An Application of Abel's Lemma to Double Series. ${ }^{1}$

By C. E. Walsh.
(Received 20th November 1928. Read 1st March 1929.)

Let $b_{m n}$ be a positive function of m and n which decreases steadily with n, so that $b_{m n} \geqslant b_{m, n+1}$ for all values of m and n. Assume also that $\left|a_{m_{1}}+a_{m 2}+\ldots+a_{m n}\right|<K$ for all values of m and n, K being finite. Denote by $S_{m n}$ the sum of the first n terms in the first m rows of the double series

$$
\begin{gathered}
a_{11} b_{11}, a_{12} b_{12}, \ldots \ldots, a_{1 n} b_{1 n}, \ldots \\
a_{21} b_{21} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
\ldots \ldots \ldots \ldots \\
a_{m 1} b_{m_{1}}, \ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{gathered}
$$

Then it can be shewn that if
(1) $\sum_{n=1}^{\infty} b_{m, 1}$ converges, and $b_{m n}$ tends to zero as $n \rightarrow \infty$ (m being fixed) the double series $S_{m n}$ converges.
(2) $\sum_{1}^{\infty} b_{m_{1}}$ converges, and the sum of $S_{m n}$ by rows exists, being S, the double series $S_{m n}$ will also converge to S.
(3) The sum of $S_{n n}$ by columns exists, being S, and $\sum_{m=1}^{\infty} b_{m n}$ converges for all values of n greater than a fixed value N_{1}, tending to zero as $n \rightarrow \infty$, then the double series converges to S.

Of course in cases (2) and (3) by Pringsheim's Theorem it is merely necessary to prove that $S_{m n}$ converges, but to prove that it

[^0]converges to S is just as short. For all values of m and n, and for all positive values of p we have
$\left|\sum_{r=n+1}^{n+p} a_{m r}\right|=\left|\sum_{r=1}^{n+p} a_{m r}-\sum_{r=1}^{n} a_{m r}\right|<2 K$.
Hence since $b_{m n}$ decreases steadily with n, by Abel's Lemma $\left|\sum_{r=n+1}^{n+p} b_{m r} a_{m r}\right|<b_{m, n+1} . \quad V$, where V is the greatest of the moduli $\left|a_{m, n+1}\right|,\left|\sum_{r=n+1}^{n+2} a_{m r}\right|, \ldots,\left|\sum_{r=n+1}^{n+p} a_{m r}\right|$, i.e. $V<2 K$. Thus $\left|\sum_{n+1}^{n+p} b^{m r} a_{i n r}\right|<2 K b_{m, n+1}$.

Putting $m=1,2, \ldots M$, we have for all values of M, n and p, $\left|S_{M, n+p}-S_{M n}\right|=\left|\sum_{m=1}^{M} \sum_{r=n+1}^{n+p} b_{m r} \cdot a_{m r}\right| \leqslant \sum_{m=1}^{M}\left|\sum_{r=n+1}^{n+p} b_{m r} a_{m r}\right|<$ $2 K\left(b_{1 n+1}+b_{2},{ }_{n+1}+\ldots+b_{M, n+1}\right)$.

Also putting $n=0$ in the inequality $\left|\sum_{n+1}^{n+p} b_{n r} a_{m r} \cdot\right|<2 K b_{m, n+1}$, and letting $m=M+1, M+2, \ldots, M+s$, in succession, it follows similarly that

$$
\begin{align*}
\left|S_{M+s, p}-S_{M p}\right| & \leqslant \sum_{m=M+1}^{M+3}\left|\sum_{r=1}^{p} b_{m r} a_{m r}\right| \\
& <2 K\left(b_{M+1}, 1+b_{M+2}, 1+\ldots \ldots+b_{M+s, 1}\right) \tag{B}
\end{align*}
$$

M, s, and p being arbitrary.
In case (1), given ϵ, M can be found so that if $m>M, \sum_{r=m}^{\infty} b_{r_{1}}<\epsilon$, hence from (B) if $m>M$, $\left|S_{m n}-S_{M n}\right|<2 K \epsilon$, for all values of n.
Now N can be found so that if $n>N, b_{1 n}, b_{2 n}, \ldots, b_{M n}$ are each less than $\frac{\epsilon}{M}$. Accordingly from (A) if $n>N, q>N$,

$$
\left|S_{. v_{n}}-S_{v_{q}}\right|<2 K . M \cdot \frac{\epsilon}{M}, \text { i.e. }<2 K \epsilon .
$$

and so when $p, m,>M, q, n>N$,

$$
\left|S_{m n}-S_{p q}\right| \leqslant\left|S_{m n}-S_{M n}\right|+\left|S_{M n}-S_{M_{q}}\right|+\left|S_{M q}-S_{p q}\right|<\mathbf{6} K \epsilon
$$

