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Abstract

Automatically extracting knowledge from small datasets with a valid causal ordering is a chal-
lenge for current state-of-the-art methods in machine learning. Extracting other type of
knowledge is important but challenging for multiple engineering fields where data are scarce
and difficult to collect. This research aims to address this problem by presenting a machine
learning-based modeling framework leveraging the knowledge available in fundamental
units of the variables recorded from data samples, to develop parsimonious, explainable,
and graph-based simulation models during the early design stages. The developed approach
is exemplified using an engineering design case study of a spherical body moving in a
fluid. For the system of interest, two types of intricated models are generated by (1) using
an automated selection of variables from datasets and (2) combining the automated extraction
with supplementary knowledge about functions and dimensional homogeneity associated
with the variables of the system. The effect of design, data, model, and simulation specifica-
tions on model fidelity are investigated. The study discusses the interrelationships between
fidelity levels, variables, functions, and the available knowledge. The research contributes to
the development of a fidelity measurement theory by presenting the premises of a standard-
ized, modeling approach for transforming data into measurable level of fidelities for the pro-
duced models. This research shows that structured model building with a focus on model
fidelity can support early design reasoning and decision making using for example the dimen-
sional analysis conceptual modeling (DACM) framework.

Introduction

In data-driven engineering design, the production of data across a product or system’s life
cycle is becoming abundant (McAfee and Brynjolfsson, 2012). Data are generated from multi-
ple sources, and it is becoming a common design practice to integrate sensors in products as
well as product manufacturing. Simultaneously, with the advances in data analytics, the prac-
tices followed at different stages of product design are undergoing a transition. The discipline
relies extensively on simulations to replace expensive prototyping. Simulation-based design
evaluation is increasingly used when the cost of prototyping complex systems is high (Li
et al., 2012). However, simulations may become tedious and expensive when a large design
space needs to be evaluated (Choi et al., 2014). In that context, generating metamodels is
often a suitable alternative. Metamodels are simplified models representing the essence of
complex phenomena or complex simulation models (Bhosekar and Ierapetritou, 2018). In a
production environment, it is advantageous to produce metamodels using machine learning
methods because of its automation capabilities (Cai et al., n.d.; Sun and Wang, 2019).

In data-driven design, the product development process should benefit from tools and
approaches that can extract and integrate useful knowledge embedded in the data to produce
models (Berman, 2013; Brunton and Kutz, 2019; Lee et al., 2022). It will be beneficial for
developed models to support reasoning through simulation. Simulation-based reasoning is a
significant contribution to the early decision-making process (Felsberger et al., 2016). The
decision-making process relies on human judgment and its global acceptance in any organiza-
tion requires the production of rationales supporting the decisions (Chaudhuri et al., 2011).
Models should facilitate the human cognitive processes (Miller, 1956; Dadi et al., 2014). In
human cognition, a natural tendency for humans is to develop a causal interpretation of
events. Such causal interpretations can be valid or erroneous, but they represent a strong
human cognitive pattern. Any tools developed to support decision making should also con-
sider the human characteristic. Approaches such as graph-based representations and causal
ordering for parsimonious models produced can facilitate the model’s transparency and enable
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efficient human decision-making by being aligned with the
human cognition (Goel et al., 2012; Shekhawat et al., 2021).

The current research aims to leverage the potential of machine
learning for the extraction and integration of knowledge gathered
from different data sources in the development of engineering
models matching human cognition and supporting automatic
reasoning. In general terms, knowledge can be defined as aware-
ness of facts or as practical skills. It may also refer to familiarity
with objects or situations. Knowledge of facts is distinct from opi-
nion because it benefits from justification provided through ratio-
nales. Such rationales are produced using a representation of the
knowledge or the structure of knowledge which can be easily
shared and understood. This research exploits two sources of
knowledge, namely, data collected from a system and the funda-
mental units of the variables of the system. The article presents
a two-part method for generating a structure of knowledge.
First, oriented graphs representing the variables of the dataset
as nodes and their interrelations as edges are developed.
Second, a power-law representation is developed for the variables
of the system. The power laws and the oriented graphs are com-
posed together to construct the structure of knowledge wherein,
the exponents of the power laws being associated with the
nodes (i.e., the variables) and the multiplicative connections
between variables are associated with the edges (i.e., variable
interrelationships).

This research aims to extend the scope of the pre-existing
dimensional analysis conceptual modeling framework (DACM)
to develop oriented graphs. The goal is to exploit datasets as a
new form of inputs for the framework. The DACM framework
has been initially developed for generating oriented graphs com-
bined with power-law equations using functional representation
as a starting point for modeling of systems (Mokhtarian et al.,
2017). Initially, it was developed for bringing simulation to the
very early stage of the engineering design process. In the frame-
work, a mathematical machinery based on qualitative reasoning
using power laws has been implemented to incorporate qualitative
objectives in the developed models (Bhaskar and Nigam, 1990).
The DACM propagation algorithm can propagate qualitative
objectives into oriented graphs and detect physical contradictions
as defined in theory of inventive problem solving (TRIZ)
(Savransky, 2000). This is allowing the detection of design weak-
nesses at the early design conceptual stage (Eckert et al. 1999;
Shahin, 2008; Jin and Benami, 2010). TRIZ separation principle
(Savransky, 2000) is used to modify the topology of the oriented
graphs and consequently generate innovative solutions minimiz-
ing or removing the contradictions for ultimately creating better
designs (Kryssanov et al., 2001; Mayda and Börklü, 2014).
However, to be able to generate a valid reasoning with this
approach, a pre-requisite is to build the oriented graph to accu-
rately represent the causal relationships in the system of interest.
In the case of the exploitation of a dataset as the initial starting
knowledge, classical machine learning methods cannot guarantee
the validity of the causal ordering. Thus, the proposed method
enables the development of oriented graphs with an accurate
causal ordering of variables which can then be used in tandem
with the DACM framework for qualitative reasoning.

The integration and exploitation of data in the DACM frame-
work can provide a standardized way to approach early design
reasoning; however, the usability of the models may be affected
by the model fidelity. The objectives of the model and the
designer, and relevant applications must be considered when
developing engineering models (Ponnusamy et al., 2014). As

mentioned above, a valid causal ordering is a necessary condition
for qualitative reasoning using the DACM framework. Similarly, a
lack of standardized approaches to integrate fidelity in modeling
approaches can have detrimental effects, weakening the usability
of the engineering models. Like fields such as metrology, which
is constructed around standardized measurement approaches
and fundamental concepts, the design of simulation models for
engineering purposes, must also be facilitated by formalization
and conceptualization to enable fidelity assessments. The problem
has been recognized and an effort to formalize the discipline is
ongoing in literature (Gross, 1999; Gross et al., 1999;
Ponnusamy et al., 2014). In line with existing research, the current
article develops a standardized process for machine learning-
based modeling to develop simulation models and measure fidel-
ity. The developed models are based on a causal representation of
the system variables and can be used for engineering design rea-
soning and decision making.

The remainder of the article is organized as follows: Section
“Background” presents the background on the development of
simulation models and evaluation of fidelity. Section “Method” pres-
ents the modeling method with the help of a case study. DACM
combined with a machine learning module is presented as a
model creation and fidelity measurement approach. Section “Case
study” presents the findings of this research and the potential appli-
cations of the developed approach. Section “Discussion and future
work” discusses the conclusions and future development efforts.

Background

In this section, the importance of early decisions in engineering
design are emphasized. DACM as a causal ordering framework
is briefly introduced. Next, the concept of fidelity in simulation
is analyzed and different methods to support the evaluation of
some fidelity aspects are presented.

Early design decision support and the role of discovering
causal ordering in engineering design and other disciplines

Herbert Simon introduced two concepts relevant for the entire
design and manufacturing disciplines. First, the concept of
bounded rationality was initially introduced in an economic con-
text as a criticism of the classical economic theory and asserting
the existence of a purely rational decision-maker, the homo eco-
nomicus (Moon, 2007). Research in fields such as economics or
psychology has demonstrated that rationality is often an exception
rather than a norm in human decision processes. Hypothesizing a
purely rational behavior is a limitative factor to understanding the
complexity of the human decision processes and consequently its
branch of design decision making. The second important concept
is the concept of satisficing (Simon, 1956). The term satisficing is
a combination of satisfying and suffice. This concept is important
for practical reasons. Indeed, the design activity is a
problem-solving activity, where solutions to problems are found
in form of tangible or non-tangible artifacts. An artifact is an arti-
ficially created object. A satisficing solution to a design problem is
a feasible solution produced within specified time limits and using
specified and constrained bounded resources.

When working on solutions, certain stages of design can have
a higher influence and induce constraints on the final perfor-
mances of the designed artifacts. For example, design decisions
taken at the early stages of the process are less costly but concur-
rently can also heavily constrain later decisions. Therefore, the
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early design stage is a strategic phase of the design activity, but
also a challenging one, due to the limited availability of early
knowledge combined with a high level of associated uncertainty.
Early design decisions combine the potential for high added
value and high risk due to the ill-defined nature of the early
knowledge. Early knowledge combines characteristics such as fuz-
ziness, scarcity, and qualitative nature. Despite the inherent
uncertainty, early knowledge can provide crucial information dur-
ing product development and the potential of this resource is
rarely fully exploited in current design practices.

A central aim of the scientific activity is to develop methods to
systematically unveil cause–effect relationships between variables
of a problem. This is particularly relevant to the engineering
design and manufacturing discipline. The discovery of potential
confounding variables has been a major source of investigation
(VanderWeele and Shpitser, 2013). In statistics, a confounding
variable is a variable that influences both the dependent and inde-
pendent variables. This is the source of a false association between
variables. Confounding is a concept related to cause–effect rela-
tionships and this should not be mixed with the concepts of cor-
relations or relations. The existence of confounders provides
rationale for instances when a correlation does not always imply
a causal relationship. A variety of approaches have been developed
to generate causal ordering in literature (Finkbeiner et al., 2015;
McCaffrey and Spector, 2018; Bhatt et al., 2021). The method pro-
posed in this article contributes to the body of knowledge in
causal ordering using oriented graphs and equations. Despite
the success of existing causal ordering approaches to be effective
and robust in an engineering context, a limiting factor could be
the scope of the analysis that could be performed using the causal
ordering. Methods such as bond graph causal ordering (Gawthrop
and Smith, 1996) or causal ordering of equations via the direct use
of Iwasaki and Simon algorithm (Iwasaki and Simon, 1994) or its
extensions (Trave-Massuyes and Pons, 1997), as well as work
done in qualitative physics (Bhaskar and Nigam, 1990), are few
examples of causal ordering methods belonging to such a classi-
fication. Another approach applied more specifically to the social
science context is also interesting for this limited literature review.
This is a method searching for cause and effect relationships via
models using structural equations modeling (SEM) (Pearl, 2000;
Spirtes et al., 2000). SEM derives from path analysis which was
developed by the biologist S. Wright in the 1920s and has been
often applied to analyze causal relations of non-experimental
data using an empirical approach. Path analysis extends regres-
sion analysis by analyzing simultaneously many endogenous
and exogenous variables of a system or problem. Path analysis

was combined with factor analysis and latent variables to form
the SEM approach to causal analysis. In path analysis, variables
can be endogenous or exogenous. Relations between variables
can be represented by a one-sided arrow when a relationship
exists between variables and a two-sided arrow when a correlation
exists between variables as presented in Figure 1. Factor analysis is
integrated with latent variables in the SEM approach. Factor anal-
ysis is a statistical method used to describe variability among
observed, correlated variables with the central idea that the varia-
tion of observed variables can also be reflecting the variations of
unobserved variables name latent variables. Factor analysis may
help to deal with datasets where there are large numbers of
observed variables that are thought to reflect a smaller number
of underlying/latent variables (Harman, 1976). However, SEM is
of confirmatory nature and researchers have first to model the
true causal relationships based on other background knowledge
before collecting or analyzing data (Goldberger, 1972). This task
is difficult, especially at the beginning of a design process because
of the lack of background initial knowledge.

