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A MOLECULAR MODEL OF
IONIC CONDUCTIVITY IN NERVE*
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A mathematical model of the molecular processes responsible for

the ionic conduction current across axonal membranes is proposed

and analysed. It is shown that the model successfully predicts

the various "instantaneous" current-voltage (IC-V) relationships

of different kinds of axon and of axons in different bathing

solutions: the criterion for the axon to have a linear IC-V is

that the Debye length in the axonal membrane should be less than

d , the distance between adjacent conducting pores. If A > d

it is shown that the IC-V becomes nonlinear.

The model predicts that the axolemmic electric fields in the

vicinity of the conducting pores are non-uniform and mappings of

these fields are produced. The concepts of ionic selectivity and

ionic permeability of the conducting ions are defined in terms of

molecularly identifiable parameters of the model.

1. Introduction

Some nerve membranes have "instantaneously" (that is, on a time scale

small compared with that of a nervous impulse) a linear current-voltage

Received 31 March 1982.

• This paper is based on an invited lecture given at the Australian
Mathematical Society Applied Mathematics Conference held in Bundanoon,
February 7-11, 1982. Other papers delivered at this Conference appear in
Volumes 25 and 26.

285

https://doi.org/10.1017/S0004972700005761 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700005761


286 D.K. Me I Iroy

(IC-V) relationship, whilst others possess a nonlinear relationship. Thus,

for example, the squid giant axonal membrane is linear in a natural ionic

environment, but may become nonlinear when placed in an artificial bathing

solution CI/, 12]. On the other hand the axonal membrane of frog node of

Ranvier is nonlinear even in a natural ionic environment [9]. In this

article we propose a detailed molecular model of the ionic conduction

process in nerve which encompasses aVL these phenomena.

In Section 2 we consider the structure of the axonal resting electric

field in the light of the two classical limits of membrane theory, namely,

the Planck limit and the Goldman limit, and we interpret the results of

perfusion experiments in terms of these limits. However these inter-

pretations must be strongly modified if our model of facilitated ionic

transport through well-defined pores across the squid giant axonal

membrane, which we propose in Section 3, is valid. We show that this model

leads directly to the Hodgkin-Huxley mathematical formulation of this

axon's electrical properties; in addition we propose that the linearity of

this IC-V relationship is due to the non-interaction of the ionic currents

in adjacent pores. If however the Debye length X in the membrane is

greater than the distance d between adjacent conducting pores we propose,

in Section h, that the resulting interaction of these ionic currents leads

to a nonlinear relation for the IC-V which is the so called Goldman

relationship. The latter is observed for some axonal membranes such as the

frog node of Ranvier in a natural ionic environment.

Our theory enables us to deduce, in Section 5, the distribution of

electric field in the vicinity of both sodium (Na) and potassium (K)

conducting pores of the squid giant axon. We are also able to deduce, in

Section 6, the transition of the IC-V relationship to nonlinearity when the

squid giant axon is placed in choline bathing solutions. We propose that

this nonlinearity however arises from the presence of impurity choline ions

in the sodium conducting pores. The theory then leads us naturally to

consider, in Section T> the effect of the presence of Na in mainly

potassium conducting pores and vice versa, which in turn leads us to define

the concept of ionic selectivity of the two ionic conducting systems.

Finally, in Section 8, we define ionic permeability of an axonal membrane

in terms of the model; using this definition we show that the deter-

mination of membrane permeability using radioactive tracer techniques is in
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complete agreement with the classical description of the resting axon.

2. The structure of the axonal resting electric field

Because of the large difference between the magnitudes of the axonal

membrane conductances g and g in the resting state as well as at the

K. wa

peak of an action potential, we can estimate the corresponding membrane

potential differences as a first approximation from the Nernst equilibrium

potentials for respectively K and Na ions alone. Higher approximations

must take into account the simultaneous finite values of g and g ,

K Na

that is, of the non-equilibrium nature of the actual potential difference.

But even if the calculated non-equilibrium corrections of the potential

difference were small, or if present knowledge of the ionic diffusion

coefficients were insufficient to evaluate the corrections accurately, the

structure of the resting potential difference and its corresponding field

would be of fundamental importance in the construction of molecular models

of the mechanism responsible for the control of the nervous impulse because

of the following observations.

The resting potential difference may be decreased by reducing the

internal potassium concentration through perfusion of the axon. If the

resting potential difference is substantially lowered by reducing only the

internal potassium concentration under conditions of constant internal

ionic strength action potentials cannot be initiated. But if the internal

ionic strength is reduced in proportion to the potassium concentration

action potentials can be initiated by depolarizations from resting

potential differences in the range 30 mV to zero (taking the outside of

the axon as positive) [4], [77].

Now the average membrane field intensity X is related to the

membrane potential difference <{> and membrane thickness 6 by

(2.1) jf = _ J = i f X(x)dx ,

and, if the measured potential difference is the actual potential

difference across the membrane, becomes small as <J> does. If X(x) were

uniform, X(x) - X ; action potentials could then be initiated by changes

of a low field (for example, at low internal ionic strength) and all
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microscopic mechanisms of the initiation of the nerve impulse which rely on

the effects of the reduction of a high resting field would be inadequate.

