C
id //

OO

C
0 //

OO

C
id //

OO

C

δ

OO (D2)

In the original construction, S was used in place of S∞, and only later did the author specialise
to the case of S = S∞. Note that the middle rows of (D1) and (D2) are identical and that the
middle map of the bottom row of (D1) is, in general, far from the identity. The ‘minus part’ of
each diagram is denoted by (D1)− or (D2)−, as appropriate.

44

https://doi.org/10.1112/S0010437X10004859 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10004859


A non-abelian Stickelberger theorem

In [Gre07, § 7] each row is given a metrisation, and we label the corresponding refined Euler
characteristics as follows:

XS′ = χref(top row of (D1)),
X1 = χref(middle row of (D1)) = χref(middle row of (D2)),
XC = χref(bottom row of (D1)),
X−∞ = χref(top row of (D2)−),
X2 = χref(bottom row of (D2)).

(Note that there is a typo in the definition of X−∞ in [Gre07, top of p. 1418].) The metrisations
are chosen to be ‘compatible’ within the minus part of each diagram (see [Gre07, Lemmas 7.3
and 7.4]) so that we have

X−1 =X−S′ +X−C and X−1 =X−∞ +X−2 in K0(R, R[G]−),

where we denote the natural map K0(Z[G], R[G])→K0(R, R[G]−) by a minus exponent. Putting
these two equations together gives the following result.

Proposition 7.1. We have X−∞ =X−S′ +X−C −X
−
2 in K0(R, R[G]−).

8. Computing refined Euler characteristics

We compute the refined Euler characteristics of the metrised commutative diagrams of § 7
(i.e. of [Gre07, § 3]) in the non-abelian case. Recall the definitions of e′p , e

′′
p and ēp , ¯̄ep from

§ 2.3, and note that even though ¯̄ep e′′p = e′′p , we sometimes retain ¯̄ep for clarity.

Recall that h is a positive integer multiple of |clK | (see [Gre07, p. 1411]).

Lemma 8.1. Let vp = h|Gp | · ēp + ¯̄ep ∈Q[Gp ]. Then in K0(Z[G], R[G]) we have

XC =
∑

p∈S′\S∞

∂(nrR[G](vp )).

Proof. This was proved in the abelian case in [Gre07, Lemma 7.6]. The key point is that the
‘transposed isomorphism’ at the local level is multiplication by vp (note that this is central in
R[Gp ]), and this part of the proof holds without change in the non-abelian case. Hence

XC =
∑

p∈S′\S∞

indGGp
((Z[Gp ], (vp )r, Z[Gp ])) =

∑
p∈S′\S∞

(Z[G], (vp )r, Z[G])

=
∑

p∈S′\S∞

∂(nrR[G](vp )),

where the equalities are due, respectively, to the compatibility of χref with induction
(i.e. equation (11) with H =Gp ), the commutativity of diagram (3) (again with H =Gp ) and
the explicit formula (2) (with R= Z and F = R). 2

Recall that hp = gp · e′p + e′′p where gp = |G0,p |+ 1− F−1
p (see [Gre07, p. 1420]).

Lemma 8.2. Let

tp = h log NP · ēp +
1− F−1

p

hp
· ¯̄ep e′p + ¯̄ep e′′p .
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Then in K0(R, R[G]−) we have

X−2 =
∑

p∈S′\S∞

∂(nrR[G](tp ))−.

Proof. Recall that the bottom row of (D2) is metrised with the map ψ : RC→ RC (see [Gre07,
p. 1417]) and that X2 is the associated refined Euler characteristic (see § 7). Because of the zero
map in the middle of the row, the transpose of ψ is just ψ itself. In [Gre07, Lemma 8.6] it was
shown that in the minus part, ψ is the direct sum of maps induced from endomorphisms ψp

of R[Gp ] · xp given by multiplication by tp (note that this is central in R[Gp ]), and this holds
without change in the non-abelian case. The result then follows in the same way as in the proof
of Lemma 8.1 above, but with vp replaced by tp . 2

Definition 8.3. Fix a finite prime p of k. Let ψ ∈ Irr(Gp ) and let eψ be the primitive central
idempotent of C[Gp ] attached to ψ. In the spirit of [Gre07, p. 1421], we say that:

(i) ψ ∈ T1(p) if ψ is trivial, i.e. eψ = ēp ;

(ii) ψ ∈ T2(p) if ψ is non-trivial but trivial on G0,p , i.e. eψ ēp = 0 but eψe′p = eψ;

(iii) ψ ∈ T3(p) if ψ is non-trivial on G0,p , i.e. eψe′p = 0.