Consequently, using SEM alone, it is often difficult to unveil
the initial causal structure. Additionally, SEM suffers from
another limitation because SEM assumes normality of the statis-
tical distribution and only uses the covariance structure and can-
not find causal direction between two highly correlated variables
because the models produced will be equivalent using the SEM
approach. Nevertheless, the SEM method constitutes the concep-
tual basis of several algorithms that are successful in the discovery
of causal structure, especially in complex systems studied by sci-
ences such as economics and sociology. This has also been used
in medicine and more specifically in epidemiology.

The fundamental concepts of formalism are summarized in
the following manner by Halpern (2000). The construction of
structural equations (SE) models requires three key steps. First,
the problem being studied is represented by a finite set of vari-
ables, corresponding to the features of the problem. This can
also be the function of a system to be designed as a solution for
a specific design problem (Mobus, 2022). There are two sorts of
variables. Endogenous variables are such that their values are
determined by other variables within the model, whereas the val-
ues of exogenous variables are determined in a way that is inde-
pendent of other variables of the system. The structural
equations describe the functional dependence of the endogenous
variables on other variables (endogenous and exogenous) in the
model (Kaplan, 2008).

SEM use graphs to represent relations between observed vari-
ables and latent variables. Latent variables are not observed.

Fig. 1. Example of an SEM model.
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Latent variables can be also residues or errors in the modeling and
measurement process. Software specifically developed for SEM are
existing to form the model. An SEM can take the following form
presented in Figure 1. Each of the generic situations presented
above must form each time a specific model. The β is the element
of a correlation matrix. The λ is the coefficient allowing to model
quantitatively the different properties in Figure 1.

The work presented in this article is an extension of previously
developed framework namely, dimensional analysis conceptual
modeling (DACM). DACM was used to build initial causal rela-
tionships from the available background knowledge using a
framework integrating engineering design concepts such as func-
tions, organs, elementary organs laws, variables’ classification, and
dimensional analysis theory (DAT) (Coatanéa, 2015).

The DACM framework has been initially developed for gener-
ating oriented graphs combined with power-law equations.
Currently, DACM uses as a starting modeling point, a functional
representation. The framework has been used as a foundation of
several publications, including one paper published in AIEDAM
(Mokhtarian et al., 2017). Initially, it was developed for develop-
ing simulation capabilities at the very early stage of the engineer-
ing design process. In the framework, a mathematical machinery
based on qualitative reasoning using power laws (Bhaskar and
Nigam, 1990) has been implemented to reason via qualitative
objectives. The DACM propagation algorithm can propagate
qualitative objectives into oriented graphs and detect physical
contradictions as defined in TRIZ (Savransky, 2000).
Contradictions is a way to detect design weaknesses at the early
design conceptual stage. Via the use of TRIZ separation principle
(Savransky, 2000), it is possible to modify the topology of the
oriented graphs and generate innovative solutions minimizing
or removing the contradictions for creating better designs.
However, to be able to generate a valid reasoning with this
approach, an initial condition needs to be met. In such models,
the dimensional homogeneity of models is one property required
to support reasoning. A second required property is the right
causal ordering of the variables. The DACM method combines
some SEM characteristics with dimensional analysis (DA) and
qualitative physics and reasoning (Mokhtarian et al., 2017).
This is an approach of choice for bringing automatic reasoning
capabilities to the early design stages. Causal graphs can find
applications in analyzing model fidelity as explained in the next
subsection. In the case of the exploitation of a dataset as the initial
starting knowledge, classical machine learning methods cannot
guaranty the validity of the causal ordering. This is the key pur-
pose of this article to overcome this limitation to ensure the pro-
duction of a valid causal ordering in a dataset context.

The integration and exploitation of data in the DACM frame-
work open new and interesting research domains but also gener-
ate new research difficulties and questions. One among them, is
how to evaluate and measure model fidelity?

Models are developed to serve specified purposes and use. The
objectives of the model, the designer, and relevant applications
must be considered when developing engineering models
(Ponnusamy et al., 2014).

Fidelity analysis of models

The process of designing a model, especially for applications in
simulation domain includes understanding the type of perfor-
mances and scenario to be evaluated, choosing a reference, and
deciding how many details from this reference should be

integrated into the model. The choice of a reference indicates a
description of the context of the model and subsequently implies
describing the purpose and intended use of the model. Ensuring
the above-mentioned features during simulation model design
and analysis is necessary to ensure fidelity in simulation results.
Fidelity is at the center of what distinguishes computer simula-
tions from other computer programs (Gross et al., 1999). A com-
puter simulation differs from other computer programs because it
intends to represent a perceived reality (Horváth and Vroom,
2015). A specification for a simulation is similar to a specification
for any other computer program except that a simulation should
also describe its objects of interest (performance variables) in the
real or perceived world. The accepted level of accuracy for the
result of the virtual representation of the performance variables
should also be specified. The measure of exactness of the repre-
sentation in simulation is often referred to as fidelity. To measure
fidelity, adequate referencing and quantification are necessary for
the modeling process (Ponnusamy et al., 2014).

Using an analogy with metrology, the measurement process is
a comparison of an unknown quantity with a known fixed quan-
tity (i.e., a reference) (Ostwald and Muñoz, 2008). A reference is a
multifaceted entity that can include a system of fundamental units
and their derived units, a specified procedure of measure, an
object of interest to be measured, an instrument of measure,
and/or a specified environment. All explicit details of an object
of interest are not captured by a metrological process but rather
only the required features of the object are created for measure-
ment to decide if the object of interest matches the required
expectations/specifications. The decision process following a
metrological control is universally accepted despite the gap exist-
ing between the virtual representation and the real object of inter-
est due to the standardization in methods. Standardization allows
for referencing and quantification of fidelity in metrology and can
similarly support fidelity in simulation (Roca, 2021). Both com-
puter simulations and metrology processes create virtual repre-
sentations of the objects of interest. Both simulation and
metrology models are the results of interpretations of certain
objects of interest. This is also the case for a machine learning
(ML) models. Different representations are used to support the
decision-making processes. Standardized measurement and spec-
ification of fidelity can support the validation of the virtual repre-
sentations. Fidelity specification standardization initiatives for
modeling and simulation have been investigated in literature for
fidelity analysis and formalization in literature (Roza et al.,
1999; Shephard et al., 2004; Ponnusamy et al., 2014; Roca, 2021).

Ponnusamy et al. (2014) present a simulation fidelity assess-
ment framework to enable the verification and validation of simu-
lation products to comply with the specifications and fitness for
their intended use. The developed framework mathematically
synthesizes abstractions (equations, relations, and numerical enti-
ties) consistent with the simulation objectives. The authors assess
fidelity by a formal abstraction compatibility criterion between
allowable and implemented abstractions. The consistency of
abstractions to be compatible with the simulation objectives are
developed in the perspective of semantic and syntactic compat-
ibility based on the behavior and structure of the models, respec-
tively. The authors propose that consistent and continuous
improvement of simulation products will improve the product
development life cycle by keeping the cost and risks in check.

Roca (2021) proposes a formal taxonomy for evaluating fidel-
ity in simulation in the form of a semantic fidelity prism to
explore the concept of fidelity beyond arbitrary measures of
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quality. The author draws on concepts from dimensional analysis,
metrology, applied ontology, and other axiomatic formalisms that
can define a semantic fidelity taxonomy for classifying quantifi-
able expressible entities used in computable models. Roca in his
work defines fidelity in the simulation context as, “the specifica-
tion of dimensional, metrological, and mathematical entities
and relations that account for relevant axiomatic and hypothetical
referent selections of simuland (i.e., things to be simulated) to be
encoded into simulation-system, computable models aimed at
informing decisions, questions, and/or skill development”. The
author proposes that the transdisciplinary nature of modeling
and simulation needs to be supported by standardized taxonomy
promoting semantic fidelity by leveraging tested formalisms such
as DA and metrology which are amenable to most engineers.
Furthermore, the research proposes that fidelity measurements
based on reusable modeling primitives using numerical entities
and relations can promote interoperability in applications as
opposed to arbitrary and subjective objects measuring accuracy
for a single application.

Roza et al. (1999) discuss the role of fidelity requirements in
simulation and propose a formalized approach for the identifica-
tion, specification, and validation of fidelity requirements in the
simulation development process. The authors develop a guideline
for deriving fidelity requirements in an iterative process. The
research proposes that fidelity requirements represent the level of
realism the simulations must encompass to fulfill the user needs
and objectives without which validation and verification approach
to measure simulation accuracy may become questionable.

Shephard et al. (2004) present the technologies required to
enable simulation-based design analysis in CAD and CAE tools.
The authors specify that a direct integration of data transfer
approaches in CAD tools cannot support the simulation-based
design and can affect the accuracy of results during decision mak-
ing. The authors propose functional components to be integrated
into the simulation environment for engineering design such as,
simulation model manager, simulation data manager, control
tools (static and adaptive), and simulation model generators to
carry out specific steps in the process of accurately evaluating
design performance parameters (Chakrabarti et al., 2005). The
authors suggest that the functional components are required to
carry out specific processes in the design evaluation and provide
a suitable level of automation and accuracy in decision making.

The studies on fidelity specifications and standardization
reiterate the concepts that the development of simulation models
must integrate simulation context in the form of fidelity require-
ments, level of adherence to the real system, and development of
references to measure and evaluate fidelity. In addition, the devel-
opment of a reference that can enable interoperability in applica-
tions through numerical entities and relations can support
multidisciplinary modeling and simulation. The use of AI and
ML presents a unique challenge wherein, the lack of interoperabil-
ity or explainability of models developed can also hinder the mea-
surement of fidelity. Thus, this research aims to develop a
machine learning approach combined with supporting frame-
works and methods, such as DACM (Mokhtarian et al., 2017),
Singular Value Decomposition (SVD) (Hotelling, 1933), least
absolute shrinkage and selection operator (LASSO) (Zou and
Hastie, 2005), and ordinary least square regression (OLS)
(Goldberger, 1964) to model complex systems in the form of
power laws, directly from data. The integration of DA and dimen-
sionless primitives using the Vashy-Buckingham theorem (Szirtes,
2007) in this research, enables the development of reusable

modeling primitives for evaluating fidelity and to combine them
in the form of a graph model. In the next section, two levels of
fidelity at the variable and function level of the system are ana-
lyzed, respectively. The proposed approach is explained in the
next section with the help of a case study.