These include the Wien effect on the dissociation of a weak electrolyte,

the rotation of dipoles and the displacement of ions. But if, on the other

hand, the resting field X(x) is so distributed within the membrane that

it remains high locally despite a low average value then the above high-

field mechanisms remain tenable. The question is then: is the resting

field uniform or distributed in the membrane?

To attempt to answer this question we first consider Planck's

formulation of electrodiffusion as applied to axonal membranes. The

resting membrane is in a steady (non-equilibrium) state, maintained in the

long term by active transport. Since the membrane is thin as compared with

the radius of the squid giant axon, we may regard it as an infinite plane

region of dielectric constant e between x = 0 (inner surface) and

x = 6 (outer surface) within which ionic species j have concentrations

a .{x) , charges z .e' , and diffusion coefficients D. , where e' > 0 is
0 3 3

the elementary charge. The ions move through the membrane under the action

of the electric field superimposed on diffusion. In the steady state the

flux F. of each species is independent of time and position:
3

do. D.
(2 .2) F. = -D. —r2- + -fjz z .e'a .X = constant ,

3 3 dx kT 3 o

where T denotes absolute temperature and k Boltzmann's constant. We

therefore obtain as many differential equations as there are ionic species.

The field X is at first unknown and must be determined from Poisson's

equation,

^ 3 3 ° dx

where $ is the membrane potential. Normalizing, $(0) = 0 , we obtain

$(6) = ((> for the membrane potential difference. In the presence of an

external e.m.f. a conduction current I is maintained (taking inward

current of positive ions to be positive)

(2.U) I = -e'lz F. ,
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<?.(0+) and e.(6-) being prescribed through the partition coefficients
3 3

Q . which depend on the membrane structure determining not only the phase-
3

boundary potential differences but the ionic solubilities at the membrane

boundaries as well:

(2.5) e.(0+) = n.e.(O-) , e.(6-) = fi.e (6+) .
3 3 3 3 3 3

For N ionic species (2.U) and (2.5) supply the 2$ + 1 conditions needed

to determine the N fluxes and N + 1 integration constants of the set of

N + 1 first order differential equations (2.2) and (2.3).

In considering the electrical characteristics of the squid giant axon
+ + -

it suffices to consider only monovalent ions (K , Na , Cl , and so on) as

being possibly potential determining, |s.| = 1 . We introduce the total
3

concentration of all such ions, C - £ o . , C , the total
tot A 3

3

concentration of all positives, C , the total concentration of all

negatives, C = C' - C and the dimensionless variables, all 0(l) in
~* tot +

neuronal membranes,

(2.6) * = ̂ - , n = f , P = 7 ^ , °n ' C
"tot tot

and Poisson's equation becomes

(2.7)

(2.8) A2 =

where A is the Debye length in the membrane.

We distinguish two limiting cases of (2.7).

(a) If 6 « A , —jf c* 0 even if p ± n ; the ions have low
dn

solubility in this the thin-membrane limit [3D. Though the calculated

difference between the concentrations of positive and negative ions is

finite, it is multiplied by the small parameter and the gradient of the
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field remains negligible. Poisson's equation is replaced by

X(x) = constant, that i s , the Goldman [5] spatially-uniform, field limit.

This case is considered by some authors, notably Katz [J3], to be

appropriate for neuronal membranes.

(b) If A2 « 62 , (2.7) gives upon multiplication by X2/62 ,

p ~ n , even if d i>/dr\ ^ 0 . Poisson's equation is now replaced by the

condition of electrical neutrality, £ o .{x) = 0 . This corresponds to the
3 3

thick-membrane, high solubility limit and is in effect Planck's argument

[7S] in modern form. Though the field calculated from the simplified set

(2.2) and (2.3) is not uniform, the field gradient is multiplied by the

2 2
small parameter A /6 , and the corresponding charge density remains

negligible. Some authors (for example, Tasaki [20]) consider this case to

be the relevant one for some neuronal membranes.

If we suppose that the electrical characteristics of axonal membranes

are deducible in terms of simple electrodiffusion of ions across a

homogeneous membrane (which is effectively assumed in the discussion of

limits (a) and (b) above) then we may make the following observations: the

results of the above two limiting cases coincide if and only if

C. +(0+) = C+ A0-) , in which case it is easy to show that Planck's field

too is uniform. Making the assumption that the fi. are equal (see later)
3

this is the situation in the natural axon (since the internal and external

ionic strengths are equal to within a few percent, the concentration of

polyvalent ions being slight) and i t is only in perfusion experiments with

changed ionic strength that the field structure is different in the two

limits. In this case i t is also easy to demonstrate that only Planck's

limit can yield a non-uniform distribution of the field X(x) which arises

from the need for the individual fluxes to be independent of time and

position in the steady state: where ionic strength is reduced, the

electric field must be increased at the expense of the electric field

elsewhere. Hence in the Planck limit, decreasing the axoplasmic ionic

strength (by perfusion) increases the field near the inner surface of the

membrane (x = 0+) which would render the high-field models of the

excitable membrane s t i l l tenable.
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On these considerations, if limit (a) were the actual situation in the axonal

membrane, a high resting field could exist only if the measured membrane

potential difference were not the potential difference across the membrane.