This division into types corresponds to the decomposition of 1 into orthogonal idempotents,

1 = ēp + ¯̄ep e′p + ¯̄ep e′′p

in Q[Gp ]⊆ C[Gp ], where ψ ∈ Ti(p) corresponds to eψ sending the ith of the right-hand summands
to eψ and the other two to 0, for i= 1, 2, 3. Note that if ψ ∈ T2(p), then ψ factors through the
cyclic group Gp =Gp /G0,p and so ψ is linear.

Lemma 8.4. Fix a prime p ∈ S ′\S∞ and let ψ ∈ Irr(Gp ). We have

eψ(vp t
−1
p h−1

p ) =


(eψ(log Np))−1 if ψ ∈ T1(p);
(eψ(1− F−1

p ))−1 if ψ ∈ T2(p);
eψ if ψ ∈ T3(p).

Proof. Suppose ψ ∈ T1(p). Then eψvp = eψh|Gp |, eψtp = eψh log NP and eψhp = eψ|G0,p |. Hence

eψ(vp t
−1
p h−1

p ) = eψ[Gp :G0,p ](log NP)−1 = (eψ(log Np))−1.

Suppose ψ ∈ T2(p). Then eψvp = eψ and eψtp = eψh
−1
p (1− F−1

p ). Hence

eψ(vp t
−1
p h−1

p ) = (eψ(1− F−1
p ))−1.

If ψ ∈ T3(p), then eψvp = eψtp = eψhp = eψ and so eψ(vp t
−1
p h−1

p ) = eψ. 2

Lemma 8.5. We have

L∗S′(0)#nrR[G]

( ∏
p∈S′\S∞

vp t
−1
p h−1

p

)
= L∗(0)# in ζ(R[G])×.
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Proof. First, recall the definitions from §§ 4 and 5. From (7), we have

L∗(0)#(L∗S′(0)#)−1 = (L∗(0)L∗S′(0)−1)# =
∏

p∈S′\S∞

iGGp
(L∗KP /kp

(0))# in ζ(R[G])×.

Since # is compatible with induction, we are reduced to showing that∏
p∈S′\S∞

nrR[G](vp t
−1
p h−1

p ) =
∏

p∈S′\S∞

iGGp
(L∗KP /kp

(0)#) in ζ(R[G])×+.

Fix p ∈ S ′\S∞. We have

nrR[G](vp t
−1
p hp ) = iGGp

(nrR[Gp ](vp t
−1
p hp ))

from the commutative diagram (3) (with H =Gp ). Moreover, Lemma 8.4 shows that

nrR[Gp ](vp t
−1
p h−1

p ) = vp t
−1
p h−1

p ,

since ψ is linear if ψ ∈ T1(p) ∪ T2(p). Therefore we are further reduced to verifying that

vp t
−1
p h−1

p = L∗KP /kp
(0)# in ζ(R[Gp ])×+.

However, this holds because for each ψ ∈ Irr(Gp ) we have

eψL
∗
KP /kp

(0)# = eψL
∗
KP /kp

(ψ̄, 0) = eψ(vp t
−1
p h−1

p ),

where the second equality follows from Lemma 8.4 and a direct computation using the definition
of local L-function (5). 2

Definition 8.6. We say that a character χ of G is odd if j (the unique complex conjugation
in G) acts as −1 on a C[G]-module Vχ with character χ or, equivalently, eχe− = eχ in C[G] where
e− := (1− j)/2.

Proposition 8.7. Assume that ETNC holds for the motive h0(K) with coefficients in R. Let
hglob :=

∏
p∈S′\S∞hp (as in [Gre07, § 8]). Then ∂̂(L(0)#nrR[G](hglob))− =X−∞ in K0(R, R[G]−).

