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INVEX FUNCTIONS AND
CONSTRAINED LOCAL MINIMA

B.D. CRAVEN

If a certain weakening of convexity holds for the objective and

all constraint functions in a nonconvex constrained minimization

problem, Hanson showed that the Kuhn-Tucker necessary conditions

are sufficient for a minimum. This property is now generalized

to a property, called X-invex, of a vector function in relation

to a convex cone K . Necessary conditions and sufficient

conditions are obtained for a function / to be X-invex. This

leads to a new second order sufficient condition for a

constrained minimum.

1. Introduction

A real function / : R -* R will be called invex, with respect to

H , if for the function n : R" * Rn -• R* ,

(1) /(*) - f(u) > f'(uMx, u)

holds for each x and u in the domain of / . Here f'(u) is the

Frechet derivative of / at u . Hanson [5] (see also [6], [7])

introduced this concept, and showed that, if all the functions /. in the

(nonconvex) constrained minimization problem,

(2) Minimize fn(x) subject to /.(x) 5 0 (i = 1, 2, ..., m) ,

are invex, with respect to the same r| , then the Kuhn-Tucker conditions
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necessary for a global minimum of (2) are also sufficient. In fact,

Hanson's proof [5] does not require (l) at all points x and u , since u

may be fixed at the point where the Kuhn-Tucker conditions hold. Define,

therefore, a real function f to be invex in a neighbourhood at u if /

satisfies (l) for a given u , and for all x such that ||x-w|| is

sufficiently small. With this definition, the Kuhn-Tucker necessary

conditions Tjecome also sufficient for a local minimum; the proof is the

same as Hanson's. Craven [2] has shown that / has the invex property

when f = h o § , with h convex, <p differentiable, and <f' having full

rank. Thus some invex functions, at least, may be obtained from convex

functions by a suitable transformation of the domain space. Such

transformations destroy convexity, but not the invex property; the term

invex, from invariant convex, was introduced in [2] to express this fact,

(in (l), / is convex if r\(x, u) = x - u .)

The requirement that all the functions /• in (2) are invex with

respect to the same function n, may be expressed by forming a vector / ,

whose components are /. (i = 0, 1, 2, ..., m) , and then requiring that

(3) /(*) - /(«) - f'iuMx, u) ^

where F+ denotes the nonnegative orthant in IK . More generally,

let K c R"^ be a convex cone. The vector function f : Rn •* ff*1 will

be called K-invex, with respect to r| , if

(k) f{x) - f(u) - f'UMx, u) € K

for all x and u . If u is fixed, and (1*) holds whenever ||x-w|| is

sufficiently small, then f will be called K-invex, with respect to n, ,

in a neighbourhood at u . It is noted that, if / is .K-invex in a

neighbourhood at u , and if V € K* (the dual cone of K , thus

v{K) c R+ E [0, °°) ) , then V f is invex in a neighbourhood at u , with

respect to the same n .

In this paper, conditions are obtained necessary, or sufficient, for

/ to be X-invex with respect to some n . This involves an investigation

of appropriate functions n for (U). To motivate the generalization to

cones, consider problem (2) generalized to
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(5) Minimize / Q ( X ) subject to ~g{x) € S ,

where g(x) = [f^x), f^x), ..., fm(x))
T , and S c ff is a convex cone.

The Kuhn-Tucker conditions necessary (assuming a constraint qualification)

for a minimum of (5) at x = u are that a Lagrange multiplier 9 € S*

exists, for which

(6) f^u) + eV("> = 0 ; QT9(") = 0 •

Set X = (1, 9) , and K = R+ x S* . (if S = K^ then K = R^+1 .) Then

(6) may be rewritten as

(7) \Tf'{u) = 0 ; \Tf(u) = fQ(u) ; H P .

The following converse Kuhn-Tucker theorem then holds.

THEOREM 1. Let u be feasible for problem (5); let the Kuhn-Tucker

conditions (7) hold at u } with X = 1 ; let f be K-invex, with

respect to some n , in a neighbourhood at u . Then u is a local

minimum of (5).

Proof. Let x be any feasible point for (5)5 with ||x-w||

sufficiently small. Then

fQ(x) - fQ(u) > X
T/(x) - XTf(u) since BTg(x) 5 0 and \Tf(u) = fQ(u)

T
> \ f'(u)r\(x, u) by the invex hypothesis

= 0 by the Kuhn-Tucker conditions.

So u is a local minimum for (5). D

The result generalizes [7], Theorem 2, which applies to polyhedral

cones S only.

If the problem (5) is not convex, then the hypotheses (and proof) of

Theorem 1 lead to a local (but not necessarily global) minimum. A local

minimum also follows if / is i/-invex, where U is a convex cone

containing K , and X € U* . Here the vector function / is less

restricted than in Theorem 1, and the Lagrange multiplier X is more

restricted.