Thus, for example, if adsorbed negative charges on the inner surface of the

membrane together with their counterions in the axoplasm are assumed to

form an additional double layer partially masking the true membrane

potential difference and increasing with decreasing axoplasmic ionic

strength, then a large range of even uniform membrane fields may be

postulated, depending on the magnitude chosen for the adsorbed negative

charge.

However, the non-aqueous, non-ionizing medium of the axonal membrane

interior [3] makes the unassisted passage of inorganic ions across the

membrane extremely unlikely. We will show in the subsequent sections that

the conclusions and implications of the previous two paragraphs must be

strongly modified when facilitated passive ion transport occurs through

well-defined pores exhibiting selectivity towards the current-carrying

species. Subject to molecularly interpretable a priori assumptions about

the mode of such transport of these ions through the channels, we will show

that the various linear and nonlinear behaviour of the IC-V relationships

exhibited by axonal membranes is deducible from our theory.

3. A model of the linear squid giant axon

We first propose a model of facilitated ion transport across the squid

giant axonal membrane in a natural ionic environment and we show that this

model reproduces the observed linearity of the IC-V [//, 72] of this axon,

and leads in fact to the Hodgkin-Huxley formulation of the natural squid

giant axon's electrical properties.

We suppose that J. , the jth component of the total axonal membrane
3

conduction current I , is carried through the membrane via well-defined

pores which conduct the ionic species j only (for the sake of simplicity

we will understand, in considering the s.quid giant axon, that j refers to

either K or Ka , though the theory may obviously be extended to include

other conducting ions of either positive or negative charge). In the

steady state, from (2.2),
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(3.1) ^ + Z±Xc+- A
dx kT 3 3 o '

where A . is independent of time and position, and X .(x) is the electric
3 3

field in a J-pore. Furthermore, we suppose that the motion of these

j'-ions through the membrane is partially or totally compensated by a

mobile, negatively charged, "carrier" ion of charge z~.e' and

concentration a .(a;) which is confined to the membrane and does not
3

contribute to either I. or J :
3

da~. z~.e'
(3.2) "j- + JTS- X.C . = -B . ,

dx kT 3 3 3 '

where B . is independent of time and position and
3

(3 .3)

( 3 . l ) - ( 3 . 3 ) give

(3.U)

a .(x) = e"(x) = c .(x)
3 3 3

dc . B .-z A .
J_ _ .7 .7 .7

0 2 x s 6 .

( 3 . 5 )
_ kT

and

( 3 . 6 )

where

( 3 . 7 )

f

I t f o l l o w s from ( 2 . U ) a n d ( 3 - 5 ) t h a t

(3 .8 ) X3~ e'c. \e'Dj

.-a .
03

so that the membrane potential difference is

( 3 . 9 ) • = • II.
e'Djb..-en.)\ '
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whence

(3.10) I. = 0.(0-4.) ,
v d t/

(3.11) g. = e>D.{c0.-c

(3.12) <J> =f4-log

From (3.10)-(3.12) we note the following cases:

(i) when c . > c. . , <J>. > 0 (for example, for the K current-
oj oj Q

conducting system) and I. < 0 for <J> < 0 . , that is, the
3 3

current is outwardly directed as observed for I ;

(ii) when c*. > c . , <(>. < 0 (for example, for the Na current-

conducting system), J . > 0 for 4 > <fr • , and the current

3 3
is inwardly directed as observed for J ;

rja

( i i i ) when e i ther a . or a - . -»• 0 , g. •*• 0 though J . i s

finite for f i n i t e <}> . approaching the values e . .e 'ZJ ./6
oj 3

and -c .e'D ./6 , respectively;
(iv) when c . = c.. , g. = o e'2D./6kT (# 0) , and

uj oj j oj j

2
J. = c .e' 0 .ty/&kT , also non-zero for non-zero <}> .
t7 Oj J

The foregoing analysis is clearly not invalid in these important cases. In

particular our definition of the chord conductance ((3-11)) holds in an

external bathing solution which is free of the current-conducting species

(for example, see Hodgkin and Huxley's remark [II, p. U80]).

In (3.10)-(3.12) we have recovered the famous Hodgkin-Huxley IC-V

relationship for the natural squid giant axon and have given an

interpretation of the chord conductances g. in terms of identifiable
3

membrane parameters. In effect this has been achieved by applying three a

priori constraints:

I. complete specificity of the j-conducting pores towards
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ionic species j ,

II. partial or total compensation of the charge of the

transported ion for all 0 < I 5 J ,

III. such "electroneutrality" to be achieved with the aid of a

mobile negative ion which makes no effective contribution

to the measured conduction current J. .
3

The question of how these conditions can be implemented in nerve

basically involves the question of how simple inorganic ions can enter and

traverse with relative ease the hostile, non-polar, low-dielectric

constant, medium which constitutes the axolemma of a neuronal membrane.

One model which satisfies the above three criteria depends on the existence

of dipole chains traversing the membrane and parallel to the x direction.