Proof. The ETNC for h0(K) with coefficients in Z[G] gives ∂̂(L∗S′(0)#) =XS′ (recall the
exposition in § 6 and note that XS′ = χref(E)). Hence the ETNC for h0(K) with coefficients
in R gives ∂̂(L∗S′(0)#)− =X−S′ . Let

f := L∗S′(0)#
∏

p∈S′\S∞

nrR[G](vp t
−1
p ) ∈ ζ(R[G])×.

Then, combining Lemmas 8.1 and 8.2 with Proposition 7.1 gives ∂̂(f)− =X−∞. However, from
Lemma 8.5 we deduce that

f = L∗(0)#nrR[G]

( ∏
p∈S′\S∞

v−1
p tp hp

) ∏
p∈S′\S∞

nrR[G](vp t
−1
p ) = L∗(0)#nrR[G](hglob)

in the minus part. A standard argument shows that L(0, χ) = L∗(0, χ) for every odd irreducible
character χ of G (this is a straightforward exercise once one has the order of vanishing
formula (22) used in § 12), and so we have L∗(0)− = L(0)−. Therefore f = L(0)#nrR[G](hglob)
in the minus part, and the desired result now follows from applying ∂̂ to both sides. 2
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9. Computing fitting ideals

Proposition 9.1. Let χ ∈ Irr(G) with χ odd. Then, ignoring 2-parts, we have

nreχE[G](eχh
−1
glob)Uχ

FitO(H2(G, µK [χ]))
FitO(H1(G, µK [χ]))

FitO((∇/δ(C))[χ]G)⊆ FitO(clK [χ]G).

Remark 9.2. If µ−K is R-c.t., then (∇/δ(C))− is also R-c.t. and our argument shows that

nreχE[G](eχh
−1
glob)UχFitO((∇/δ(C))[χ]G) = FitO(clK [χ]G).

Proof. We shall abuse notation by systematically ignoring 2-parts. We begin by following the
proof of [Gre07, Lemma 8.2]. Recall that the map δ : C→∇ is injective (see [Gre07, § 6]) and
that there is the crucial short exact sequence 0→ clK →∇→ ∇̄→ 0. With an abuse of notation,
we also use δ to denote the map C→ ∇̄ and note that this is still injective since C is free
and thus torsion-free. Since (∇/δ(C))− is finite, we may choose a natural number x such that
x∇− ⊂ δ(C)−. Therefore we have two short exact sequences

0→ cl−K →
∇−

δ(C)−
→ ∇̄−

δ(C)−
→ 0, 0→ ∇̄−

δ(C)−
→ x−1δ(C)−

δ(C)−
→ x−1δ(C)−

∇̄−
→ 0.

These combine into the four-term exact sequence

0−→ cl−K −→M1 −→M2 −→M3 −→ 0,

where

M1 :=
∇−

δ(C)−
, M2 :=

x−1δ(C)−

δ(C)−
, M3 :=

x−1δ(C)−

∇̄−
.

The functor M 7→M [χ] := Tχ ⊗Z M is exact as Tχ is free over Z; so we obtain the exact sequence

0−→ clK [χ]−→M1[χ]−→M2[χ]−→M3[χ]−→ 0.

Since x is a natural number and δ(C)− is free, M2 is of projective dimension one over R and so
is R-c.t.; therefore M2[χ] is also R-c.t. and hence we have the commutative diagram

0 // clK [χ]G //M1[χ]G α //M2[χ]G

M1[χ]G

OO

β //M2[χ]G

'
OO

//M3[χ]G // 0

where the rows are exact and the vertical maps are induced by NormG. If we identify M2[χ]G
with M2[χ]G, then im(β)⊆ im(α). Therefore we have

FitO(clK [χ]G) = FitO(M1[χ]G)FitO(im(α))−1

⊇ FitO(M1[χ]G)FitO(im(β))−1

= FitO(M1[χ]G)FitO(M2[χ]G)−1FitO(M3[χ]G). (12)

We now compute the two rightmost terms explicitly. Let n= |S ′\S∞|. Then

M2[χ]G = Tχ ⊗R
x−1δ(C)−

δ(C)−
∼= Tχ ⊗R

(
x−1Rn

Rn

)
∼=
x−1Tnχ
Tnχ

∼=
Tnχ
xTnχ

,

so recalling that Tχ is locally free of rank χ(1) over O gives

FitO(M2[χ]G) = xnχ(1)O. (13)
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In [Gre07, bottom of p. 1419] it is noted that

