A NEW PROOF OF THE AMENABILITY OF $C(X)$

MORTAZA ABTAHI ${ }^{\boxtimes}$ and YONG ZHANG

(Received 17 April 2009)

Abstract

In this paper, we present a constructive proof of the amenability of $C(X)$, where X is a compact space. 2000 Mathematics subject classification: primary 46J10. Keywords and phrases: Banach algebra of continuous functions, amenability, approximate diagonal.

The concept of amenability for a Banach algebra A was introduced by Johnson in 1972 [5], and has proved to be of enormous importance in Banach algebra theory. Several modifications of this notion were introduced in [2, 3].

Let A be a Banach algebra, and let X be a Banach A-bimodule. A derivation is a continuous linear map $D: A \rightarrow X$ such that

$$
D(a b)=a D(b)+D(a) b \quad(a, b \in A)
$$

For $x \in X$, set ad $_{x}: a \mapsto a x-x a, A \rightarrow X$. Then ad_{x} is the inner derivation induced by x.

The dual of a Banach space X is denoted by X^{*}; in the case where X is a Banach A-bimodule, X^{*} is also a Banach A-bimodule. For the standard dual module definitions, see [1].

According to Johnson's original definition, a Banach algebra A is amenable if, for every Banach A-bimodule X, every derivation from A into X^{*} is inner.

It is known that $C(X)$, for a compact space X, is an amenable Banach algebra, [4, Theorem 5.1.87]. Here, we give a constructive proof of this result. First, we prepare some preliminaries.

Definition 1. Let A be a Banach algebra. An approximate diagonal for A is a net $\left(u_{\alpha}\right)$ in $A \widehat{\otimes} A$ such that, for each $a \in A$,

$$
a u_{\alpha}-u_{\alpha} a \rightarrow 0 \quad \text { and } \quad a \pi\left(u_{\alpha}\right) \rightarrow a .
$$

[^0]Here, and in what follows, π always denotes the product morphism from $A \widehat{\otimes} A$ into A, specified by $\pi(a \otimes b)=a b$.

It proved very useful in the classical theory of amenability to have characterizations in terms of virtual diagonals or approximate diagonals. Later, Johnson [6] obtained the following theorem.
THEOREM 2. A Banach algebra A is amenable if and only if it has a bounded approximate diagonal.
Lemma 3 [4, Proposition 0.3.30]. For Banach algebras A and B, if $u=\sum_{1}^{n} u_{k} \otimes$ $v_{k} \in A \otimes B$, then

$$
\|u\|_{p} \leq \frac{1}{n} \sum_{k=1}^{n}\left\|\sum_{\ell=1}^{n} u_{\ell} \zeta^{k \ell}\right\|\left\|\sum_{j=1}^{n} v_{j} \zeta^{-k j}\right\|
$$

where $\zeta=e^{i \theta}, \theta=2 \pi / n$ and $\|u\|_{p}$ represents the projective tensor norm of u.
Lemma 4. Let $n \in \mathbb{N}$ and let $z_{k}, w_{k}(k=1, \ldots, n)$ be complex numbers. Let $\zeta=e^{i \theta}$, where $\theta=2 \pi / n$. Then

$$
\frac{1}{n} \sum_{k=1}^{n}\left|\sum_{\ell=1}^{n} z_{\ell} \zeta^{k \ell}\right|\left|\sum_{j=1}^{n} w_{j} \zeta^{-k j}\right| \leq \frac{1}{2}\left(\sum_{\ell=1}^{n}\left|z_{\ell}\right|^{2}+\sum_{j=1}^{n}\left|w_{j}\right|^{2}\right)
$$

Proof. For $k \in\{1, \ldots, n\}$, let $R_{k}=\left|\sum_{\ell=1}^{n} z_{\ell} \zeta^{k \ell}\right|$ and $T_{k}=\left|\sum_{j=1}^{n} w_{j} \zeta^{-k j}\right|$. Then

$$
A=\frac{1}{n} \sum_{k=1}^{n} R_{k} T_{k} \leq \frac{1}{2 n} \sum_{k=1}^{n}\left(R_{k}^{2}+T_{k}^{2}\right)
$$

We have

$$
R_{k}^{2}=\left(\sum_{\ell=1}^{n} z_{\ell} \zeta^{k \ell}\right)\left(\sum_{j=1}^{n} \bar{z}_{j} \zeta^{-k j}\right)=\sum_{\ell=1}^{n}\left|z_{\ell}\right|^{2}+2 \operatorname{Re} \sum_{j<\ell} z_{\ell} \bar{z}_{j} \zeta^{k(\ell-j)}
$$

For $1 \leq j<\ell \leq n, \zeta^{\ell-j}$ is an nth root of unity and $\zeta^{\ell-j} \neq 1$, so $\sum_{k=1}^{n} \zeta^{k(\ell-j)}=0$. This implies that

$$
\sum_{k=1}^{n} R_{k}^{2}=n \sum_{\ell=1}^{n}\left|z_{\ell}\right|^{2}+2 \operatorname{Re} \sum_{j<\ell} z_{\ell} \bar{z}_{j} \sum_{k=1}^{n} \zeta^{k(\ell-j)}=n \sum_{\ell=1}^{n}\left|z_{\ell}\right|^{2}
$$