A single approximately cylindrical pore could then be defined by a group of

such chains. If the dipoles of the chains are normal to the direction of

the chains with the negative poles all pointing in towards the centre of

the pore, a core of polarizable negative charge is provided to compensate

the positive charge of a j-ion moving through the j'-pore. We suppose

that on the approach of such an ion to the mouth of a pore, the negative

core becomes polarized, providing a localized effective negative charge z .
3

to offset the entrance of the ion to the pore, whereupon the ion is able to

traverse the membrane accompanied by its negative "carrier" according to

the equations of electrodiffusion as set out above. On the transference of

the ion to the extramembrane medium the negative core relaxes to its

equilibrium configuration, so that the net effect is the transfer of one

positively charged ion across the membrane. If, in addition, the dipole

core exhibits ion-selective properties (for example, by means of a

specialized shape or size) the above three a priori criteria are all

satisfied. For a successful transportation process the magnitude of z .
3

would of course depend upon the reduction needed in the (Born) solvation

energy of the transported ion.

The well-known autonomy of the axonal membrane conductances in the

natural squid giant axon is an obvious feature of the model both because of

the physical separation of the pores and because of the proposed ion-

selective properties of the dipole carriers. The current-conducting ions
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do not co-determine the local electric field strength as in the case of the

homogeneous membrane discussed in Section 2, so that we now see the results

of the previously-described perfusion experiments in a new light.

Our model predicts that changes in the ionic environment of the nerve

membrane could affect its excitability through changing its g's ((3.10)-

(3.12)). This arises directly through the factors depending on

concentration or indirectly through the D's , which may themselves be

functions of the local electric field strength redistributed by changes in

the extramembrane medium. It is therefore possible that, for mechanisms

for the control of ionic permeability in nerve which operate only in high

fields, membrane excitability could be maintained in the face of a low

internal potassium concentration (reduced <}> ) provided X (x) remains

locally high despite a low average value. Thus the value of X^ (0+)

(from (3.5), large for the natural squid giant axon since a « e. )

might, for example, be maintained near its natural value by increasing the

concentration of external sodium as internal potassium is reduced.

However, in the perfusion experiments actually performed (for example,

[77]) where internal K is reduced, excitability of the membrane should be

lost, according to our model, for a sufficiently low concentration

regardless of whether the experiment is performed at high or low internal

ionic strength, because no favourable redistribution of X (x) could

occur in either case. In the context of this article, and on the

assumption of a high-field mechanism for the control of membrane

conductance, the observed continuance of excitability at low internal ionic

strength would require a masking layer of the Hodgkin and Chandler type

[10], It follows that any test of our model of membrane conductance, such

as the one outlined above should not be executed at low ionic strength.

An important implication of the foregoing model arises in connection

with the construction of models of the permeability control process in

nerve. On the ideas suggested above, the remarkable properties of the

nerve impulse would arise solely from the dependence of the D's on the

time course of <{> . Presumably these diffusion coefficients have this

functional dependence through some voltage-operated gating mechanism or

mechanisms which control the passage of ions through the conducting pores;

one possible gating mechanism has been suggested by the author [74, 75].
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In our model of facilitated ionic transport the dipole chains would of

course operate independently of any such gating mechanism.

Finally we note that the assumption of a steady state in the flux of a

single conducting pore ((3.1) and (3.2)) avoids undesirable transients in

J. ; for example, if the closed gates of a pore were simply a Vocalized
3

obstruction to conducting ions at some x = a then in the steady state

there would be a Maxwell-Boltzmann build up of conducting ions in a closed

pore for x > a and a Maxwell-Boltzmann depletion for x < a (assuming

the membrane field is the resting field). If the gates are now suddenly

opened (for examples, as a result of a rapid depolarization of the axon)

these ionic distributions would give rise to a complicated redistribution

of the conducting ions in the pore with obvious undesirable effects on

I. . If however the gates are such as to prevent free movement of
3

conducting ions along the entire pore when the gate is closed, the

concentration profile of the ions across the membrane would be "frozen" in

position when a gate is suddenly closed. The steady state situation

described by (3.1) and (3-2) then holds for both states of the gating

mechanism. This suggests that the gate has the form of a spiral or hetix

stretching the entire length of the pore and completely enclosing it. A

transition of the helix to a larger pitch might render the pore closed by

restricting the passage of ions through the now narrower pore.

4. The Goldman relation for axonal current

Unlike the squid giant axon, other axonal membranes, for example, that

of the node of Ranvier in frog nerve, exhibit a nonlinear IC-V even in a

natural ionic environment [9]. We now show how our model of facilitated

ion transport can result in such a nonlinearity.

We suppose here that "electroneutrality" again constrains the passage

of current-carrying ions through the membrane, but in a form different to

that of the preceding section: we replace (3-3) by the new condition

(U. I ) £ c+Ax) = £ c - ( x ) = S { x ) , 0 < x < 6 ,

3 ° 3 °
where the first summation is over all the positive ions contributing to the

total conduction current, and the second summation is over their
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corresponding negative carriers of effective valence z . whose properties
3

were discussed in Section 3. We now have in the steady state (3-1) and

(3-2) replaced by

^•2) - -£+ b Xor- -A'o•
ds~. z~.e'

where X(x) is the electric field corresponding to condition {U.X) and Af.
0

and B\ are constants. From (U.l)-(U-3),
3

if

(J».6)

Hence

(U.T)

a =

1-3

f(U.8) S(x) = 5Q + f (S&-SQ) ,

where

(U.9) SQ A 5(0+) , S& A S(S-) .