∇̄− =
⊕

p∈S′\S∞

(indGGp
W 0

p )−. (14)

Recall from [Gre07, proof of Lemma 6.1] that gp := |G0,p |+ 1− F−1
p maps to a non-zero divisor ḡ

of Z[Gp /G0,p ] and that g−1
p stands for any lift of ḡ−1 to Q[Gp ]. This uniquely defines the element

g−1
p NormG0,p (note that this is central in Q[Gp ]). From [Gre07, top of p. 1420] we have

W 0
p = δ(xp ) · 〈1, g−1

p NormG0,p 〉Z[Gp ]. (15)

Now recall that hp := e′p gp + e′′p (again this is central in Q[Gp ]). In [Gre07, Lemma 8.3] it is
shown that

〈1, g−1
p NormG0,p 〉Z[Gp ] = h−1

p 〈NormG0,p , 1− e′pF−1
p 〉Z[Gp ] = h−1

p Up , (16)

with the proof being valid for the non-abelian case as well since the relevant elements are central
in Q[Gp ]. Combining equations (14), (15) and (16) yields

∇̄− =
⊕

p∈S′\S∞

(δ(xp )indGGp
h−1

p Up )− =
⊕

p∈S′\S∞

(δ(xp )Z[G](h−1
p Up ))−,

where the second equality follows from the fact that ∇̄ is torsion-free. Hence

M3 =
x−1δ(C)−

∇̄−
∼=

⊕
p∈S′\S∞

R

xR(h−1
p Up )

and so

M3[χ]G = Tχ ⊗RM3
∼=

⊕
p∈S′\S∞

Tχ

xTχ(h−1
p Up )

=
⊕

p∈S′\S∞

Tχ

xTχ(eχM)(h−1
p Up )

.

Recall that hglob :=
∏

p∈S′\S∞hp and

Uχ :=
∏

p∈Sram(K/k)

nreχE[G](eχMUp )O =
∏

p∈S′\S∞

nreχE[G](eχMUp )O,

where the second equality holds because Up = Z[Gp ]; hence nreχE[G](eχMUp )O =O if p /∈
Sram(K/k). Note that Λ := eχM is a maximal O-order in eχE[G]; so if O′ is the localisation
of O at any prime ideal, then Λ′ :=O′ ⊗O Λ is a maximal O′-order and every (left) Λ′-ideal
is principal (see [Rei03, Theorem 18.7(ii)]). In particular, for each p ∈ S ′\S∞, there exists an
element yp such that Λ′ ⊗Λ x(eχM)(h−1

p Up ) = Λ′yp and hence there is an exact sequence of
O′-modules of the form

O′ ⊗O Tχ
yp−→O′ ⊗O Tχ −→O′ ⊗O

Tχ

xTχ(eχM)(h−1
p Up )

−→ 0. (17)

Now, O′ ⊗O Tχ is free of rank χ(1) over O′. Thus, since nreχE[G] is the determinant map
eχE[G]∼= Matχ(1)(E)→ E, the definition of Fitting ideal combines with (17) and our definition
of the fractional ideal nreχE[G](x(eχM)(h−1

p Up ))O to imply that

FitO′
(
O′ ⊗O

Tχ

xTχ(eχM)(h−1
p Up )

)
= O′ · detO′(yp )

= O′ ⊗O nreχE[G](x(eχM)(h−1
p Up ))O.
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However, Fitting ideals over O can be computed by localising and so, upon taking the product
over all primes p ∈ S ′\S∞, we obtain

FitO(M3[χ]G) =
∏

p∈S′\S∞

nreχE[G](x(eχM)(h−1
p Up ))O = xnχ(1)nreχE[G](eχh

−1
glob)Uχ. (18)

Substituting equations (13) and (18) into the containment (12) gives

nreχE[G](eχh
−1
glob)UχFitO(M1[χ]G)⊆ FitO(clK [χ]G). (19)