Method

The methodology developed in this research introduces a new
machine learning approach integrating two levels of fidelity to
facilitate the development of engineering simulation models. We
hypothesize that interrelationships between variables in a complex
system can be modeled using a combination of power laws and
oriented graphs. Power laws model proportional relationships
between variables are exhibited by general classes of mechanisms
present in science and engineering (Sornette, 2006). Power laws
can be observed in seemingly unrelated systems. Subsequently,
power laws can be used to identify the underlying natural phe-
nomena occurring in a system of interest through the general
transformations, interfaces, and storage mechanisms observed in
artificial systems. Such an approach is presented in the path 1
of Figure 2. Power laws are highly suitable in modeling complex
system behavior with nonlinear relationships. Power laws are
combined with the DACM framework to leverage the multiplica-
tive and additive relationships of bond graph organs in path 1
from Figure 2.

The DACM framework is a modeling approach developed by
the authors to produce models combining causally ordered graphs
and power laws. In its functional-based usage, the DACM frame-
work uses functional modeling combined with an algorithm-
derived bond graph organs to create a causally ordered graph of
a system associated with equations in form of power laws. It
can also support the automatic search for physical contradictions
as defined in TRIZ (Jordan, 1973; Savransky, 2000). In the func-
tional part of the DACM theory, multiplicative relationships are
used for all the modeling organs except between junctions (i.e.,
interfaces) where additive relationships are used.

Power laws can also be used to study natural phenomena in the
form of probability distributions of variables. This is exemplified
in the Bayesian usage of DACM in Figure 4. The overarching goal
of this research is to provide a methodology for creating knowl-
edge models combining the structure of causally ordered graphs
and power laws. The sources of knowledge are dataset itself and
the units of this dataset.

To do so, we need to measure and evaluate the semantic fidel-
ity of simulation models as well as producing parsimonious and
explainable models because those models are used later to reason
and to propagate qualitative objectives. Non-causally ordered
models may generate wrong predictions using this qualitative
approach (Mokhtarian et al., 2017) and should consequently be
avoided. Subsequently, the proposed modeling method can be
viewed as a machine learning approach to develop integrated
models with different levels of fidelity.

Figure 2 presents two separate modeling processes separated in
two distinct paths, where path 2 is the focus of this paper.
Additionally, Figure 3 summarizes possible usages of the resulting
models that may help the readers to envision the potential appli-
cations of the research work presented in this article. The result of
both paths 1 and 2 processes is a model combining an oriented
graph and a set of power laws equations. In the case of path 2,
two distinct models are produced using the approach presented
in this work. One is a model produced using exclusively the
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information from the dataset but is not guaranteed to be dimen-
sionally homogeneous. The other is a model formed of a causally
oriented graph and power laws and is dimensionally homogeneous.

The implement of the method to generate models from dataset
and its unit (i.e., path 2 shown in Fig. 2) is described step-by-step
as follows. When working with generating power laws from data-
set, it is practical to transform the initial dataset in order to ensure
working with a linearized form. This is done by using the log10

transformations during the modeling process. The linear transfor-
mation allows using a large set of mathematical methods derived
from linear algebra. The log10 transformation plays another role
in the normalization phase that it allows reducing the scales of
the different variables, thus, increasing the efficiency of the vari-
able selection approach from data (i.e., the LASSO method which
is an L1 regularization method). After the log10 transformation,
the dataset is centered. This is followed by two classical operation
in the process of preparing datasets, first centering the distribu-
tion and second obtaining a normalized variance of 1 for each
column of the dataset (Freedman et al., 2007). This is leading
to the matrix presented in Appendix C (Variance analysis).
This is useful especially when the numerical values associated
with the variables exist in different order of magnitudes. After
normalization, the method is followed by matrix decomposition,
L1 regularization (i.e., LASSO), and L2 regularization (i.e., OLS)
methods to enable complex system modeling. A more detailed
account of the L1 and L2 regularization can be found in these
publications (Xu et al., 2011; Pennington et al., 2014).

The matrix decomposition phase is using an SVD decomposi-
tion (i.e., an orthogonal decomposition ensuring that principal
components are decoupled). The aim of the decomposition is to
assess the potential benefit of a dimension reduction that could
reduce the noise in the dataset and verify the validity of the
hypothesis leading to the choice of the modeling in form of
power laws. When this analysis is done, two actions are performed
separately, first exploring the left branch of the path 2 process in

Fig. 2. General processes in DACM. Path based on functions and path 2 based on dataset and units.

Fig. 3. Nature of the resulting models formed of a combination of an oriented graph
and a power-law equation. The other predictive model with no guaranteed homoge-
neity does not differ in nature.
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Figure 2. LASSO is applied to select variables influencing the out-
puts of interest and the final regression using an OLS regression is
applied to the set of influencing variables previously selected
using LASSO. This process is leading to a model useful for mak-
ing numerical predictions but not qualified for causal reasoning.

The right branch of the fork in path 2 is combined with the
unit branch from path 2 and this combination is exploring the
integration of the knowledge coming from the dataset and the
fundamental units of the variables in the dataset to guarantee
the dimensional homogeneity for the final model. This is done
via a recursive use of LASSO on both the normalized dataset
from Appendix C (Variance analysis and their fundamental
units). The exploitation of Table 3 (the fundamental set of dimen-
sions) in the case study is bringing several interesting properties
such as sparsity, bringing stability of Table 3 to the LASSO selec-
tion process. As a result of the case study, two graphs are pro-
duced separately on the dataset and the dimensional unit’s
matrix of the variables in the case study in Figures 9 and 11.
Those graphs are combined by retaining the common edges
between graphs (i.e., shared connections between variables).
This is allowing to generate a causally ordered graph integrating
the additional knowledge source of the dimensional analysis.

Figure 3 presents an elementary exemplification of the final
model produced by the DACM approach using the example of
Newton’s second law of motion. This law can be rediscovered
using the approach described in path 2 of Figure 2.

The possible usages of such type of models are briefly summa-
rized in Figure 4. The key purpose is to support synthesis and
generation of novel solutions. The first usage is a qualitative
usage. Using the mathematical machinery created by Bhaskar
and Nigam (1990), it is possible to propagate backward the red
objective in Figure 4 to find the green objectives that are resulting
in our case from the positive exponents in the power-law relation
F =m1·a1. This mechanism allows propagation in complex graphs
and possible detection of physical contradictions (Savransky,
2000) appearing on individual nodes. It is possible using the
TRIZ separation principle as well as other principles to reduce
the contradictions. This is leading in the DACM framework to
a modification of the graphs corresponding to a modification of
the design and behavior of the designed system.

The second usage of the graphs is a direct application of the
model in the system dynamics framework (Sterman, 2001). The
concept of stock and flow are not used but replaced directly by
the variables of the model. The equations associated with the
graph in Figure 3 are directly used to populate the system
dynamics model. A third application is a direct usage as a
Bayesian Network (BN) (Pearl, 2000). The training of the prob-
ability distributions in the BN uses the produced equation too.
The topology of the BN is a direct result of the causal ordering
from the DACM approach. Another related application is to use
the DACM approach as a tool for optimizing the topology of

artificial neural networks (ANNs). The equations produced in
DACM can be used to generate a dataset itself employ to the
train the ANN using a traditional supervised learning approach
(Nagarajan et al., 2018). The next section presents via a case
study the path 2 from Figure 2. An initial analysis of the dataset
is also done using a functional modeling perspective. This is
allowing to reason about the transferability of the dataset to the
desired case study. The message is that it is possible under certain
conditions to use a dataset for design case slightly different from
its initial production context.

Case study

Let us consider a physical phenomenon in which a stationary
solid body is placed in a moving fluid. A drag force (w) is exerted
on the sphere of diameter (l ) due to friction generated by the
moving fluid having the following characteristics of density (ρ),
viscosity (ν), and velocity (V ). The nonlinear physical phenom-
enon is illustrated in Figure 5.

The case study example is a classical problem in fluid
dynamics in which the drag force resulting from the velocity of
the flow of a certain fluid must be evaluated and modeled. In
the example, the solid body is stationary whereas the fluid is in
motion. To aid in the modeling and to facilitate the fidelity anal-
ysis, we can envision the case study example in the form of a
product design case study. From a design context, the data regard-
ing the variables of the system can be used to derive a design case
study wherein, the solid body can be envisioned as a spherical
underwater drone moving in seawater. The key difference with
the initial case study description is that the drone (or solid body)
is in motion with a velocity V and not the seawater (or fluid).

The underwater drone represented by the sphere of diameter
(l ) has a key function which is to navigate in the seawater. This
movement is a source of friction due to the contact between the
drone and seawater. Thus, from a system view, the desired func-
tion to move into the water can be defined, while an undesired
function provided by the water can be defined to resist the move-
ment of the drone. Using a taxonomy of functions presented in the
DACM framework, a functional model of the original case study
and the derived case study is presented in Figure 6. In both situ-
ations, the functions and their interaction remain the same.

Fig. 4. List of possible design usages of the model produced.

Fig. 5. Pictorial representation of a stationary solid spherical body in a moving fluid.
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For the derived case study, the environment is made up of sea-
water with fundamental properties such as the density of the fluid
(ρ) and the viscosity of the fluid (ν). The design objective for the
drone would be to reduce the drag force (w) to facilitate the move-
ment within the environment medium (seawater). By reducing
the drag force, the energy consumption and maneuverability of
the drone can be improved. The model to be created should use
the experimental data collected (Appendix A) to derive relation-
ships between the different variables of the system to compute
the drag force as a function of different variables as presented
in Eq. (1). It should be noted from the dataset (Appendix A)
and Figure 6 that a unique dataset can be used to model two radi-
cally different engineering situations. In the original case study
where the fluid is moving around a solid body while in the derived
case study, a drone is traversing through a stationary seawater
medium. Nevertheless, in both cases, the variables of the system
and its environment remain the same, the difference is in the
functional representation. From the perspective of fidelity, it is
important to ensure that we would be able to differentiate between
the two cases since they have different intended uses. Even though
the model structure may appear similar, the individual variables
are associated with different functions and parts of the system.
Such a distinction is supported by the DACM framework by inte-
grating a generic taxonomy of the variables (Mokhtarian et al.,
2017). In DACM, the variables are classified as power variables
and state variables. Power variables are decomposed into general-
ized flow and effort variables representing connections between
different functions. Alternately, state variables are decomposed
into generalized displacement, momentum, and connecting vari-
ables within a function. Using the variables of the system from the
case study dataset (Appendix A), the functional representation of
the derived case (Fig. 2) can be modified as shown in Figure 7.
This dataset is a dataset produced by Prandtl and his team
(Prandtl et al., 1927) and used as it is for this article.

Figure 7 can be presented mathematically [Eqs (1) and (2)] to
show the behavior of each technical function described using
verbs of action, to move, and to resist.

V = f (w, r, n, l), (1)

w = f (V , r, n, l), (2)

where V is the output of the desired function “to move” and w is
the output of the non-desired function “to resist”. Using Eqs (1)
and (2) and Appendix A, supplementary knowledge can be
extracted about the fundamental dimensions (mass, length, and
time) of the variables of the system. The variables of the system
represented in the form of their fundamental dimensions are
shown in Table 1. The encoding of the table is done in the follow-
ing manner. For example, if the density ρ is considered, then its
unit is in kg/m3. kg is a unit mass (M ), and m is a unit of length
(L). The exponent for kg is 1 and since kg is divided by m3, the
exponent for m is −3. This is explaining the second columns of
Table 1. The rest of the columns are constructed using a similar
approach. For the last column, the force w measured in Newton
(N), the reader should remember that a force, according to
Newton’s second law of motion, is a product of a mass (M )
and an acceleration (L·T−2). As for w, the representation of vari-
ables using a combination of fundamental dimensions is also, for
some variables, integrating the knowledge present in elementary
laws of physics.