It follows that

U.io) ^ = ̂ ^ = ^ ,

and so the membrane potential difference i s , from (U.7)-(U.10),

(U.ll) <}> = " l o g -z- .
e'(l-z~) 6 0 b0

Now if we suppose, as before, that only positive ions contribute to
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the total axonal conduction current, (U.U)-(U.ll) yield

dU_ A-B U _I_

** (1-s") S 6'

where

(U.lU) I = e' Y,D+A'
j 3 3

Setting

we obtain on integrating

In the natural squid giant axon ^c.(O-) c^^c.(6+) , [9], so that if we
3 3 3 °

s e t Sl̂  = fl i t fo l lows t h a t S ^ S& and so from ( U . l l ) and ( U . l 6 ) ,

In fact this relation holds to very good accuracy for deviations of ^ K /^ N

from unity by as much as 20$. Also since the density of sodium pores is

much greater than that of K pores [8] we have as a consequence of this that

Jip /̂fJp^ >> 1 where the Q. is related to the partition coefficient Qp •

in individual j-pores and their areal density p. by
3

In (3-10)-(3-12) and (U.18) we have two distinct relationships for membrane

current as a function of potenrtial difference and we next seek an

https://doi.org/10.1017/S0004972700005761 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700005761


Ionic conductivity in nerve 299

interpretation of this difference in terms of the two limits discussed in

Section 2 and the two "electroneutrality" conditions (3.3) and (U.l).

Now for the squid giant axon the estimate of the distance between

sodium conducting pores is about 1*50 A and that between potassium

conducting pores is about l**00 A [8], so that we may take the mean

distance d between current conducting pores (of both types) to be such

that d » 6 ~ 70 A . if the Planck domain of validity applied in the

neuronal membrane under consideration, A would certainly be much less

than d . The passage of K ions through the membrane is then quite

independent of the passage of Na ions through it, since no interaction is

then possible between the two currents. The measured j component of I

from a test patch of membrane (of dimension » d ) is then simply the sum

of the contributions from the individual (identical) j-pores in this

patch; the relevant "electroneutrality" condition is evidently that given

by (3-3) and the relationship between current and voltage is that described

by (3.10)-(3.12). This is clearly the case in which the conduction

currents are observable microscopically (that is, over patches the size of

a cross section of a conducting pore).

However if the Goldman domain applies, A could be greater than d ,

and interaction between currents in adjacent pores would then occur. In

this case (3-3) is clearly inappropriate because the current from the

J-pores is not observable microscopically as before; because of inter-

ference from neighbouring pores, the measurement of membrane current is now

possible only at the macroscopic level (that is, over areas the size of the

entire membrane test patch) where the relevant "electroneutrality"

condition is evidently that given by (l+.l), which therefore now replaces

(3-3) in our a priori criteria whenever X > d . Thus the X. of (3.5) is
3

written with the subscript j in order to emphasize i ts microscopic

character and the X of (U.10) has no such subscript in view of i ts

essentially macroscopic nature.

Notwithstanding this amendment of our a priori constraints, however,

we s t i l l assume complete specificity of j-channels towards the jth ionic

species as before. Thus D .c . is taken to be the only non-vanishing
3 3

current term in j - channe l s , and so , from (U.18),
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2 [c le )e
e'*/kT l

the so-called Goldman expression which has been found to describe the data

for the IC-V relationship for the frog node of Ranvier [9].

We therefore suggest that the linearity property exhibited by the

natural squid giant axon is a consequence of the independence of the I . ,
3

that i s , of the non-interaction between current-carrying channels. Though

the Planck limit may s t i l l apply in this case, i t seems unnecessarily

severe in the light of the above argument, which merely requires that the

linearity property of a neuronal membrane applies for X < d . The non-

linearity as exhibited by the IC-V relationship of, for example, frog node

of Ranvier, we interpret as resulting from the case X > d , which could

arise by a decrease of ionic solubility (increase in X ) or by a decrease

of d , as compared to the case of the natural squid giant axon. At a node

of Ranvier the peak inward current density during excitation is some 10

times that of the squid giant axon [9]. Such an increase could be achieved

most simply by a greater density of current-carrying pores giving rise to a

smaller value of d and a possible transition to the case X > d . In

view of the estimated value of d above, this strongly suggests that the

Planck limit may be inappropriate even for the natural squid giant axon.

Our model of ionic transport through neuronal membranes requires that the

electric field should be a function of position [(3-5) and (1+.10)] so that

the model bears superficial resemblance to both the Planck and Goldman

models.

5. Mappings of the axonal electric fields

In order to compute the axonal elelctric field predicted by (3.1)-

(3.12) we have first to solve Laplace's equation for the potential $

given as boundary conditions the potential $p. along the axis of a j-

pore and the potential difference ij> across the membrane where, from (3.8)

and (3.12),

f
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We approximate the membrane to a parallel-plate condenser with potential

difference <f> across the plates and take cylindrical coordinates r , 6, x

with origin in the inner plate and the x axis normal to the plates (as in

the previous sections). Since the diameter of a conducting pore must be

small (c~ 5 A) compared to 6 , we shall approximate a pore by the

straight-line segment 0 5 x 5 6 , r = 0 and set <f> = 1 . Thus once

$(r, 9, x) has been computed we can obtain the solution for any potential

difference across the membrane by multiplying $ by the appropriate

factor. To make the problem determinate we assume that the potential is

linear (corresponding to a uniform electric field) across the membrane, far

from the conducting pore.