We have an exact sequence

0−→ Ĥ−1(G,M1[χ])−→M1[χ]G −→M1[χ]G −→ Ĥ0(G,M1[χ])−→ 0,

where Ĥ i(G,M) denotes Tate cohomology. Hence

FitO(M1[χ]G) = FitO(M1[χ]G)
FitO(Ĥ0(G,M1[χ]))

FitO(Ĥ−1(G,M1[χ]))
. (20)

Recall that the top row of (D2)− is an exact sequence

0−→ µ−K −→A− −→ B̃− −→M1 −→ 0

of f.g. R-modules, where A− and B̃− are R-c.t. Hence

Ĥ0(G,M1[χ])∼=H2(G, µK [χ]) and Ĥ−1(G,M1[χ])∼=H1(G, µK [χ]). (21)

Combining (19), (20) and (21) now gives the desired result. 2

10. Fitting ideals from refined Euler characteristics

Let IO denote the multiplicative group of invertible O-modules in C. There exists a natural
isomorphism ι :K0(O, C) ∼→ IO with ι((P, τ, Q)) = τ̃(detO(P )⊗O detO(Q)−1), where τ̃ is the
isomorphism

C⊗O (detO(P )⊗O detO(Q)−1)∼= detC(C⊗O Q)⊗C detC(C⊗O Q)−1 ∼= C

induced by τ . Indeed, ι is induced by the exact sequence

K1(O)−→K1(C)−→K0(O, C)−→K0(O)−→K0(C)

and the canonical isomorphisms K1(C) ∼→ C× and K1(O) ∼→O×. Under this identification, the
boundary map C× ∼=K1(C)→K0(O, C)∼= IO simply sends x to the lattice xO.

In what follows, ϕtriv denotes the only metrisation possible, namely the unique isomorphism
from the complex vector space 0 to itself.

Lemma 10.1. If 0→ U →A→B→ V → 0 is an exact sequence of f.g. O-modules with U and V
finite, then ι(χref(A→B, ϕtriv)) = FitO(U)−1FitO(V ).

Proof. We have a distinguished triangle of perfect metrised complexes of O-modules

C0 −→ C1 −→ C2 −→ C0[1],

where C0 is the complex U [0], C2 the complex V [−1] and C1 the complex A→B with the first
term placed in degree zero. To see this, write C̃2 for the complex A/U →B with first term placed
in degree zero and map induced by A→B; then C̃2 is naturally quasi-isomorphic to C2 and also
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lies in the obvious short exact sequence of complexes of the form

0−→ C0 −→ C1 −→ C̃2 −→ 0.

Furthermore, since O is a Dedekind domain, every f.g. O-module is of projective dimension
at most one. Therefore the refined Euler characteristics in question are additive (see [Bur04,
Theorem 2.8]) and so we are reduced to showing that for a finite O-module M ,

ι(χref(M [i], ϕtriv)) = FitO(M)(−1)i+1
.

Now, χref(M [i], ϕtriv) = (−1)iχref(M [0], ϕtriv), so we are further reduced to considering the case
where i= 0. There exists an exact sequence of f.g. O-modules

0−→ P
d−→ F −→M −→ 0,

with P projective and F free of equal rank r. We fix an isomorphism F ∼=Or and hence an
identification of detO(F ) = ∧rO(F ) with O. Under this identification, FitO(M) is by definition
the image of the homomorphism ∧rO(d) : ∧rO(P )→∧rO(F ) =O. Setting τ := C⊗O d and noting
that M [0] is quasi-isomorphic to the complex P → F with the second term placed in degree zero,
we therefore have

ι(χref(M [0], ϕtriv)) = ι((F, τ−1, P )) = ι((P, τ, F ))−1 = τ̃(detO(P )⊗O detO(F )−1)−1

= im(∧rO(d))−1 = FitO(M)−1

as required. 2

11. Two annihilation lemmas

Let χ be an irreducible character of a finite group G and let M be a Z[G]-module.

Lemma 11.1. If x ∈AnnO(M [χ]G), then x · prχ ∈AnnO[G](O ⊗Z M).

Proof. It suffices to show that the result holds after localising at p for all primes p of O. We set
n := χ(1) and recall that Tχ is locally free of rank n over O. In what follows, we abuse notation
by omitting subscripts p (i.e. all of the following O-modules are localised at p).