which is arbitrarily small, thus $S_{m n}$ converges.
For case (2), if r_{m} denote the sum of the first m rows of $\mathbb{S}_{m n}$ M can be found such that $\left|r_{m}-S\right|<\epsilon$, and $\sum_{m}^{\infty} b_{r_{1}}<\epsilon$, if $m \geqslant M$. Then we can find N so that $\left|S_{M n}-r_{M}\right|<\epsilon$ if $n>N$. Thus

$$
\left|S_{y n}-S\right|<2 \epsilon \text { if } n>N, \text { and ais in case (1), }\left|S_{m n}-S_{M n}\right|<2 K \epsilon
$$ for all values of n, if $m>M$. Hence if $m>M, n>N$,

$$
\left|S_{m n}-S\right| \leqslant\left|S_{m n}-S_{M n}\right|+\left|S_{M n}-S\right|<2(K+1) \epsilon
$$

which is arbitrarily small, and the result follows.
In case (3) if the sum of the first n columns be denoted by $l_{n}, N\left(>N_{1}\right)$ can be found so that if $n \geqslant N,\left|l_{n}-S\right|<\epsilon$, and $\sum_{m=1}^{\infty} b_{m n}<\epsilon$. Then we can find M so that if $m>M,\left|S_{m N}-l_{N}\right|<\epsilon$, and consequently $\left|S_{m N}-S\right|<2 \epsilon$. But from (A), we have for all values of m, if p is positive

$$
\left|S_{m, N+p}-S_{m N}\right|<2 K\left(b_{1} N+1+b_{2}, N+1+\ldots+b_{m, N+1}\right)<2 K \epsilon
$$

Therefore if $m>M, n>N$

$$
\left|S_{m n}-S\right| \leqslant\left|S_{m n}-S_{m N}\right|+\left|S_{n N}-S\right|<2(K+1) \epsilon
$$

so $S_{m n}$ converges to S.
[Note added 30th March 1929.-It was noticed, too late to alter proof sheets, that (1) and (2) above are merely particular cases of
(a) The double series $S_{m n}$ converges if $\sum_{m=1}^{\infty} b_{m_{1}}$, and each row of $S_{m n}$, converges. For M can then be found so that $\sum_{m=M}^{\infty} b_{m_{1}}<\epsilon$, hence from (B), if $m>M$, then $\left|S_{m n}-S_{M n}\right|<2 K \epsilon$ for all values of n.

As $\lim S_{H_{n}}$ exists we can find N so that if $n, q>N$,

$$
\left|S_{M n}-S_{M_{q}}\right|<\epsilon
$$

Thus when $m, p>M, n, q>N$,
$\left|S_{m n}-S_{p q}\right| \leqslant\left|S_{m n}-S_{M n}\right|+\left|S_{M n}-S_{M_{q}}\right|+\left|S_{M_{q}}-S_{p_{q}}\right|<(4 K+1) \epsilon$, so that the double series converges.

Also (3) above is only a particular case of
(b) If the columns of $S_{m n}$ converge, and $\sum_{m=1}^{\infty} b_{m n}$ converges when $n>N_{1}$, tending to zero as $n \rightarrow \infty, S_{m n}$ will converge.

To shew this; $N\left(>N_{1}\right)$ can be found so that if

$$
n \geqslant N, \sum_{m=1}^{\infty} b_{m n}<\epsilon ;
$$

hence as in (3), $\left|S_{m, N+r}-S_{m N}\right|<2 K \epsilon$ for all values of m and r. As $\lim _{m \rightarrow \infty} S_{m v}$ exists, M can be chosen such that

$$
\left|S_{m N}-S_{p N}\right|<\epsilon, \text { if } m, p>M
$$

And so when $m, p>M, n, q>N$
$\left|S_{m n^{-}-} S_{p q}\right| \leqslant\left|S_{m n}-S_{m N}\right|+\left|S_{m N}-S_{p N}!+S_{p N}-S_{p q}\right|<(4 K+1) \epsilon$ i.e. $S_{m n}$ converges.]

[^0]: ${ }^{1}$ For various similar results, and for other applications of this Lemma to multiple series, together with extensions of it, see e.g. Hardy :-Proc. London. Math. Soc. 2, 1 (1903), 124-128; 2 (1904), 190 ; Proc. Cambridge Phil. Soc. 19 (1919), 86, etc. Also, Bromwich, Proc. London Math. Soc. 2, 6 (1907), 58-76; and papers and theorems by Hadamard, Ferrar, Proi. London Math. Soc., 29 (1929), and others.