The problem (2) is equivalent to the transformed problem,
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(8) Minimize <(>- o f (x) subject to cf>. o f.[x) < 0 (i = 1, 2, . . . , m) ,
U U Is Is

in the sense that both problems (2) and (8) have the same feasible set and

the same minimum (local or global), provided that <J> : R ->• R is strictly

increasing and, for i = 1, 2, ..., m , (j).(R+) c R+ and <)>.(-F+)
 c -R. •

("The 4>. , for £ = 1,2, ..., m , may be monotone, but need not be so.)

Let F denote the vector whose components are

<j>_ ° / Q , <f>, ° /, , — , $m ° fm • Tiie converse Kuhn-Tucker property will

hold for the original problem (2) if it holds for the transformed problem

(8), thus if F is R^ -invex, with respect to some r) . Although (8) is

not generally a convex problem, a local minimum for (8) at u follows, as

in Theorem 1; and this implies a local (and hence global) minimum at u

for the convex problem (2).

2. Conditions necessary or sufficient for an invex function

Assume now that the vector functions / and n are twice

continuously differentiable. For fixed u , the Taylor expansion of

r\(x, u) in terms of v = x - u gives, up to quadratic terms

(9) n U , u) = nQ + Av + \v
TQy + o[\\v\\2) (v = x - u) ,

T
where A is an n x n matrix of first partial derivatives, and V QmV is

a coordinate-free notation (see [3]) for the vector whose kth component

is

p
3 x\Ax,u)

'L'J~1 % ° x=u

Of course, r\ = r\(u, u) , A , and Qt depend on u . If q is a row

vector with n components, let qQm denote the matrix Q-, whose elements

£ c T . T, ,
are 2, "71.̂1- • • • Thus q[v Q v) = v [qQ ) , an ordinary quadratic form.

fe=l * *'iJ ' ' v

Similarly, f has an expansion

(11) f(x) - f(u) = Bv + ^ y ^ u + o(||u||2) ,
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where B = f'(u) is a matrix of first derivatives 3/, (x)/3x.| , and

x=u

Let S tie a convex cone in IF< . The quadratic expression V My

will be called S-positive semidefinite if v My € S for every v € Ft .

The expression v W.u will be called S-positive definite if

V My (. int S for every nonzero v € R . Here int S denotes the

interior of S , supposed nonempty. Now V Q.V can be expressed, by

n
rotation of axes, in the form Y. P7 •av • > where the p, .

i = l ^ **• **-

(i = 1, 2, ..., n) are the eigenvalues of Qv , and the ex, . , depending

on u , are nonnegative. For each k , denote by P^ the vector whose

components are P-, , Pi,p> . . . , Pr, . If, for some ordering of the eigen-

values of each Q-. , every vector p, lies in S (respectively in

T
int S ) , then it follows that v Qy is S-positive semidefinite

(respectively S-positive definite). This sufficient condition for

S-positive semidefiniteness would be also necessary if the Q-, are

simultaneously diagonalizable, but that is not usually the case. It is

convenient to say that Q% is S-positive (semi-) definite when v Qy

If S is a polyhedral cone, then the dual cone S* has a finite set,

G , of generators (considered as row vectors). Since a vector a € S if

and only if qs > 0 for each q € G , it follows that Q is S-positive

(semi-) definite if and only if, for each q (. G , qQ is positive (semi-)

definite in the usual sense.

T
Let r = m + 1 . If B is an r x n matrix, define V (BQ^)v for

v € R as the vector whose feth component is
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n r
(13) T v.C. ..v. where C, . . = V 5, ,6. . . .

Let I denote the n x n identity matrix.

Observe that the #-invex property (U) is unaffected by subtracting

from n any term in the nullspace of f'(u) = B .

THEOREM 2. Let f : itf* -»• Rr be twice continuously differentiable:

let K c IFT fce a closed convex cone, satisfying K n (-K) = {0} . If f

is K-invex in a neighbourhood at u , with respect to a twice continuously

differentiable function n , for which n(w, u) = 0 , then, after

subtraction of a term in the nullspace of B , r\ has the form

(lU) T)(u+v, u) = v + \vTQv + o(||u||2) ,

where M^ - BQm is K-positive semidefinite. Conversely, if r\ has the

form (lU)j and if Mt - BQ^ is K-positive definite, then f is K-invex

in a neighbourhood at u , with respect to this r\ .