We fix an O-basis {ti : 1 6 i6 n} of Tχ and write ρχ :G→GLn(O) for the associated
representation. Then, for each m ∈M and each index i, the element Ti(m) :=

∑
g∈G g(ti ⊗m)

belongs to M [χ]G = (Tχ ⊗Z M)G. Now, in M [χ] = Tχ ⊗Z M = Tχ ⊗O (O ⊗Z M) we have

Ti(m) =
∑
g∈G

tig
−1 ⊗ g(m) =

∑
g∈G

j=n∑
j=1

ρχ(g−1)ijtj ⊗ g(m)

=
∑
g∈G

j=n∑
j=1

ρχ(g)jitj ⊗ g(m) =
j=n∑
j=1

tj ⊗
(∑
g∈G

ρχ(g)jig(m)
)
.

However, x annihilates Ti(m) ∈M [χ]G and {tj : 1 6 j 6 n} is an O-basis of Tχ, so the above
equation implies that x ·

∑
g∈G ρχ(g)jig(m) = 0 for all i and j. Hence each element c(x)ij :=

x ·
∑

g∈G ρχ(g)jig belongs to AnnO[G](O ⊗Z M). In particular, the element

i=n∑
i=1

c(x)ii =
i=n∑
i=1

x ·
∑
g∈G

ρχ(g)iig = x ·
∑
g∈G

(i=n∑
i=1

ρχ(g)ii

)
g = x ·

∑
g∈G

χ(g)g = x · prχ

belongs to AnnO[G](O ⊗Z M), as required. 2
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Lemma 11.2. If x ∈ O such that x · prχ ∈AnnO[G](O ⊗Z M), then for every y ∈ D−1
E/Q we have∑

ω∈Gal(E/Q) y
ωxω · prχω ∈AnnZ[G](M).

Proof. The hypotheses imply that yx · prχ belongs to

D−1
E/Q ·AnnO[G](O ⊗Z M) =D−1

E/Q ⊗Z AnnZ[G](M).

The element ∑
ω∈Gal(E/Q)

yωxω · prχω =
∑

ω∈Gal(E/Q)

(yx · prχ)ω

therefore belongs to TrE/Q(D−1
E/Q)⊗Z AnnZ[G](M)⊆AnnZ[G](M), as required. 2

12. Proofs of the main results

Proof of Theorem 1.2. Let φ be the character of Gal(K/k) whose inflation to G= Gal(L/k) is χ.
For each x ∈ clL, we have prχ(x) = prφ(NormGal(L/K)(x)) and NormGal(L/K)(x) ∈ clK . However,
we also have L(s, χ) = L(s, φ) (see [Tat84, § 4.2]), so we are reduced to the case of L=K. Note
that χ= φ remains irreducible.

We now repeat a reduction argument given in [Tat84, top of p. 71]. The order of vanishing
of L(s, χ) = LS∞(s, χ) at s= 0 is given by

rS∞(χ) =
∑
v∈S∞

dimC V
Gv
χ − dimC V

G
χ , (22)

where Vχ is a C[G]-module with character χ (see [Tat84, ch. I, Proposition 3.4]). If rS∞(χ)> 0,
then L(0, χ) = 0 and the result is trivial. Hence we may suppose that rS∞(χ) = 0. Since χ is
non-trivial, we have V G

χ = {0} and so (22) gives V Gv
χ = {0} for each v ∈ S∞. In particular, Gv

is non-trivial for v ∈ S∞, so k is totally real and K is totally complex. Now Gv = {1, jw} for a
complex place w of K, and jw acts as −1 on Vχ since j2

w = 1 and V jw
χ = {0}. Thus, since the

representation Vχ is faithful, all the jw are equal to the same j ∈G. HenceK is a totally imaginary
quadratic extension of the totally real subfield K〈j〉, i.e. K is a CM field. Furthermore, χ is odd
because j acts as −1 on Vχ.

For the rest of this proof, we abuse notation and consider only p-parts. Recall from
Proposition 8.7 that under the assumption that the ETNC holds for the motive h0(K) with
coefficients in R, we have

∂̂(L(0)#nrR[G](hglob))− =X−∞ in K0(R, R[G]−). (23)

As χ is odd, base change gives a natural homomorphism

µχ :K0(R, R[G]−)→K0(O, C), (P, f, Q) 7→ (Tχ ⊗R P, id⊗ f, Tχ ⊗R Q) = (P [χ]G, fχ, Q[χ]G).