Since $ has azimuthal symmetry, Laplace's equation reduces to

. , 3 $ 3$ 3 $
(5.2) T — r̂ + — + T = 0 .

We construct a grid in the r - x plane with step length of h in the r

direction and k in the x direction. The typical mesh-point is denoted

by $ where m = r/h , n = x/k and using the central difference

formula for numerical derivatives (5.2) becomes

(5.3) £>$ + e$ + a$ + c$ - $ = 0 ,
m-l,n m,n-l m,n m,n+l m+l,n

where

a = 2r/d[l/h2+l/k2) ,

b = {l/2h-r/h2)d ,

e = -rl[k2d] ,

d = (0.5+r/h)/h .

If m and n are allowed to vary appropriately (5-3) and (5-*0 become a

set of linear equations in the unknowns $ which is solved using the
77!, Tl

Gauss-Seidel iterative scheme with relaxation. Once a sufficiently

accurate numerical approximation to $ has been found, the electric field

(5.5) X = -7*

must be extracted from the discrete set of all the $ . The central
77!, Tl

difference method, while being the simplest, is the least reliable
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approach, so a smooth function is fitted to the points $ and
m,n

differentiated to find the field. The most reliable curve-fitting

procedure for the latter is found to be the cubic spline; this is fitted

independently in the r and x directions, so that the derivatives of the

fitted functions yield the components -X and -X respectively. The

difficulty in deciding on the best fit is that the exact solution for X

is not of course known. However, a useful check may be made of the fit in

the x direction since the field is specified exactly all along the pore.

The fit is applied to values of $_ at intervals of 2.5 A and the

resulting field may be compared with the exact value. For the potassium

system, the worst error is lk.5% at x = TO A , but at x = 65 A this

has reduced to 2.8/5 . For the sodium system, the worst error is 1.255 at

x = 0 which reduced to 0,155 at 5 A. . These errors can be reduced if

necessary, the only criterion being the cost of computer time.

The results of the computations are shown in Figures 1 and 2. These

show that, in the vicinity of the conducting pores of the natural squid

giant axon, ((Cf/C$)K
 = ^° » (C(/C5^N = 1/'9*2) t h e electric field is

far from uniform, for example, near the inner edge of the membrane in the

vicinity of a sodium conducting pore the electric field has a much higher

intensity than elsewhere. In the experiment suggested in Section 3 (that

is, the possible maintenance of a high value of X (0+) by simultaneously
JMa

increasing the concentration of external Na and decreasing the internal

concentration of K ) the field in the vicinity of the sodium pores

becomes more deformed as the field in the vicinity of the potassium pores

tends to uniformity. We suggest that these two effects may offset each

other in their effect on the excitability of the axon.

The author has suggested [76] that these nonuniformities in the

axolemmic electric fields may have important functional significance in the

propagation of the nervous impulse.

6. A model of the nonlinear squid giant axon

The preceding analysis assumes that a j-channel conducts only

j - ions . If however, mobile species other than j'-ions are present in

./-channels this analysis must be modified. We consider an example of this
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in relation to the choline-seawater experiments of Hodgkin and Huxley [ U ] .

Choline has been employed in the separation of the axonal membrane

conduction current into its potassium and sodium components on the

assumption that, when it replaces sodium in the bathing solution, the

resting potential is little affected and choline makes no contribution to

Iv E H ] . The Hodgkin-Huxley choline-seawater experiments show that the
K

squid giant axon exhibits the striking property change from linearity in

sodium (natural) seawater to nonlinearity in sodium-deficient bathing

solutions.

In terms of our model of the membrane conduction process, this result

could be interpreted in two ways: either

(1) the substitution of choline for sodium in the extracellular

medium is accompanied by a transition to the case X > d ,

and our treatment of Section h applies, or

(2) though X < d , (3.3) is replaced by (U.I) in individual

pores because of the presence in the pores of more than one

mobile ionic species, namely, Na ions and choline ions in

what is solely a sodium pore in the natural axon.

(For example, Hi Ile [6, 7] demonstrated that mobile ions other than sodium

can penetrate channels when the axon is placed in an unnatural ionic

environment.) In other words, at the expense of a relaxation of a priori

constraint I , (U.I) and the theory of Section k have a microscopic

interpretation in this experiment.

In case (l), A could presumably be increased by the removal of most

of one of the conducting species, that is, sodium from the membrane.

However, this interpretation would mean that the value of the membrane A

is determined largely by the concentration of the conducting ions. This

seems unlikely in view of the sparcity of conducting pores.

The alternative, case 2, appears to be more likely because of the

large concentrations of extracellular choline (c~ U60 mM) used in these

experiments. Linearity of the IC-V for potassium is preserved in choline

solutions [ H ] , so we simply assume that choline is excluded from K-pores

but not from Na-pores; this ensures that neither the resting potential

nor the potassium current is much affected by the replacement process (as
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observed).