Similarly,

$$
\sum_{k=1}^{n} T_{k}^{2}=n \sum_{j=1}^{n}\left|w_{j}\right|^{2}
$$

We, therefore, have

$$
A \leq \frac{1}{2}\left(\sum_{\ell=1}^{n}\left|z_{\ell}\right|^{2}+\sum_{j=1}^{n}\left|w_{j}\right|^{2}\right)
$$

Corollary 5. Let X be a compact space. Let $u=\sum_{k=1}^{n} u_{k} \otimes v_{k} \in C(X) \otimes C(X)$. Then

$$
\|u\|_{\ell} \leq \frac{1}{2}\left(\left\|\sum_{\ell=1}^{n}\left|u_{\ell}\right|^{2}\right\|+\left\|\sum_{j=1}^{n}\left|v_{j}\right|^{2}\right\|\right)
$$

where $\|\cdot\|$ is the uniform norm on $C(X)$.
Main Theorem. Let X be a compact Hausdorff space. Then $C(X)$ has a bounded approximate diagonal and so it is amenable.

Proof. Let F be a finite subset of $C(X)$ and $\varepsilon>0$. For every $x \in X$, there exists a neighborhood V_{x} of x such that if $s \in V_{x}$ and $a \in F$, then $|a(s)-a(x)|<\varepsilon / 2$. Since X is compact, there exist $x_{1}, \ldots, x_{n} \in X$ such that

$$
X \subset V_{1} \cup \cdots \cup V_{n} \quad\left(V_{i}=V_{x_{i}}\right)
$$

There exist nonnegative continuous functions h_{1}, \ldots, h_{n} such that $\operatorname{Supp}\left(h_{k}\right) \subset V_{k}$ and $h_{1}+\cdots+h_{n}=1$ on X (see [7, Theorem 2.13]).

For $k=1, \ldots, n$, let $u_{k}=\sqrt{h_{k}}$ and $u=\sum_{k=1}^{n} u_{k} \otimes u_{k}$. Clearly, $\pi(u)=$ $\sum h_{k}=1$. We prove that:
(1) $\|u\|_{p} \leq 1$;
(2) $\|a u-u a\|_{p}<\varepsilon$ for all $a \in F$.

Claim (1) is clear from Corollary 5. Now we prove claim (2). For $a \in F$, let $a_{k}=a-a\left(x_{k}\right)$. Then, for any $s \in V_{k},\left|a_{k}(s)\right|<\varepsilon / 2$. We have

$$
\begin{aligned}
a u-u a & =\sum_{k=1}^{n}\left(a u_{k} \otimes u_{k}-u_{k} \otimes a u_{k}\right) \\
& =\sum_{k=1}^{n}\left(\left(a-a\left(x_{k}\right)\right) u_{k} \otimes u_{k}-u_{k} \otimes\left(a-a\left(x_{k}\right)\right) u_{k}\right) \\
& =\sum_{k=1}^{n} a_{k} u_{k} \otimes u_{k}-\sum_{k=1}^{n} u_{k} \otimes a_{k} u_{k} .
\end{aligned}
$$

Therefore,

$$
\|a u-u a\|_{p} \leq\left\|\sum_{k=1}^{n} a_{k} u_{k} \otimes u_{k}\right\|_{p}+\left\|\sum_{k=1}^{n} u_{k} \otimes a_{k} u_{k}\right\|_{p} .
$$

Denote $\eta=\varepsilon / 2$ and write

$$
\sum a_{k} u_{k} \otimes u_{k}=\sum \frac{1}{\sqrt{\eta}} a_{k} u_{k} \otimes \sqrt{\eta} u_{k}
$$

By Corollary 5,

$$
\left\|\sum_{k=1}^{n} a_{k} u_{k} \otimes u_{k}\right\|_{p} \leq \frac{1}{2}\left(\left\|\sum_{k=1}^{n} \frac{\left|a_{k}\right|^{2}}{\eta} h_{k}\right\|+\eta\left\|\sum_{k=1}^{n} h_{k}\right\|\right) \leq \eta .
$$

Similarly $\left\|\sum u_{k} \otimes a_{k} u_{k}\right\|_{p}<\varepsilon / 2$. This completes the proof.

References

[1] H. G. Dales, Banach Algebras and Automatic Continuity, LMS Monographs, 24 (Clarenden Press, Oxford, 2000).
[2] F. Ghahramani and R. J. Loy, 'Genaralized notions of amenability', J. Funct. Anal. 208 (2004), 229-260.
[3] F. Ghahramani and Y. Zhang, 'Pseudo-amenable and pseudo-contractible Banach algebras', Math. Proc. Cambridge Philos. Soc. 142 (2007), 111-123.
[4] A. Ya. Helemskii, Banach and Locally Convex Algebras (Oxford University Press, Oxford, 1993).
[5] B. E. Johnson, Cohomology in Banach Algebras, Memoirs of the American Mathematical Society, 127 (American Mathematical Society, Providence, RI, 1972).
[6] B. E. Johnson, 'Approximate diagonals and cohomology of certain annihilator Banach algebras', Amer. J. Math. 94 (1972), 685-698.
[7] W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1987).

MORTAZA ABTAHI, Department of Mathematics, Damghan University of Basic Sciences, Damghan 3671641167, Iran
e-mail: abtahi@dubs.ac.ir
YONG ZHANG, Department of Mathematics, University of Manitoba, R3T 2N2, Canada
e-mail: zhangy @cc.umanitoba.ca

[^0]: (C) 2010 Australian Mathematical Publishing Association Inc. 0004-9727/2010 \$16.00