From Table 1, no columns are a linear combination of one
another. The rank of the matrix in Table 1 corresponds to the
maximal number of linearly independent columns of this matrix
with a rank of five (5). Having three fundamental dimensions M,
L, and T, it is possible to form 5–3 = 2 relations between the vari-
ables in the columns. Using the updated functional representation
in Figure 7 and the dataset in Appendix A, a simulation model
can be developed for the derived case study. The taxonomy devel-
oped in the DACM framework enables the clustering of variables
and functions. A machine learning approach using the DACM
framework is presented in this work to automate the generation
of parsimonious models from datasets for the derived case
study of the drone. First, the development of a simulation
model from data is presented followed by an integration of
dimensional homogeneity principles to measure and evaluate
the fidelity of the developed model.

Modeling using power laws

The DACM framework was initially developed by the authors to
generate oriented graph models for product-process modeling
and metamodeling (Mokhtarian et al., 2017). The approach ini-
tially starts from a functional model which is used as the base
upon which the oriented graphs are developed. The current article
intends to move a step further to generate models directly from

Fig. 6. Functional representation of the case study in its original form (top) and
derived form (down).

Fig. 7. Updated functional representation of the derived case study underwater
drone moving in seawater.

Table 1. Variables of the system represented in the form of fundamental
dimensions

ν (m2/s) ρ (kg/m3) l (m) V (m/s) w (N)

Mass (M ) 0 1 0 0 1

Length (L) 2 −3 1 1 1

Time (T ) −1 0 0 −1 −2
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datasets to match current machine learning approaches for unsu-
pervised and supervised learning applications (Pelleg and Moore,
1999). The article leverage some key ideas, one of them, is to
exploit the knowledge provided by the decomposition in form
of fundamental dimensions presented in Table 1 as a supplemen-
tary knowledge complementing datasets and powered by the
theory of dimensional analysis and the theorem of Vashy-
Buckingham (Bhaskar and Nigam, 1990; Szirtes, 2007) presented
in different forms in Eqs (3), (5), and (6) to detect potential con-
founders and to form valid causal ordering of the problem vari-
ables (Gilli, 1992). The final models produced by the approach
presented in this article are in the form of a combination of orien-
ted graphs associated with power laws (general form shown in
Eq. (3)). The power laws provide a powerful tool to evaluate the
dimensional homogeneity.

Y = A · Xa1
1 · Xa2

2 · · ·Xan
n , (3)

where Y represents the output variable, A is a constant, Xi are
the covariates, and αi represents the exponents of the covariates.
The methodology developed in the article relies on classical
tools from linear algebra facilitated by a normalization step
using logarithmic transformation of the dataset. The log transfor-
mation proves advantageous for improving the efficiency of the
different steps in the modeling approach. The normalization
also aims at reducing the scale of the dataset using either a deci-
mal or natural log transformation. However, it is important to
ensure that the dataset does not contain negative or null values.
Following the normalization procedure, the power-law expression
in Eq. (3) can then be formulated as shown in Eq. (4).

log Y = log A+ a1 · logX1 + a2 · logX2 + · · · + an · logXn. (4)

Subsequently, the equations for the model can be constructed in
two ways as shown in Eqs (5) and (6). The knowledge extracted
from the dataset in Appendix A is used to formulate Eq. (5)
whereas, alternately, using the fundamental dimensions of the vari-
able (shown in Table 1), the model can be formulated as Eq. (6).

py = yi · xaij

j · xail
l · xaim

m , (5)

py = [D]i · [D]aij

j · [D]ail
l · [D]aim

m . (6)

In Eq. (5), yi and xj,l,m represent the variables of interest. In Eq.
(6), [D] represents the fundamental dimensions of the variables xj,
l,m. In both equations, αi represents the exponents of the power
law’s form. The exponents in both equations can be similar or dis-
similar depending on the nature of the source of information
selected (i.e., the dataset or the fundamental dimensions). The
exponents can be calculated directly from the experimental data-
set, or the exponents can be calculated through dimensional anal-
ysis using the fundamental dimensions of the variables in the
study. The fundamental dimensions are used in this research to
improve the fidelity of the models produced as explained further
in the section titled, Deriving a machine-learning model combin-
ing data and dimensions assources of information, starting with
the analysis provided in Table 4. Thus, for the derived case
study, two types of models can then be created using Eqs (5)
and (6).

In the next subsection, the development of the simulation
model directly from data is explained and demonstrated. The

authors would like to highlight that the model developed in the
next subsection uses only the experimental data and does not
make use of the knowledge available regarding the dimension of
the variables. Additionally, the clustering resulting from the use
of the DACM taxonomy is not used in the next section.
Instead, the DACM clustering is used as a cross-validation
method to validate an automated clustering algorithm using
LASSO directly from data.

Deriving a machine-learning model exploiting only the data
source

In this section, a machine learning approach combining power
laws and oriented graphs is presented to model the derived case
study using the data from Appendix A. The modeling method fol-
lows the following steps namely, normalization of the dataset
leading to the data in Appendix C, singular value decomposition
(SVD), compression analysis, selection of the performance vari-
ables, selection of the variables influencing the performance vari-
ables, computation of the optimal relationships between selected
parameters and performance parameters, and finally, the genera-
tion of the power models.

The normalization phase aims at linearizing the dataset to
reduce the scale of the data but also to prepare the dataset for
the use of linear algebra in the subsequent steps of the method.
The SVD decomposition and compressibility analysis aim at
applying compression, when possible, on the dataset to form a
latent space. For many complex systems, the distribution of the
principal components follows a long-tail distribution.
Compression to the latent space can be beneficial for complex sys-
tems as it can remove noise in the signal and allow for a more effi-
cient selection of important variables in the following data
analytics phases. The compression to the latent space can be use-
ful when the distribution of the variables is a long-tail distribu-
tion, otherwise, the compression step can be skipped.

The LASSO selection and its cross-validation are used to accu-
rately select variables from the data which have a high influence on
the performance variables thus, allowing for the development of
parsimonious models. The performance variables are the variables
selected by the modeler to assess the performance of the system.

The LASSO approach can be viewed as a variation of the OLS
regression in which covariates not contributing to the output of
the variables of interest are gradually discarded.

LASSO stands for Least Absolute Shrinkage and Selection
Operator, in Eq. (8) below, the second term is the sum of the
absolute value of the magnitude of exponents wj. A problem
occurs since |wj| is not differentiable in 0. Updates of the coeffi-
cients wj are done in the following manner, when |wj| is becoming
close to zero, a threshold condition is used to set wj to 0. The con-
dition can be wj = 0 if |wj| < δthreshold.

LASSO provides sparse solutions. It is an excellent approach
for modeling situations where the number of parameters to be
analyzed is very high.

Min 1(w) =
∑n

i=1

1
s2
i
· (ŷi − yi)

2 + l
∑m

j=0

|wj|. (7)

Thus, the approach works as a variable selection method con-
tributing to the development of parsimonious models. Parsimony
is an important principle in machine learning approaches due to
their ability to support the generalization of models. LASSO acts
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as an L1-regularized regression method to support parsimony in
the model development process but often at the cost of stability of
the selection process. In the context of this paper, the stability of
the selection algorithm can be seen as the method providing iden-
tical outputs on two datasets differing on only one sample value
(Xu et al., 2011). Thus, to improve on the stability of the model
development method, an L2-regularized regression (OLS) step is
introduced to leverage the parsimony principle from LASSO but
simultaneously improve the stability of the modeling approach.

The OLS regression phase brings stability to the model by pro-
viding an L2 regularization (i.e., computation of the optimal val-
ues of the coefficients in equations). The final power-law
equations of the model are obtained by reversing the normaliza-
tion steps.

The dataset follows the normalization approach presented in
path 2 of Figure 2 and in the text above. The transformation of
the dataset following the different steps in the modeling process
is shown in Appendix B. The SVD is performed on the dataset
after normalization at which point the variance of the dataset is
equal to one (1). The goal of the SVD is to highlight the most
important phenomena in the initial dataset and remove any sec-
ondary information or noise which is impertinent to the perfor-
mance variables. The SVD decomposition for an input matrix
[X ] is shown in Eq. (8).

[X] = [U] · [W] · [V]T . (8)

Here, [X ] is the input data matrix and [U], [W ], and [V ]T are
the decomposed matrices resulting from the SVD. Following
the SVD, the compressibility of the dataset is evaluated.
Compression is possible if the decay of the eigenvalues of the
input data matrix [X ] follows a Pareto distribution. A Pareto distri-
bution is a power-law distribution also called a long-tail distribu-
tion. Such distributions are often found in complex systems
when hierarchy and subsystems are present. If such a distribution
is not found, then LASSO variable selection is performed on a non-
compressed dataset with the assumption that the noise or complex-
ity of the dataset does not hinder the LASSO selection process. The
compressibility check is performed by computing a linear fit
(Fig. 8) for the decay of eigenvalues in the decomposed matrix
[W ] from Eq. (8). A log-log scale is used to ascertain the presence
of a power law. An R-squared value computed for the fit can

determine how well the regression fits with the observed data. A
value closer to one (1) suggests that the regression fit matches
well with the observed data and hence, can also suggest in our
case the presence of power-law distribution (i.e., Pareto
distribution).

For the derived case study, the linear fit resulted in an R-squared
value of 60.6% suggesting that the decay of eigenvalues does not fol-
low a power-law (i.e., Pareto distribution). Thus, we can conclude
that the benefit of applying compression to the current data set is
limited or null. It can also be noticed that the design problem that
we are studying is not integrating a hierarchy of subsystems at this
level of analysis as reflected in the decay of Eigenvalues. This obser-
vation was verified using different compression levels during the
LASSO selection parameter selection process explained further in
the text. The compression appeared not to influence the LASSO
process. Consequently, during the LASSO selection as well as the
steps located after LASSO usage in path 2 of Figure 2, the dataset
from Appendix C is exploited without compression. The result of
the LASSO variable selection has been applied recursively to all
the variables in the dataset is shown in Table 2.

It can be noted that the SVD decomposition and the linear fit
for the decay of eigenvalues in log-log scale are also a measure of
the conditioning of the dataset used in this article. This is impact-
ing the numerical process and especially the matrix inversions
and requires in specific cases to evaluate the number of digits
required in the numerical process. Furthermore, sparse, well-
structured, and well-conditioned matrixes are properties that are
desired when processing matrixes (Kaveh, 2018). The present arti-
cle does not address those aspects but the exploitation of the
dimensional analysis information from Table 1 has connections
with those properties and is a practical way to use in addition
of experimental datasets another source of information exhibiting
those properties.

From Table 2, we can see that V, the speed of the underwater
drone is shown to be the most influencing and influenced variable
in the dataset. Thus, using Table 2, a graph-based representation
is developed as shown in Figure 9 with V in the center.