Under condition (∗) it can be shown that the strong Stark conjecture at p for χ follows from
Wiles’s proof of the main conjecture for totally real fields (for details see [Nic, Corollary 2, p. 24],
for example). Since the strong Stark conjecture can be interpreted as the ‘ETNC modulo torsion’
and K0(O, C) is torsion-free, the image under µχ of equation (23) holds under our hypotheses;
that is,

µχ(∂̂(L(0)#nrR[G](hglob))−) = µχ(X−∞) in K0(O, C).
Since µχ factors via K0(Z[G], C[G]) and K0(O, C) is torsion-free, Lemma 3.1 then gives

(O, nreχE[G](eχhglob)L(0, χ̄),O) = µχ(X−∞) in K0(O, C). (24)
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Recall that the top row of (D2)− is an exact sequence of f.g. R-modules

0−→ µ−K −→A− −→ B̃− −→ (∇/δ(C))− −→ 0. (25)

This gives the commutative diagram

0 //µ[χ]G //A[χ]G //B̃[χ]G

A[χ]G

'
OO

//B̃[χ]G

'
OO

// (∇/δ(C))[χ]G // 0

where the vertical maps induced by NormG are isomorphisms since A− and B̃− are R-c.t. Hence
we have an exact sequence

0−→ µ[χ]G −→A[χ]G −→ B̃[χ]G −→ (∇/δ(C))[χ]G −→ 0. (26)

Now recall that X−∞ is the refined Euler characteristic of (25). Since µ−K and (∇/δ(C))− are
finite, the only possible metrisation is ϕtriv (i.e. 0 ∼−→ 0), and so (24) becomes

(O, nreχE[G](eχhglob)L(0, χ̄),O) = χref(A[χ]G→ B̃[χ]G, ϕtriv) in K0(O, C). (27)

It follows from Lemma 10.1 that (26) and (27) give an equality of O-lattices of the form

nreχE[G](eχhglob)L(0, χ̄)O = FitO((µK [χ])G)−1FitO((∇/δ(C))[χ]G).

Combining this equality with Proposition 9.1 gives

L(0, χ̄)Uχ
i=2∏
i=0

FitO(H i(G, µK [χ]))(−1)i ⊆ FitO(cl−K [χ]G).

Recalling that

h(µK , χ) :=
i=2∏
i=0

FitO(H i(G, µK [χ]))(−1)i ,

we then obtain

L(0, χ̄)Uχh(µK , χ)⊆ FitO(cl−K [χ]G)⊆AnnO(cl−K [χ]G).

Hence, for any x ∈ Uχ · h(µK , χ), Lemma 11.1 implies that

xL(0, χ̄) · prχ ∈AnnO[G]−(O ⊗Z cl−K)⊆AnnO[G](O ⊗Z clK). (28)

Now, by applying Lemma 11.2, the desired result follows. 2

Proof of Corollary 1.5. Let χ be a non-trivial irreducible character of G and let K := Lker(χ).
As every inertia subgroup is normal in G, every inertia subgroup of Gal(K/k) is normal. Choose
Eχ such that dχ = [Eχ : Q(χ)], and let G · χ denote the orbit of χ in Irr(G). Then, taking into
account Remark 1.3 and applying Theorem 1.2 with x= 1 shows that∑

ω∈Gal(Eχ/Q)

L(0, χ̄ω) · prχω = dχ
∑
ψ∈G·χ

L(0, ψ̄) · prψ

belongs to the centre of Z(p)[G] and annihilates Z(p) ⊗Z clL. Hence, summing over all non-trivial
irreducible characters of G gives the desired result in the case where S = S∞.

If S % S∞, then LS(0, χ) is L(0, χ) multiplied by factors of the form

LKP /kp
(0, ψ)−1 = lim

s→0
detC(1− Fp (Np)−s|V G0,p

ψ ),
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each of which is an element of O (possibly zero). Hence the containment (28) is still valid when
L(0, χ) is replaced by LS(0, χ), giving the analogous version of Theorem 1.2. The desired result
then follows from the same argument as above. 2
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