If both choline and sodium ions are present in sodium pores we have

from (It. 15) and (U.16) the conduction current flowing in the Na-pores,

JNa '

(6.D xNa = sL ((s6/s0)-i) Lm..To ,„ > + i

where in this case

(6.2) UK = D^e^ + V 6 C h ,

< 6 ' 3 ) yO = V C 0 N a '

(6-M s * = **«.. + e6ch '

( 6 - 5 ) S0 = CONa *

In Figure 3 we show the theoretical "sodium" curves versus depolarization

from the natural resting potential, drawn for different values of the

extracellular sodium concentration. Exact comparison with experiment is

precluded by the uncertainty in the experimental values of a (6+) (since

measurements, beginning at data point 1 , were started before all the

sodium had diffused away from the nerve [H]) but the theory is clearly in

good agreement with experiment. In the curve fitting of Figure 3,

D., /D-, = 100 and for choline seawater ex.^./c^,,^ ~ 6.6** . Values of

D., /D-, much different to this would lead to either unacceptably large
1̂61 Oil

values of D aQ^, (see later) or « p,/e. . The values actually chosen

£or D,, /£_,, and c._. /on.r would mean that though the affinity of the
Na Ch oCn ONa

sodium "carriers" for choline is rather high (comparable to that for sodium

itself, since in normal seawater c. /C
O N = 9-2 ) the mobility of choline

in a sodium pore is negligibly small in comparison with that of Na

This would mean in turn that choline does not contribute directly to J
na

but affects g through distortion of X (x) .

Furthermore we are able to determine the important membrane
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mA/cm
T 1

2
X

3
11

-100 1512 13 100 mv

-1

FIGURE 3. Sodium instantaneous current-voltage relationship in sodium-
choline seawater bathing solutions. The curves are plotted
from equation (6.1); for curve (a) the concentration of
external sodium is 10$ of that of normal seawater, for curve
(b) it is 1%, and for curve (c) choline seawater is the
external medium.

The abscissa represents voltage displacement from the resting
potential; negative voltages represent depolarization and
positive voltages represent hyperpolarization. The crosses are
experimental results for the squid giant axon in choline sea-
water, with the numbers indicating the order in which the
measurements were taken (Figure 7 of [H]).

parameters D .a . from our model: expressing the <?0'-s in moles per

cm3 , (i) from (3.11) and (3.12) and Figure 7 of 1113,
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(5° C , initial depolarization 110 mV , in natural seawater), (ii) from

Figure 3 above

(5° C , initial depolarization 110 mV , in choline seawater), (ili) from

(3-11) and (3.12) and Figure 12 of [11],

(20° C , initial depolarization 81+ mV in choline seawater). Bearing in

mind that with equal partition coefficients (fL. = fiL ) c /a = 8 and

that under the experimental conditions the sodium and potassium conducting

systems are in similar states of excitation, results (i), (ii) and (iii)

above are at least plausible. Exact comparison would depend on the

construction of a detailed model of the ionic permeability-controlling

systems. In addition, if we suppose that in the experiment associated with

result (iii), g is increased by a factor ~ 75 relative to its resting

value [7 2] and if we take Cole's estimate [2] of the resting value of D

(2.5 x 1O~ cm sec" ) , then (iii) yields Q ~ 0.72 mM/litre and an

average value of conducting ion in the natural squid giant axonal membrane

of ~ 0.1* mM/litre and fiK (= JJ ) c* 1.8 x 10~
3 at 20° C .

7. Ionic selectivity

If sodium ions are present as impurities in the potassium-conducting

system of the natural squid giant axonal membrane and vice versa, C+.l)

representing our macroscopic "electroneutrality" condition can be given a

mCeroseopie interpretation much in the manner of the previous section, that

is, it can be applied to individual pores even though we assume that no

interaction between adjacent current-conducting pores occurs. Thus

applying the analysis of Section k we have a result similar to (6.l)-(6.5):

.. e$/kT

(7.

where
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(7"5) 50j =

with 3 = K, Na .

Now, in the presence of impurity (Z) ions in a j-pore (that is, of

K ions in a Na pore or vice versa) the known linearity of the IC-V

relationship of the natural squid giant axon can be retained in (7-1) if

and only if Dy ~ D. . (it turns out that the linearity of (7-1) is

preserved for quite large deviations (~ 20$) of D1/D. from unity.]
*• 0

This approximation of D-, to D. in a given pore could arise because,
I* 0

according to our model a K or an Na moves through the axonal membrane

with the aid of an oscillating system of dipoles. The inertia of this system

is clearly very much greater than that of the transported ion, so if the

ion can move freely in the pore its mass or size will have little effect on

the oscillation of the dipole system. As a result the mobility of a small

monovalent ion in a pore will be essentially independent of its species.

Such might not be true of a larger ion where friction at the "walls" of the

pore might impede its motion through the membrane. Our analysis of Section

6 indicates such a situation for choline in sodium pores.

The potential-determining character of J-ions in J-pores must there-

fore arise through the j-lons being the major concentration in these

pores, that is, through flD7 « Q_. . Alternatively ir. » 1 where
Fir F3 J

(7.6) IT =

From (7.1)-(7.5) the equilibrium potential for the system conducting ionic

species 3 is then
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where if j = K, Na , 1 = Na, K , respectively.

Since c (6+) « a (6+) in the natural squid giant axon [9] i t

follows that

fTRl * kT n 1fHaOIa(0-)4O
K

(0-)

which is identical to the expression used by Chandler and Meves [4] and

others if we identify IT with what some have chosen to call the ratio of

rfa

the permeabilities of Na and K (in sodium pores) but which we will

refer to as the selectivity coefficient of the sodium conducting system;

similarly IT will be the selectivity coefficient of the potassium
IV

conducting system.