Table 2 and Figure 9 will be reused for the fidelity analysis sec-
tion of this article further. The LASSO selection is followed by the
L2-regularized regression approach (i.e., traditional OLS) to
model two outputs namely, V and w to represent performances
of two key functions of the simulation model. Equations (9)
and (10) show the general form in which the regression approach

Fig. 8. Linear fit for the decay of eigenvalues in log-log scale (vertical axis: eigenva-
lues and horizontal axis: singular values from first to fifth).
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using OLS is computed.

logV = log A+ a1 · log n+ a2 · log l + a3 · logw, (9)

log w = log B+ b1. log l + b2. logV, (10)
Where log A and log B are the constants in the equation.
Coefficients αi and βi are computed using the L2-regularized
regression.

LASSO is an iterative approach wherein, a cut-off value for
iterations must be specified to maximize the parsimony without
reducing the precision of the model developed. The cut-off value
for iterations is determined automatically at the point where the
mean squared error (MSE) during selection starts to increase as
shown for outputs V and w in Figure 10. The last values before hav-
ing the MSE raising from 0 are selected so for V, the iteration 50 is
selected and for w, the value 20 is selected in Figure 10.

Following the OLS computation step, the final models for the
output V and w with coefficients computed are shown in Eqs (11)
and (12), respectively.

log V = −0.039 · log n− 1.980 · log l + 2.668 · logw, (11)

log w = 0.747 · log l + 0.370 · logV . (12)

The MSE for Eq. (11) was found to be 0.0039 with an R-square
value of 0.996 and the adjusted R-square value of 0.9957. For Eq.
(12), the MSE was found to be 7.46×10−04 with an R-square value
of 0.999 and an adjusted R-square value of 0.999. The values sug-
gest a very good fit to the observed data for both outputs. In both
cases, the intercept values are null because of the normalization
procedure performed in Appendix C. The final step in the
model development method aims at converting Eqs (11) and

(12) in the form of power laws. A denormalization approach is
performed to enable the conversion. Equations (11) and (12)
are first multiplied by the standard deviations for V and w, fol-
lowed by adding to both equations the mean values for V and
w. Finally, both equations must be exponentiated to obtain their
respective power-law representation as shown in Eqs. (13) and
(14) for outputs V and w, respectively.

V = 7.328 · n−0.01 · l−0.57 · w0.71, (13)

w = 0.107 · l1.032 · V0.511. (14)

The computation of V and w for prediction purposes can be
solved using a simple linear algebra method when the equations
are in the linear format of Eqs (11) and (12), respectively. A sim-
ple algorithm is presented at the end of the section to ensure the
computation of the unknown outputs for the derived case study.

From Eqs (13) and (14), it is visible that both equations are not
dimensionally homogeneous and cannot become dimensionally
homogeneous even if a fundamental dimension is associated
with the constants in the model as summarized in Table 3 for per-
formance variable V.

Deriving a machine-learning model combining data and
dimensions as sources of information

From a fidelity perspective, a limitation of the models formed by
Eqs (13) and (14) becomes apparent. The equations are not

Fig. 10. Iterations and their impact on the mean squared error (MSE) for output vari-
able (V – top and w – bottom).

Table 2. Variable selection using LASSO for the derived case study

Fig. 9. Graph-based representation of selected variables from LASSO for the derived
case study.
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dimensionally homogeneous despite their usefulness for provid-
ing a good numerical prediction of the output variables. This is
also a sign that the causality is not correct.

This can be due to the presence of confounding variables and
relationships and/or from the incompleteness of the set of consid-
ered variables. Thus, this research further hypothesizes that inte-
grating dimensional homogeneity can improve the fidelity of the
developed models by supporting the detection of confounding
variables and relationships. To do so, this research uses the
DAT and Vashy-Buckingham theorem with the result of the
LASSO analyses to improve the fidelity of the developed models.
But first, we must tackle a fundamental problem faced by the DAT
and the Vashy-Buckingham theorem. In the Vashy-Buckingham
theorem, each Pi number produced [Eq. (5)] is the product of a
performance variable and a subset of repeating variables. The
Vashy-Buckingham theorem provides a necessary condition to
create dimensionless numbers from a subset of variables.
However, two problems not solved by the Vashy-Buckingham
theorem remain: (1) How to select the performance variables
meaningful to the study? and (2) How to build the associated sub-
set of repeating variables, especially when multiple possible sub-
sets are available? Figure 9 and Table 2 offer the start of an
answer to both problems. From Table 2, we noticed that V is
the variable having the most incoming edges and outgoing
edges. From a DAT perspective, V is a desirable choice for a per-
formance variable. In DAT, the problem is described using five
variables and three fundamental dimensions. This is implying
that two dimensionally homogeneous equations can be formed.
Usually, two performance variables are selected to build those
equations. Nevertheless, Figure 6 provides a useful piece of infor-
mation. The speed V of the drone is provided first before getting
feedback in form of a drag force w generated by the water. From
Figure 6, it can be seen that the entire behavior of the system and
the environment reaction described in the functional models are
initiated by the speed V. w is then the consequence of V and
one unique performance variable V can be considered in this

case study. Figure 9 and Table 2 have been able to unveil this
aspect automatically. Thus, the first question can be answered
to determine the performance variable as highlighted using
Table 2. The centrality measure in graph theory will allow to high-
light such performance variables after producing Table 2 (Tutte,
2001). The authors would like to clarify that this result requires
more extensive validation efforts using more case studies to be gen-
eralized. In our context, V is used as a performance variable for the
two dimensionless equations that can be produced from the list of
variables and their dimensions (i.e., five variables and three dimen-
sions resulting in two equations). The next step is to select the
appropriate repeating variables for which Figure 9 and Table 2 pro-
vide base knowledge. The performance variable must be connected
with other repeating variables. Figure 9 can be used for this analysis
but in its current state does not integrate any dimensional homoge-
neity principles. Thus, another iterative LASSO selection applied to
the entire set of variables represented in the form of their funda-
mental dimensions from Table 3 is performed to create Table 4.

The information from Table 4 is presented in the form of a
graph in Figure 11. From the table and graph, choosing V as
the unique performance variable, we have two directions in
which we can move in Figure 11 to select the subset of repeating
variables. The performance variable V with fundamental dimen-
sions LT−1 has two DOFs, L and T. Thus, we would need to
ensure that the choice of repeating variables can match the
same dimensions of the performance variable (V ). Moving up
from speed (V ) in Figure 11, the first choice of repeating variable
would be the viscosity (ν). Following this, the length (l ) would also
need to be added to the first subset of repeating variables alongside
viscosity (ν) to ensure dimensional homogeneity. Similarly, if we
choose to move down from V in Figure 11, the first choice for
repeating variable would be the drag force (w). However, the addi-
tion of drag force introduces another fundamental dimension
which is mass (M ) implying an additional DOF.

Thus, two more repeating variables namely density (ρ) and
length (l ) would be needed to ensure dimensional homogeneity
in this case. For the performance variable (V ), two dimensionless
equations can be developed using the two different subsets of
repeating variables as explained above. The method followed in
this article provides an automatic mechanism to select the mini-
mal subset of repeating variables required to ensure dimensional
homogeneity. However, the authors would like to mention that
the performance of the presented approach may be limited
when several variables of the system contain the same dimensions
and/or are a linear composition of other variables. In which case,
the LASSO approach might randomly select one variable using
the information available in Table 1. Thus, to ensure accurate
selection of variables, a cross-validation approach is also included

Table 4. Variable selection using LASSO for fundamental dimensions of variables in Table 1

Table 3. Dimensional homogeneity analysis for performance variable V in Eq.
(13)

Variables V ν l w

Exponents 1 −0.01 −0.53 0.709

Fundamental dimensions

M 0 0 0 M1

L L1 L2 L1 L1

T T−1 T−1 0 T−2
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in the methodology by combining the results of Tables 2 and 4 as
explained below. The idea is to provide a supplementary cross-
validation mechanism to detect potential remaining confounders.

The cross-validation of the selection approach is performed by
evaluating the shared similarity between Table 2 (selection based
on data) and Table 4 (selection based on fundamental dimen-
sions). By doing so, Table 5 can be developed which can validate
the immediate connections for each variable.

The “TRUE” values in the different cells in Table 5 implies that
shared similarity was identified between the corresponding cells
in Tables 2 and 4. Similarly, “FALSE” values imply a lack of
shared similarity. Thus, for performance variable (V ), the two
choices for the first repeating variable would either be viscosity
(ν) or drag force (w). Thus, Table 5 provides a validation of the
LASSO selection results in Table 4. An alternate way to look at
the connections determined by Table 4 and Figure 9 is that the
direct link between ν→ l in Figure 9, is established with the
path ν→ V→ l in Figure 7. Similarly, the direct link between
l→ ρ in Figure 9, is established with the path l→ V→ ρ in
Figure 7. Finally, the direct link between w→ ρ in Figure 9 is asso-
ciated with the path w→ V→ ρ in Figure 7 thus, providing the
similarity of knowledge extracted directly from data and the fun-
damental dimensions of the variables in the data. In our case, it
reinforces the confidence of the direct connections between vari-
ables provided by Figure 9, since it is cross-validated by indirect
paths in Figure 7 through the intermediate node (V ) in the graph.

Following the cross-validation of the variable selection process,
we can develop the two dimensionless equations (i.e., 5 variables
− 3 dimensions = 2 equations) for performance variable (V ) using
the two subsets of repeating variables chosen. The first subset
contains viscosity (ν) and length (l ), while the second subset con-
tains drag force (w), density (ρ), and length (l ) as repeating vari-
ables. The fundamental dimensions of each subset of repeating
variables identified are shown in Tables 6 and 7, respectively.

The two tables above allow the computation of the exponents
αi for Eq. (8). Two identical approaches can be used to achieve
this objective. The vectors of the performance variable V are
named [A] and the vectors matrixes of the repeating variables
are collected in [B]. The following general relationship exists
between the matrixes [Eq. (15)].

[A] = [B] · [a], (15)
where [α] represents the unknown coefficients ensuring the

dimensional homogeneity which can be computed using Eq. (16).

[a] = [B]−1∗ · [A], (16)
where [B]−1* represents the Moore-Penrose pseudoinverse. The

use of pseudoinverse is required since matrix B is not always a square
matrix. The pseudoinverse is calculated as shown in Eq. (17).

[B]−1∗ = ([B]T [B])−1 · [B]T . (17)

The calculation of the [α] using the Moore-Penrose pseudoin-
verse can also be substituted by OLS regression to obtain the coef-
ficient values. Thus, from the vector and matrix representations in
Tables 6 and 7 and using Eqs. (15)–(17), the two dimensionless
equations for performance variable (V ) are shown in Eqs (18)
and (19), respectively.

V = pRe · n1 · l−1, (18)

V = pCd · w1/2 · r−1/2 · l−1. (19)
Both equations can be rearranged in the following form [Eqs

(20) and (21)] in which πRe and πCd are two dimensionless values
resulting from the ratio of the variables in Eqs (18) and (19),
respectively. From the perspective of fluid dynamics for the
derived case study, πRe represents the Reynolds number (Re) com-
monly used to predict flow patterns. The second one is the drag
coefficient, also a dimensionless value used to quantify the resis-
tance of an object in a fluid environment.

pRe = Vl
n
, (20)

pCd = w
rV2l2

. (21)

From Eqs (20) and (21), we have four variables which are
unknowns namely, V, w (original outputs of the derived case

Fig. 11. Graph-based representation of variable selection from Table 4.