Proof. Let / be .K-invex with respect to n in a neighbourhood at

u . Substituting the expansion (9) into the expansion (ll), and setting

r)n = 0 , the inequality

(15) [su+iA.u+oOMI2)] - S&u+^re.u-Kp(||u||2)] € K

must hold, whenever ||u|| is sufficiently small. Considering the terms

linear in v , Bv - BAv + o(||v||) € K for each V € F< . Hence, for each

q € K* , and each v , q[B{I-A)V+O( \\V\\ )) > 0 , hence qB(I-A)v 2 0 .

Hence B{I-A)v € K n (-K) = {o> . Therefore B(I-A) = 0 . But the

definition (h) of X-invex allows any term in the nullspace of B to be

added to ri . Hence / is also X-invex with respect to r| , now modified

by replacing A by I . The quadratic terms then require that, for each

V ,

(16) vT(M.-BQ.)v + o{\\vf) i K .

Hence, for each q € K* and each a > 0 , replacing v by O.V ,

q[vT(Mm-BQ,)v] + o ( a 2 ) / a 2 2 0 .
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Hence q [y {M^-BQt)v\ > 0 for each q € K* , hence

(17) vT(M^-BQ,)v € K for each v d R* .

Thus M# - BQ^ is ^-positive semidefinite.

Conversely, assume that Mm - BQm is ^-positive definite. A

reversal of the above argument shows that (15), with A = I , is satisfied

up to quadratic terms, with K replaced by int K . Here the quadratic

terms dominate any higher order terms, so that (15) itself holds, whenever

||u|| is sufficiently small. Thus (U) follows, and / is K-invex, in a

neighbourhood at u , with r| given by (lU). O

If a nonzero term rL. = (0, 0) is included in (9), then the .K-invex

property for / requires that -#ru € X , on setting v = 0 . Suppose

that, for the constrained minimization problem (5), the Kuhn-Tucker

T
conditions (6) hold at the point u . Then X B = 0 , for some nonzero

A € K* . Suppose that X € int K* (for problem (2), this means that each

Lagrange multiplier X. > 0 ) . From this, if 0 i- -Br\ d K , there follows

rp rp

(see [I], page 31) X Br\0 < 0 , contradicting X B = 0 . So the assumption

that Sn_ = 0 is a relevant one, when the X-invex property is to be

applied to Kuhn-Tucker conditions and Theorem 1. In Theorem 2, r\. = 0

was assumed, since a vector in the nullspace of B may be subtracted from

n •
In Theorem 2, the sufficient conditions for f to be X-invex involve

first and second derivatives of f . Combining this with the sufficient

Kuhn-Tucker theorem (Theorem 1 ) , it has been shown that the Kuhn-Tucker

conditions are sufficient for a local minimum of a nonconvex problem, if

the first and second derivatives of f at the Kuhn-Tucker point u are
T

suitably restricted. The Lagrangian /Q(
x) + ^ g(x) for the problem (5)

T
has X M as its matrix of second derivatives. The second order

sufficiency conditions, given by Fiacco and McCormick [4], page 30, require

T t T
that (in the present notation) each component of V (X Mjv > 0 for each

nonzero u in a certain cone. This is related to, but not the same as,
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the hypothesis (from Theorem 2) that M# - BQ% is X-positive definite,

for some choice of Qt . However, the construction of a suitable Q ,

given f , is a nontrivial matter, since the eigenvalues of each

M, - {BQ%), matrix are involved.

Consider the problem,

(18) Minimize

3. Examples

= 1* - x
to

f±(x) = \ - I S O .

This problem has a local minimum at (0, l) , with Lagrange multiplier 1 .

The matrices M-^ are then

6

p

0

- 2

•

a n d M =
X

5 =
0 -2

When do symmetric matrices QQ and exist for which

0

0

°l
-2J

- 00 - (- ,
u

l)Q and
1

0

0

2

are both positive semidefinite, or both positive definite? Setting

12a 23 "I |l-2a -2
, the two matrices are

Using the Routh-Hurwicz criterion,

a(-l+Y) - $2 > 0 , and (l-a)(2-2y) -

semidefinite matrices

and t23 -2+2YJ |_-23 2 ~ 2 U

- 1 , Y = 1 ,

- 0 , are required. Positive

• 1

2

0

0

0_
and R

Lo

0

0

are obtained, with a = i , 3 = 0 , Y = l , but positive definite

matrices are not possible. Thus the necessary conditions of Theorem 2, but

not the sufficient condition, holds in this instance.
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For the same problem (l8), the point (-1, 2*) is a saddle point,

with Lagrange multiplier 1 . Here

M0 =

-1 0

0 -2 0 2

The matrices to consider are

-2
QQ - and

, B =

1 0

0 2

1 -22

-1 22

and these cannot both be positive definite (or semidefinite), whatever the

choice of the matrix Q - 2%Q . So the sufficient condition of Theorem 2

does not hold here.
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