Taking T = 8° C and a natural ionic environment for the squid giant

axon (7-7) gives <f>.T ^ -50 mV i f TT =* 1+8.6 and 4> ^ -1+5 mV i f
Na Na Na

TT ~ 18.U . These values c lear ly provide an estimate of the bounds of
Na

TT which however w i l l c e r t a i n l y vary with T and species of squid (see

a l so Br in ley ' s comment [ 1 ] ) . A similar ca lcula t ion for the potassium

system a t 8° C y ie lds <f> <- 72 mV i f TT ~ 1»3.9 and 4 ^ 77 mV i f
K. Iv K.

IT ~ 69.2 . (We have assumed that each conducting species has equal
K

activity coefficients in the external bathing solution and in the axoplasm;

this is unlikely to be true [9] so these calculations need some slight -

modification.)

It is important to observe that with 57 == D. , (7.l)-(7-5) reduce to

(3.1O)-(3-12) with S*., S . replacing e.., a respectively. Thus

employing (7.1) to describe the electrical characteristics of the natural

squid giant axon instead of (3-10)-( 3.12) is equivalent to using these

l a t t e r equations but with the ra t io c . /c reduced by lU% for

TT = 1*8.6 and by 30/5 for TT = 18.1+ and with the concentration ra t io
Na Na

ax^/°nv increased by IOU? for TT = 1+3.9 and 66? for IT = 69.2 .
OK. UK. K. iv

Hence (3.10)-(3.12) are oversimplified but nevertheless represent

reasonable expressions to employ in order of magnitude calculations;

however, in theories concerned with the microscopic properties of ionic
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permeability control in the squid giant axonal pores, the corrected version

of this section should be preferred.

Using the numerical techniques described in Section 5, the equi-

potentials and electric fields are computed in the vicinity of j-pores

conducting impurity ions as well as j'-ions: we employ the following

values for the squid giant axon with axoplasm intracellularly and seawater

extracellularly:

TT = 58.989 , which gives <j> ~ 75 mV ,

TT = 129.659 » which gives <J> ~-52 mV .

This selection is made in order to have the 4>. agree with those quoted by

3

Hodgkin and Huxley [72] at 5° C . The $p.(a;) is given by (5-1) with the

above values of (S-/S ) . replacing io$/cr} • (and as in Section 5

setting <f> = 1 ). The results of the calculation are shown in Figures k

and 5 which show |X(r, x)| for the impurity cases compared to that of the

impurity-free cases of Section 5-

8. Ionic permeability

We may evidently define ionic permeability P. of the transported
3

spec ie s j i n terms of our model from ( 7 - l ) - ( 7 - 5 ) as

(8 .1) P . = e'DQ /6 ,
d d 0

thus isolating P. from the factors of I • which depend directly on
0 d

extramembrane ionic concentration and on potential difference. The
partition coefficient ft. , assumed to be independent of <\> , must

3
naturally be included as a factor of P. because the ion-selective

3

characteristics of our model of facilitated transport play such a vital

role in determining the properties of the conducting channels. If we

assume that P̂ /p., remains constant for different axons then we have from

Section 1* that iL. ~ fi for all axons. It follows that the classical

description of the resting nerve, namely, that the membrane potential

difference c^ <f> because the permeability to K is much greater than to
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Na , implies from (8.1) that D » D in the resting nerve.
ix na

Now determinations of the permeabilities of the squid giant axon by the

use of radioactive isotopes of Na and K seem to contradict the

classical view. For example, Tasaki [19] states that "the Na

permeability of the resting axonal membrane was found to be roughly equal

to K permeability". Let us examine this conclusion in terms of our

model. Denoting radioactive tracer currents and concentrations by an

asterisk we have from (3.10)-(3.12) or (7.1)-(7.5), for efflux

(c1(6+) = o)

(8.2) I*. = e'DSI.e*(o-) (<fr/(fr .-l)/6 ,
d d d d d

and for influx [et(O-) = 6)
3

(8 .3) J*. = -e'D .U.c*A&+) (0/4, - i ) / 6 ,
d d d d d

with (j) . of course independent of tracer concentration. Now Tasaki [19]
3

defines membrane permeability P •„ as the radioactive tracer current

density per unit original concentration of tracer which from (8.2) and

(8.3) is

" ^ P3T efflux - ''>>fi[mrl)/* - PdT i n f l u x ,

as Tasaki indeed v e r i f i e s . Furthermore s i nce ft^ ~ £2 , (8.U) impl ies

t h a t

(8.5)
PKT

and so we have for the natural squid giant axon, PNay/
p
K7' — ̂  ^K f^v

the resting state. Tasaki and others actually find for axons treated with

metabolic poison (to remove ambiguities which would otherwise arise from

currents due to active transport) that PTjay/
PK7' —1/3 to unity which

would make, on our model, D /D in the range 1/U2 to 1/lU . It
Na K.

follows from (8.1) that P. /P lies in the same range of values. In

ria iv

other words, on our definition of the membrane permeability coefficients

the radio-active tracer experiments support the classical view of the
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resting nerve.
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