Table 5. Cross-validation approach evaluating the shared similarity between LASSO selection results from Tables 2 and 4
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study as shown in Eqs (13) and (14)), πRe, and πCd (the dimen-
sionless numbers developed in Eqs (20) and (21)). Thus, Eqs
(13), (14), (20), and (21) must be computed conjointly to solve
the system of equations. The initial modeling objective in this arti-
cle for the derived case study aimed at modeling the speed (V )
and drag force (w) which can be accurately predicted with the
parsimonious models developed in Eqs (13) and (14). However,
Eqs (20) and (21) developed using DAT overlay an additional
layer of information to the model. Evaluating in the context of
the functional model developed for the derived case study, Eqs
(13) and (14) only assess one parameter in each function of the
drone. However, the second set of models was developed using
DAT in Eqs (20) and (21) assess globally each of the functions
of the drone shown in Figure 4. The current representation in
Eqs (20) and (21) provide a dimensionally homogeneous expres-
sion fulfilling the required specification of a function thus, sug-
gesting a higher level of fidelity in the developed approach.

The two sets of models [Eqs (13) and (14), and Eqs (20) and
(21)] can be represented graphically (Fig. 10) to holistically repre-
sent the model. In Figure 10, arrows represent the connection
between variables.

Solid arrows represent the lower fidelity connections of the sys-
tem model where fitting using data and parsimony criteria are ful-
filled. The dotted arrows combine the fitting and parsimony
criteria but in addition, integrate dimensional homogeneity to
enable a causal ordering. The graph-based model shown in
Figure 10 can be used as a pretrained topology for an ANN
model. The prediction of the unknown outputs V, w, πRe πCd in
Figure 10 is done using the algorithm presented in Tables 6
and 7. The algorithm is generic and can be applied to all problems
analyzed using this approach. Figure 12 associated with Eqs (13),
(14), (20), and (21) is a specific type of ANN. This type of ANN
differs from traditional ANN due to the topology design of the
structure of the oriented graph. It differs also in the way the train-
ing of the weights is done and in the nature of the equations gov-
erning the modeled phenomena. The algorithm for computing
unknown output is presented in Table 8.

The graph model (Fig. 10) can also be used to define a BN
topology wherein, the equations can be used to determine the
conditional relations between different variables (represented as

nodes in a BN) to facilitate the Bayesian inference mechanism.
The final graph model produced in this section integrates two
levels of fidelity. The first level facilitates computation at the vari-
able level and is not dimensionally homogeneous. The second
level provides the required granularity to holistically assess a func-
tion’s performance and behavior concerning the system of inter-
est. Additionally, this second level of fidelity also ensures
dimensional homogeneity as well as a valid causal ordering com-
pliant with modeler expected usage of the model. Those aspects
will be studied further in future studies. Selection of the variables
influencing the performance variables, computation of the opti-
mal relationships between selected parameters and performance
parameters, and finally, the generation of the power models.

Discussion and future work

This research presented a modeling and machine learning method
to create simulation models with measurable levels of fidelity for
engineering design. The method is a machine learning method ser-
ving as a basis for evaluating the fidelity of different types of models.
The developed approach generates parsimonious explainable mod-
els that enable generic knowledge representation in the form of
oriented graph with valid causal ordering, associated with power
laws. The approach uses data as initial knowledge to model the sys-
tem using power laws and graph-based representations of the mod-
eled equations. The graph-based representation is a synthetic
manner of representing the different equations increasing the inter-
pretability of the model. The research also highlights the use of the
graph-based representation as a precursor to generating the graph
topology for more classical machine learning approaches such as
BNs and ANNs. The graph representation used in this work is an
approach to create optimal topologies for BN and ANNs as well
as training the specific form of ANN presented in this work.

From the viewpoint of model fidelity, the developed method
demonstrated the existence of different levels and sources of
knowledge (i.e., the experimental dataset and the dimensions of
the variables). The models produced using the two sources of
knowledge are different and provide two levels of granularity in
the demonstrated case study. The first level of granularity was
at a variable level to predict the key performance parameters of

Table 6. Fundamental dimensions of the first subset of repeating variables

Performance
Repeating

Dimensions V (m/s) ν (m2/s) l (m)

M 0 0 0

L L1 L2 L1

T T−1 T−1 0

Table 7. Fundamental dimensions of the second subset of repeating variables

Performance
Repeating

Dimensions V (m/s) w (N) ρ (kg/m3) l (m)

M 0 M1 M1 0

L L1 L1 L−3 L1

T T−1 T−2 0 0

Fig. 12. Final oriented graph model for the derived case study showing two levels of
fidelity (1 – lower fidelity, variable level: yellow; and 2 – higher fidelity, function level:
gray).
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the derived case study presented in Figure 3. The second level of
granularity is achieved for the computation of system-level cri-
teria, the key functions (desired and non-desired) of the system
of interest for the derived case study. The two levels of granularity
in the developed model can be associated as two intricated layers
of fidelity, an initial layer, with a lower fidelity and not adhering
to the dimensional homogeneity criteria, and a second level
matching the homogeneity criteria. Together, the two levels of
the model can be represented in form of a synthetic graph. A
part of this graph is an oriented graph representing the first
layer of fidelity, while the second part is an oriented graph with
a validated causal ordering representing the second layer of fidel-
ity. This causal ordering is compliant with the intentional use of
the model by the modeler as presented in the background section.

The developed method can be coined as a machine learning
method for its ability to automatically model the system based
on experimental data. In addition, the method enables simula-
tions using the graph presentation and the output computing
algorithm (Table 8) presented in the paper. The developed
approach will be applied in future work to the dynamic control
of manufacturing systems. One requirement for such an applica-
tion is the need for the control system to be able to respond to

sensors information in close to real-time. The parsimonious nature
of the models developed using this method can offer the benefit to
be light and can be integrated into decentralized control systems
located as close as possible from sensors. Additionally, an interesting
characteristic of the developed method is the composability of the
models providing a modular approach where elementary building
blocks can be assembled to form extended models.

The research developed in this article presents a novel combi-
nation of known and validated methods to generate an actionable
framework contributing to the fidelity evaluation of models.
Tangible criteria relying on dimensional analysis and their inter-
relations with the concept of variables and functions have been
leveraged in the developed modeling approach to represent two
specific levels of fidelity. Additionally, this supplementary knowl-
edge was used to direct the causal ordering of the second model. It
is claimed that a direct link exists between a higher fidelity and a
valid causal ordering. It was also demonstrated that the higher
fidelity model was corresponding to a representation of the behav-
ior of functions of the studied system. The developed approach
demonstrates that simulation at lower granularity level (i.e., vari-
able level) can be performed efficiently with a lower model fidelity
while function level models requires a higher model fidelity, at

Table 8. Algorithm for computing the unknown outputs for the derived case study
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least for the case study exemplified in this research. Higher fidelity
in the models can be achieved by using the supplementary knowl-
edge provided by the fundamental dimensions of the variables.
The analysis presented in this research has voluntarily been
focused on engineering models.

The key contributions of the research are highlighted as follows:

1) A machine learning approach for engineering modeling using
data, for generating parsimonious and explainable models has
been presented. A cut-off criterion is defined to combine the
parsimony and precision of the model. The different steps of
the machine learning method have been exemplified in the
case study.

2) It has been shown that the LASSO graphs resulting from an
experimental dataset and a supplementary information in
form of a dimensional dataset (i.e., Table 1) can be used as
a cross-validation method for the selection of the variables
forming the performance and repeating variables in the higher
fidelity model. This contribution is effective in the exemplified
case in this research but needs to be validated further for other
complex case studies.

3) Two interrelated models have been developed and aggregated
via a graph-based representation. Obtaining the highest level
of fidelity implies the fulfillment of supplementary constraints
requiring a holistic set of variables related to the different
functions of a system. The research enables modeling at dis-
tinct levels of fidelity, integrated into a single graph-based
model which supports simulation.

4) Finally, an algorithm for predicting the unknown outputs for
the distinct levels of fidelity in the models has been presented
as a new form of ANNs.

The method developed in this article can be viewed as a reverse
engineering approach capable of extracting explainable knowledge
in a parsimonious form from diverse types of collected datasets.
The log transformation used in the dataset normalization enables
the use of linear algebra algorithms to analyze highly nonlinear
problems. The modeling method combines conjointly L1 and
L2 normalization to support the optimal selection between parsi-
mony and stability in the models produced. The developed
approach is computationally efficient and is scalable for larger
datasets. In the current research, the size of the datasets handled
by the method is potentially small. In this respect, the method
demonstrates that efficient modeling of problems where data are
very limited can be performed. Like human learning, only a
small number of experiments are requested for new learnings.

The idea underlying the paper is to propose a method coming
closer from the number of cases required by the human learning
process. Samples of the size of two digits in our case can be con-
sidered as small. Small dataset is associated with poor statistical
validity of the models produced. Therefore, we need to exploit
other sources of knowledge not directly present in the dataset.
We exploited the units of the variables from the dataset. Those
units allow us to generate sparse matrixes, well-conditioned
matrixes and well-structures matrixes (Kaveh, 2018) bringing sta-
bility to the algorithms together with the L2 regularization used
by OLS regression. They can compensate for the limited size of
the dataset and for the inability of the machine learning methods
to integrate the dimensional analysis homogeneity.

A limitation of the current work not discussed in the paper,
but of fundamental importance for the scope of the approach,
is that metrics are not always available to measure variables in a

dataset. Multiple situations in design, and social sciences exist
where getting a measure metric for variables in a dataset is a chal-
lenge. The authors are developing an approach allowing the
exploitation of linguistic definitions to generate the type of
matrixes presented in Table 1. This development is a significant
expansion of the scope of the work presented in the paper and sig-
nificantly increase the application domain of the approach.

Future work will assess different case studies and problems
where collinearity between variables exists. This is important to
make the approach robust and validate the generic principles
emerging from this study. Second, the presented approach has
established a link between fidelity, the nature of the knowledge,
and the nature of the models. Nevertheless, the concept of fidelity
is broader, and a real operationalization of that concept needs to
be associated with quantified tolerances. For operational use, it is
important to define the minimal and maximal fidelity acceptable
for a model. Additionally, it is important to be able to measure the
fidelity of the model and to compare it with given tolerances. To
do so, the authors plan to expand on the framework proposed to
quantify fidelity by transforming criteria such as dimensional
homogeneity, completeness of variables set, types of datasets, pro-
duced models into quantifiable and measurable criteria or levels.
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Appendix A. Experimental data

Index
ν

(m2/s)
ρ

(kg/m3)
l

(m)
V

(m/s)
w
(N)

1 1.84 × 10−5 1.183 0.008 2.2 1.8029 × 10−4

2 1.80 × 10−5 1.185 0.008 2.81 2.5690 × 10−4

3 1.80 × 10−5 1.184 0.008 3.52 4.0279 × 10−4

4 1.81 × 10−5 1.193 0.008 4.01 5.2057 × 10−4

5 1.80 × 10−5 1.182 0.008 4.5 6.5411 × 10−4

6 1.80 × 10−5 1.18 0.008 6.02 1.0482 × 10−3

7 1.80 × 10−5 1.185 0.008 6.66 1.3456 × 10−3

8 1.80 × 10−5 1.226 0.018 3.22 1.5898 × 10−3

9 1.80 × 10−5 1.226 0.018 4.29 2.7926 × 10−3

10 1.80 × 10−5 1.227 0.018 5.64 4.8939 × 10−3

11 1.79 × 10−5 1.224 0.018 6.84 7.3474 × 10−3

12 1.81 × 10−5 1.227 0.018 8.34 1.1254 × 10−2

13 1.79 × 10−5 1.201 0.062 3.59 2.6061 × 10−2

14 1.78 × 10−5 1.197 0.062 4.36 3.8661 × 10−2

15 1.78 × 10−5 1.198 0.062 4.89 5.0544 × 10−2

16 1.79 × 10−5 1.2 0.062 5.66 6.7976 × 10−2

17 1.78 × 10−5 1.198 0.062 6.45 8.8129 × 10−2

18 1.79 × 10−5 1.2 0.062 7.88 1.3376 × 10−1

19 1.79 × 10−5 1.2 0.062 9.04 1.7793 × 10−1

20 1.79 × 10−5 1.2 0.062 9.86 2.1302 × 10−1

21 1.79 × 10−5 1.203 0.062 10.7 2.5254 × 10−1

22 1.82 × 10−5 1.199 0.1 7.6 3.3311 × 10−1

(Continued )

(Continued.)

Index
ν

(m2/s)
ρ

(kg/m3)
l

(m)
V

(m/s)
w
(N)

23 1.82 × 10−5 1.201 0.1 8.88 4.5647 × 10−1

24 1.83 × 10−5 1.206 0.1 10.4 6.3133 × 10−1

25 1.82 × 10−5 1.201 0.1 12.7 9.4336 × 10−1

26 1.82 × 10−5 1.201 0.1 15.6 1.4146 × 100

27 1.83 × 10−5 1.2 0.1 2.35 2.8761 × 10−2

28 1.83 × 10−5 1.202 0.1 4.37 1.0674 × 10−1

29 2.08 × 10−5 1.566 0.1 5.08 1.8832 × 10−1

30 1.83 × 10−5 1.199 0.142 5.29 3.3354 × 10−1

31 1.83 × 10−5 1.199 0.142 7.76 7.2647 × 10−1

32 1.82 × 10−5 1.186 0.142 10.8 1.3696 × 100

33 1.83 × 10−5 1.192 0.142 12.7 1.8453 × 100

34 1.84 × 10−5 1.203 0.142 15 2.5598 × 100

35 1.83 × 10−5 1.194 0.142 17 3.2006 × 100

36 1.83 × 10−5 1.193 0.142 19.7 4.0984 × 100

37 1.83 × 10−5 1.202 0.142 21.6 4.6476 × 100

38 1.76 × 10−5 1.196 0.142 24.8 5.2507 × 100

39 1.83 × 10−5 1.199 0.142 26.4 5.6279 × 100

40 1.82 × 10−5 1.229 0.283 5.1 1.2033 × 100

41 1.82 × 10−5 1.233 0.283 6.1 1.7197 × 100

42 1.79 × 10−5 1.217 0.283 7.7 2.7508 × 100

43 1.80 × 10−5 1.224 0.283 10.3 4.6072 × 100

44 1.82 × 10−5 1.238 0.283 11.4 5.3733 × 100
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Appendix B. Log10 transformation

Index
ν

(m2/s)
ρ

(kg/m3)
l

(m)
V

(m/s)
w
(N)

1 −4.7345 × 100 7.2985 × 10−2 −2.0969 × 100 3.4242 × 10−1 −3.7440 × 100

2 −4.7447 × 100 7.3718 × 10−2 −2.0969 × 100 4.4871 × 10−1 −3.5902 × 100

3 −4.7442 × 100 7.3352 × 10−2 −2.0969 × 100 5.4654 × 10−1 −3.3949 × 100

4 −4.7414 × 100 7.6640 × 10−2 −2.0969 × 100 6.0314 × 10−1 −3.2835 × 100

5 −4.7440 × 100 7.2617 × 10−2 −2.0969 × 100 6.5321 × 10−1 −3.1843 × 100

6 −4.7452 × 100 7.1882 × 10−2 −2.0969 × 100 7.7960 × 10−1 −2.9795 × 100

7 −4.7438 × 100 7.3718 × 10−2 −2.0969 × 100 8.2347 × 10−1 −2.8711 × 100

8 −4.7450 × 100 8.8490 × 10−2 −1.7447 × 100 5.0786 × 10−1 −2.7987 × 100

9 −4.7450 × 100 8.8490 × 10−2 −1.7447 × 100 6.3246 × 10−1 −2.5540 × 100

10 −4.7452 × 100 8.8845 × 10−2 −1.7447 × 100 7.5128 × 10−1 −2.3103 × 100

11 −4.7462 × 100 8.7781 × 10−2 −1.7447 × 100 8.3506 × 10−1 −2.1339 × 100

12 −4.7435 × 100 8.8845 × 10−2 −1.7447 × 100 9.2117 × 10−1 −1.9487 × 100

13 −4.7484 × 100 7.9543 × 10−2 −1.2076 × 100 5.5509 × 10−1 −1.5840 × 100

14 −4.7493 × 100 7.8094 × 10−2 −1.2076 × 100 6.3949 × 10−1 −1.4127 × 100

15 −4.7488 × 100 7.8457 × 10−2 −1.2076 × 100 6.8931 × 10−1 −1.2963 × 100

16 −4.7479 × 100 7.9181 × 10−2 −1.2076 × 100 7.5282 × 10−1 −1.1676 × 100

17 −4.7488 × 100 7.8457 × 10−2 −1.2076 × 100 8.0956 × 10−1 −1.0549 × 100

18 −4.7469 × 100 7.9181 × 10−2 −1.2076 × 100 8.9653 × 10−1 −8.7367 × 10−1

19 −4.7467 × 100 7.9181 × 10−2 −1.2076 × 100 9.5617 × 10−1 −7.4976 × 10−1

20 −4.7476 × 100 7.9181 × 10−2 −1.2076 × 100 9.9388 × 10−1 −6.7159 × 10−1

21 −4.7476 × 100 8.0266 × 10−2 −1.2076 × 100 1.0294 × 100 −5.9767 × 10−1

22 −4.7395 × 100 7.8819 × 10−2 −1.0000 × 100 8.8081 × 10−1 −4.7741 × 10−1

23 −4.7392 × 100 7.9543 × 10−2 −1.0000 × 100 9.4841 × 10−1 −3.4058 × 10−1

24 −4.7375 × 100 8.1347 × 10−2 −1.0000 × 100 1.0170 × 100 −1.9974 × 10−1

25 −4.7390 × 100 7.9543 × 10−2 −1.0000 × 100 1.1038 × 100 −2.5321 × 10−2

26 −4.7402 × 100 7.9543 × 10−2 −1.0000 × 100 1.1931 × 100 1.5064 × 10−1

27 −4.7380 × 100 7.9181 × 10−2 −1.0000 × 100 3.7107 × 10−1 −1.5412 × 100

28 −4.7385 × 100 7.9904 × 10−2 −1.0000 × 100 6.4048 × 10−1 −9.7168 × 10−1

29 −4.6824 × 100 1.9479 × 10−1 −1.0000 × 100 7.0586 × 10−1 −7.2509 × 10−1

30 −4.7366 × 100 7.8819 × 10−2 −8.4771 × 10−1 7.2346E × 10−1 −4.7685 × 10−1

31 −4.7366 × 100 7.8819 × 10−2 −8.4771 × 10−1 8.8986 × 10−1 −1.3878 × 10−1

32 −4.7404 × 100 7.4085 × 10−2 −8.4771 × 10−1 1.0334 × 100 1.3659 × 10−1

33 −4.7371 × 100 7.6276 × 10−2 −8.4771 × 10−1 1.1038 × 100 2.6607 × 10−1

34 −4.7354 × 100 8.0266 × 10−2 −8.4771 × 10−1 1.1761 × 100 4.0820 × 10−1

35 −4.7366 × 100 7.7004 × 10−2 −8.4771 × 10−1 1.2304 × 100 5.0524 × 10−1

36 −4.7375 × 100 7.6640 × 10−2 −8.4771 × 10−1 1.2945 × 100 6.1261 × 10−1

37 −4.7385 × 100 7.9904 × 10−2 −8.4771 × 10−1 1.3345 × 100 6.6723 × 10−1

38 −4.7557 × 100 7.7731 × 10−2 −8.4771 × 10−1 1.3945 × 100 7.2021 × 10−1

39 −4.7366 × 100 7.8819 × 10−2 −8.4771 × 10−1 1.4216 × 100 7.5035 × 10−1

40 −4.7404 × 100 8.9552 × 10−2 −5.4821 × 10−1 7.0757 × 10−1 8.0363 × 10−2
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20 Eric Coatanéa et al.

https://doi.org/10.1017/S0890060422000269 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060422000269


Center the dataset

(Continued.)

Index
ν

(m2/s)
ρ

(kg/m3)
l

(m)
V

(m/s)
w
(N)

41 −4.7406 × 100 9.0963 × 10−2 −5.4821 × 10−1 7.8533 × 10−1 2.3544 × 10−1

42 −4.7474 × 100 8.5291 × 10−2 −5.4821 × 10−1 8.8649 × 10−1 4.3945 × 10−1

43 −4.7440 × 100 8.7781 × 10−2 −5.4821 × 10−1 1.0128 × 100 6.6343 × 10−1

44 −4.7399 × 100 9.2721 × 10−2 −5.4821 × 10−1 1.0569 × 100 7.3024 × 10−1

Mean −4.7412 × 100 8.2869 × 10−2 −1.2157 × 100 8.6543 × 10−1 −9.7118 × 10−1

Index ν (m2/s) ρ (kg/m3) l (m) V (m/s) w (N)

1 6.7167 × 10−3 −9.8846 × 10−3 −8.8126 × 10−1 −5.2301 × 10−1 −2.7728 × 100

2 −3.5362 × 10−3 −9.1510 × 10−3 −8.8126 × 10−1 −4.1672 × 10−1 −2.6190 × 100

3 −3.0539 × 10−3 −9.5176 × 10−3 −8.8126 × 10−1 −3.1889 × 10−1 −2.4237 × 100

4 −1.7138 × 10−3 −6.2289 × 10−3 −8.8126 × 10−1 −2.6229 × 10−1 −2.3123 × 100

5 −2.8129 × 10−3 −1.0252 × 10−2 −8.8126 × 10−1 −2.1222 × 10−1 −2.2132 × 100

6 −4.0190 × 10−3 −1.0987 × 10−2 −8.8126 × 10−1 −8.5834 × 10−2 −2.0084 × 100

7 −2.5721 × 10−3 −9.1510 × 10−3 −8.8126 × 10−1 −4.1956 × 10−2 −1.8999 × 100

8 −3.7775 × 10−3 5.6211 × 10−3 −5.2908 × 10−1 −3.5757 × 10−1 −1.8275 × 100

9 −3.7775 × 10−3 5.6211 × 10−3 −5.2908 × 10−1 −2.3297 × 10−1 −1.5828 × 100

10 −4.0190 × 10−3 5.9752 × 10−3 −5.2908 × 10−1 −1.1415 × 10−1 −1.3392 × 100

11 −4.9862 × 10−3 4.9121 × 10−3 −5.2908 × 10−1 −3.0374 × 10−2 −1.1627 × 100

12 −2.3315 × 10−3 5.9752 × 10−3 −5.2908 × 10−1 5.5736 × 10−2 −9.7750 × 10−1

13 −7.1704 × 10−3 −3.3263 × 10−3 8.0432 × 10−3 −3.1034 × 10−1 −6.1283 × 10−1

14 −8.1447 × 10−3 −4.7752 × 10−3 8.0432 × 10−3 −2.2594 × 10−1 −4.4154 × 10−1

15 −7.6573 × 10−3 −4.4125 × 10−3 8.0432 × 10−3 −1.7612 × 10−1 −3.2515 × 10−1

16 −6.6841 × 10−3 −3.6881 × 10−3 8.0432 × 10−3 −1.1261 × 10−1 −1.9646 × 10−1

17 −7.6573 × 10−3 −4.4125 × 10−3 8.0432 × 10−3 −5.5871 × 10−2 −8.3699 × 10−2

18 −5.7131 × 10−3 −3.6881 × 10−3 8.0432 × 10−3 3.1096 × 10−2 9.7518 × 10−2

19 −5.4707 × 10−3 −3.6881 × 10−3 8.0432 × 10−3 9.0738 × 10−2 2.2143 × 10−1

20 −6.4412 × 10−3 −3.6881 × 10−3 8.0432 × 10−3 1.2845 × 10−1 2.9960 × 10−1

21 −6.4412 × 10−3 −2.6037 × 10−3 8.0432 × 10−3 1.6395 × 10−1 3.7352 × 10−1

22 1.7397 × 10−3 −4.0502 × 10−3 2.1565 × 10−1 1.5383 × 10−2 4.9378 × 10−1

23 1.9780 × 10−3 −3.3263 × 10−3 2.1565 × 10−1 8.2983 × 10−2 6.3060 × 10−1

24 3.6424 × 10−3 −1.5220 × 10−3 2.1565 × 10−1 1.5160 × 10−1 7.7144 × 10−1

25 2.2162 × 10−3 −3.3263 × 10−3 2.1565 × 10−1 2.3837 × 10−1 9.4586 × 10−1

26 1.0240 × 10−3 −3.3263 × 10−3 2.1565 × 10−1 3.2769 × 10−1 1.1218 × 100

27 3.1675 × 10−3 −3.6881 × 10−3 2.1565 × 10−1 −4.9436 × 10−1 −5.7001 × 10−1

28 2.6921 × 10−3 −2.9649 × 10−3 2.1565 × 10−1 −2.2495 × 10−1 −4.9583 × 10−4

29 5.8837 × 10−2 1.1192 × 10−1 2.1565 × 10−1 −1.5957 × 10−1 2.4609 × 10−1

30 4.5907 × 10−3 −4.0502 × 10−3 3.6794 × 10−1 −1.4197 × 10−1 4.9434 × 10−1

31 4.5907 × 10−3 −4.0502 × 10−3 3.6794 × 10−1 2.4432 × 10−2 8.3240 × 10−1

32 7.8521 × 10−4 −8.7847 × 10−3 3.6794 × 10−1 1.6799 × 10−1 1.1078 × 100
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Appendix C. Variance analysis

(Continued.)

Index ν (m2/s) ρ (kg/m3) l (m) V (m/s) w (N)

33 4.1168 × 10−3 −6.5931 × 10−3 3.6794 × 10−1 2.3837 × 10−1 1.2373 × 100

34 5.7731 × 10−3 −2.6037 × 10−3 3.6794 × 10−1 3.1066 × 10−1 1.3794 × 100

35 4.5907 × 10−3 −5.8650 × 10−3 3.6794 × 10−1 3.6502 × 10−1 1.4764 × 100

36 3.6424 × 10−3 −6.2289 × 10−3 3.6794 × 10−1 4.2904 × 10−1 1.5838 × 100

37 2.6921 × 10−3 −2.9649 × 10−3 3.6794 × 10−1 4.6902 × 10−1 1.6384 × 100

38 −1.4532 × 10−2 −5.1382 × 10−3 3.6794 × 10−1 5.2902 × 10−1 1.6914 × 100

39 4.5907 × 10−3 −4.0502 × 10−3 3.6794 × 10−1 5.5617 × 10−1 1.7215 × 100

40 7.8521 × 10−4 6.6825 × 10−3 6.6744 × 10−1 −1.5786 × 10−1 1.0515 × 100

41 5.4626 × 10−4 8.0937 × 10−3 6.6744 × 10−1 −8.0100 × 10−2 1.2066 × 100

42 −6.1983 × 10−3 2.4212 × 10−3 6.6744 × 10−1 2.1061 × 10−2 1.4106 × 100

43 −2.8129 × 10−3 4.9121 × 10−3 6.6744 × 10−1 1.4741 × 10−1 1.6346 × 100

44 1.2627 × 10−3 9.8513 × 10−3 6.6744 × 10−1 1.9147 × 10−1 1.7014 × 100

Mean 0 0 0 0 0

STD 1.0251 × 10−2 1.8067 × 10−2 5.0092 × 10−1 2.6639 × 10−1 1.3806 × 100

Index ν (m2/s) ρ (kg/m3) l (m) V (m/s) w (N)

1 6.5520 × 10−1 −5.4710 × 10−1 −1.7593 × 100 −1.9633 × 100 −2.0085 × 100

2 −3.4495 × 10−1 −5.0650 × 10−1 −1.7593 × 100 −1.5643 × 100 −1.8971 × 100

3 −2.9790 × 10−1 −5.2679 × 10−1 −1.7593 × 100 −1.1971 × 100 −1.7556 × 100

4 −1.6718 × 10−2 −3.4476 × 10−1 −1.7593 × 100 −9.8458 × 10−1 −1.6749 × 100

5 −2.7440 × 10−1 −5.6743 × 10−1 −1.7593 × 100 −7.9663 × 10−1 −1.6031 × 100

6 −3.9205 × 10−1 −6.0814 × 10−1 −1.7593 × 100 −3.2221 × 10−1 −1.4548 × 100

7 −2.5091 × 10−1 −5.0650 × 10−1 −1.7593 × 100 −1.5750 × 10−1 −1.3762 × 100

8 −3.6849 × 10−1 3.1112 × 10−1 −1.0562 × 100 −1.3423 × 100 −1.3237 × 100

9 −3.6849 × 10−1 3.1112 × 10−1 −1.0562 × 100 −8.7454 × 10−1 −1.1465 × 100

10 −3.9205 × 10−1 3.3072 × 10−1 −1.0562 × 100 −4.2850 × 10−1 −9.7002 × 10−1

11 −4.8640 × 10−1 2.7188 × 10−1 −1.0562 × 100 −1.1402 × 10−1 −8.4219 × 10−1

12 −2.2743 × 10−1 3.3072 × 10−1 −1.0562 × 100 2.0922 × 10−1 −7.0805 × 10−1

13 −6.9947 × 10−1 −1.8411 × 10−1 1.6057 × 10−2 −1.1649 × 100 −4.4390 × 10−1

14 −7.9451 × 10−1 −2.6430 × 10−1 1.6057 × 10−2 −8.4816 × 10−1 −3.1983 × 10−1

15 −7.4696 × 10−1 −2.4423 × 10−1 1.6057 × 10−2 −6.6113 × 10−1 −2.3552 × 10−1

16 −6.5203 × 10−1 −2.0413 × 10−1 1.6057 × 10−2 −4.2273 × 10−1 −1.4231 × 10−1

17 −7.4696 × 10−1 −2.4423 × 10−1 1.6057 × 10−2 −2.0973 × 10−1 −6.0627 × 10−2

18 −5.5730 × 10−1 −2.0413 × 10−1 1.6057 × 10−2 1.1673 × 10−1 7.0637 × 10−2

19 −5.3366 × 10−1 −2.0413 × 10−1 1.6057 × 10−2 3.4062 × 10−1 1.6039 × 10−1

20 −6.2833 × 10−1 −2.0413 × 10−1 1.6057 × 10−2 4.8217 × 10−1 2.1701 × 10−1

21 −6.2833 × 10−1 −1.4411 × 10−1 1.6057 × 10−2 6.1545 × 10−1 2.7056 × 10−1

22 1.6971 × 10−1 −2.2417 × 10−1 4.3051 × 10−1 5.7747 × 10−2 3.5767 × 10−1

23 1.9295 × 10−1 −1.8411 × 10−1 4.3051 × 10−1 3.1150 × 10−1 4.5677 × 10−1
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(Continued.)

Index ν (m2/s) ρ (kg/m3) l (m) V (m/s) w (N)

24 3.5531 × 10−1 −8.4243 × 10−2 4.3051 × 10−1 5.6909 × 10−1 5.5879 × 10−1

25 2.1618 × 10−1 −1.8411 × 10−1 4.3051 × 10−1 8.9481 × 10−1 6.8513 × 10−1

26 9.9893 × 10−2 −1.8411 × 10−1 4.3051 × 10−1 1.2301 × 100 8.1259 × 10−1

27 3.0899 × 10−1 −2.0413 × 10−1 4.3051 × 10−1 −1.8558 × 100 −4.1289 × 10−1

28 2.6261 × 10−1 −1.6410 × 10−1 4.3051 × 10−1 −8.4442 × 10−1 −3.5915 × 10−4

29 5.7395 × 100 6.1948 × 100 4.3051 × 10−1 −5.9899 × 10−1 1.7825 × 10−1

30 4.4781 × 10−1 −2.2417 × 10−1 7.3452 × 10−1 −5.3295 × 10−1 3.5807 × 10−1

31 4.4781 × 10−1 −2.2417 × 10−1 7.3452 × 10−1 9.1712 × 10−2 6.0295 × 10−1

32 7.6596 × 10−2 −4.8622 × 10−1 7.3452 × 10−1 6.3062 × 10−1 8.0241 × 10−1

33 4.0159 × 10−1 −3.6492 × 10−1 7.3452 × 10−1 8.9481 × 10−1 8.9620 × 10−1

34 5.6315 × 10−1 −1.4411 × 10−1 7.3452 × 10−1 1.1662 × 100 9.9915 × 10−1

35 4.4781 × 10−1 −3.2462 × 10−1 7.3452 × 10−1 1.3702 × 100 1.0694 × 100

36 3.5531 × 10−1 −3.4476 × 10−1 7.3452 × 10−1 1.6105 × 100 1.1472 × 100

37 2.6261 × 10−1 −1.6410 × 10−1 7.3452 × 10−1 1.7606 × 100 1.1868 × 100

38 −1.4175 × 100 −2.8439 × 10−1 7.3452 × 10−1 1.9859 × 100 1.2252 × 100

39 4.4781 × 10−1 −2.2417 × 10−1 7.3452 × 10−1 2.0878 × 100 1.2470 × 100

40 7.6596 × 10−2 3.6987 × 10−1 1.3324 × 100 −5.9258 × 10−1 7.6169 × 10−1

41 5.3287 × 10−2 4.4798 × 10−1 1.3324 × 100 −3.0068 × 10−1 8.7402 × 10−1

42 −6.0464 × 10−1 1.3401 × 10−1 1.3324 × 100 7.9058 × 10−2 1.0218 × 100

43 −2.7440 × 10−1 2.7188 × 10−1 1.3324 × 100 5.5334 × 10−1 1.1840 × 100

44 1.2318 × 10−1 5.4526 × 10−1 1.3324 × 100 7.1876 × 10−1 1.2324 × 100

STD 1 1 1 1 1
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